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Abstract: A multi-particle extension of the Arnol’d cat Hamiltonian system is presented, which can serve
as a fully dynamical model of decoherence. The behavior of the von Neumann entropy of the reduced
density matrix is studied, in time and as a function of the physical parameters, with special regard to
increasing the mass of the cat particle.
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1. Introduction

In a seminal paper [1], Fishman (with D.R. Grempel and R.E. Prange) exposed a far-reaching link
between a time-evolution problem, the motion of a quantum kicked rotor, and the static Anderson
localization phenomenon of the theory of solids. The link quickly became paradigm, and it led to many
interesting discoveries. Perhaps the most important of these, which required a further conceptual leap,
was Chirikov and coworkers’ discovery of quantum localization of classical chaos [2]. In extreme synthesis
(it is certain that readers of this volume dedicated to Shmuel’s memory know it better), localization freezes
quantum motion on a reduced set of states in the Hilbert space of a system, thus preventing the classical
richness of dynamical complexity to unfold.

Coming from a different perspective, Ford and associates investigated the problem of quantum chaos
from an informational theoretical perspective [3–8] and realized that such freezing might be interpreted
as a bound to the complexity of quantum motion, which, in properly defined and rescaled units, was
shown to be slowly increasing, as the logarithm of the action of the system, a fact that cast a severe
limitation on the set of classical motions that can be obtained when quantum dynamics becomes more and
more classical.

Confronted with these limitations and in search of a sort of Northwest passage to reconcile classical
mechanics with quantum, called the correspondence principle by the founding fathers, researchers
discovered that this goal could be somehow achieved by letting a random element enter the dynamics.
In 1984, Guarneri [9] showed that this could prevent quantum localization in the dynamics of a kicked rotor,
precisely the system studied two years earlier by Shmuel and coworkers. Soon afterwards, Ott et al. [10]
studied the parameter dependence of the diffusion coefficient D of the quantum diffusion generated in
this way. In a more general setting, Dittrich and Graham [11], Kolovsky [12–14], and Sundaram et al. [15]
proved that coupling a quantum dynamical system to the environment leads to diffusion with coefficient D

Condens. Matter 2019, 4, 72; doi:10.3390/condmat4030072 www.mdpi.com/journal/condensedmatter

http://www.mdpi.com/journal/condensedmatter
http://www.mdpi.com
http://dx.doi.org/10.3390/condmat4030072
http://www.mdpi.com/journal/condensedmatter
http://www.mdpi.com/2410-3896/4/3/72?type=check_update&version=2


Condens. Matter 2019, 4, 72 2 of 14

that is comparable with the classical as long as
√

D/λ (λ is the Lyapunov exponent of the chaotic classical
system) is larger than h̄ times a dimensional constant.

After these pioneering works, the so-called decoherence approach to quantum chaos flourished.
It was a sort of phenomenological approach to decoherence, involving a Markov map for the evolution of
the reduced density matrix of the system. This map represents, in a schematic way, the true dynamics of
a system interacting with an environment. It often required strong assumptions, e.g., in the Caldeira–Legget
model, to simulate an environment with infinitely many degrees of freedom, whose exact dynamics is too
complicated to be dealt with exactly. This approach has been adopted to explain the behavior of quantum
Schrödinger cats [16] and the emergence of classical properties in quantum mechanics [11,12,14,17–21].

In this paper, we revisit a model that we introduced a few years ago [22], to study decoherence
phenomena in a completely dynamical way, that is, without any ad hoc or phenomenological assumptions.
It is based on a combination of the principal example of classical chaos, the Arnol’d cat map [4,23,24],
with Joos and Zeh’s [17] view of decoherence as due to collisions of particles. The model views Arnol’d
cat dynamics as the motion of a particle on a ring, which is acted upon by a periodic, impulsive force.
A number of lighter particles, also moving on the same ring and colliding elastically with the heavy one,
are added to the system. The cat particle constitutes the system, and the lighter particles, the environment,
but we treat all of them exactly, in a fully quantum mechanical way.

In [22], we examined the Alicki–Fannes [25–27] (AF) entropy of this system. This entropy is, in our
view, the most proper generalization of the Kolmogorov–Sinai entropy to quantum dynamics. The results
we obtained, although promising, are preliminary, due to the numerical difficulty [28] of computing the
decoherence matrix [29–31] associated with the procedure. For earlier works discussing quantum entropies,
see [32,33]. While we still believe that the Alicki–Fannes entropy is theoretically the best indicator of
quantal complexity, it must be remarked that other indicators of some sort of irregularity have been
proposed [34–39], each possessing its relevance and limitations.

In this paper, we consider one of these indicators, the von Neumann entropy of the reduced density
matrix of the system. We refer in particular to the analysis in [40], which, in line with other studies
(e.g., [41–43]), adopted a phenomenological model of decoherence. The main finding of [40] was to show
a relation between the chaotic dynamics of the classical model and the growth, in time, of the entropy.
In this way, decoherence could serve as a means of reviving chaotic features in quantum mechanics
that were inhibited—following any of the interpretations presented in the literature: by the logarithmic
bound on complexity, by quantum localization, by the quantum Lyapunov time, et cetera. We employ the
multiparticle Arnol’d cat to verify the dynamical robustness of this conclusion.

In the next section, we briefly review the properties of the classical Arnol’d cat and its quantization,
following [4]. In Section 3, we introduce the multiparticle Arnol’d cat, both classically and quantum
mechanically, following [22]. In Section 4, we introduce the reduced density matrix of the system,
and we study its time evolution. We perform a first numerical experiment: by preparing the system in
a Schrödinger cat state, we observe that out-diagonal matrix elements fade as time evolves. The main results
of this paper are presented in Section 5. They consists in the study of scaling relations for decoherence
through three different kinds of numerical experiments. First, we compare the behavior of V-N entropy for
the free rotation, the cat map, and cat maps where the “kick” is delayed (to be defined precisely below),
which are characterized by smaller classical entropy. In the second experiment, we investigate the effect of
varying the scattering intensity between the cat particle and the smaller ones. In the third, we increase
the mass of the cat particle, which is a physically sound realization of the theoretical procedure of taking
the so-called classical limit. The conclusion discusses the results of the numerical experiments and their
theoretical implications in relation to previous studies.
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2. Arnol’d Cat as a Single Particle Moving on a Ring

It is well known that an Arnol’d cat map can also describes the motion of a kicked particle of mass
M subject to move on a one dimensional torus of length L, labeled by the variable Q. This particle is
also acted upon by an impulsive force, periodic of period T, that instantaneously changes the particle’s
momentum. This is formalized by the Hamiltonian

Hcat(Q, P, t) =
P2

2M
− κ

Q2

2

∞

∑
j=−∞

δ(t/T − j), (1)

where P is the conjugate momentum to Q and κ is a coupling constant. It is easily seen that the period
evolution generated by this Hamiltonian is the Arnol’d cat mapping: if Qn, Pn are the dynamical variables
measured at the instant of time t = n+, immediately following the action of the impulsive force, the period
evolution becomes {

Qn+1 = Qn +
T
M Pn,

Pn+1 = Pn(1 + κT
M ) + κTQn.

(2)

The dynamical momentum P is conveniently rescaled by multiplication by T/M, so that the new
quantity, P̃ := T

M P has the dimensions of a length. The rescaled period evolution becomes{
Qn+1 = Qn + P̃n,
P̃n+1 = κT2

M Qn + (1 + κT2

M )P̃n.
(3)

Moreover, it is also assumed that the rescaled momentum variable P̃ is periodic, of the same period L
as Q, so that the phase-space of the system is a two-dimensional torus. This can be obtained by setting
L = 1 and requiring that κT2

M be an integer. The particular choice

κT2

M
= 1 (4)

finally reveals the classical Arnol’d cat on the two-dimensional torus. We stick to this choice in this paper.
The Hamiltonian (1) was originally quantized by semiclassical methods in [24] and by canonical

means in [4]. The peculiarity might appear to be the requirement of periodicity of both coordinate
and momentum, but this has been already discussed by Schwinger [44] and, much later, formalized
rigorously [45]. Formal calculations are indeed elementary: in this section, we adopt the approach of [4],
which proceeds as follows. Periodicity in the Q coordinate implies that that wave functions can be
expanded on the momentum eigenfunctions φk(Q) := e−i2πkQ/L, with integer k:

ψ(Q) = ∑
k

ckφk(Q). (5)

Obviously, ck are the expansion coefficients. The quantum momentum operator is P̂ = ih̄∂Q, where,
obviously, h is Planck’s constant. Therefore,

P̂φk(Q) =
2πkh̄

L
φk(Q), (6)

with eigenvalue P̂k = hk/L.
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Next, consider periodicity, with period ML/T, in the variable P, as done before in the classical case.
This is possible if a wave-function, written in the momentum representation, is such that there exists
an integer N so that

ML2

T
= Nh, (7)

and in Equation (5), one has
ck = ck+N , (8)

for any k. Without loss of generality, we put L = 1 here and in the following.
These considerations permit us to show that quantum kinematics can be effected in a finite

dimensional Hilbert space of dimension N: Equation (8) imposes ck = ck+N in Equation (5), so as to
produce a periodic train of delta functions at the spatial locations Qj =

j
N + s, with j = 0, . . . , N− 1, where

s is a fixed shift that can be taken to be null. Wave-functions can therefore be written as

ψ(Qj) =
1√
N

N−1

∑
k=0

ckφk(Qj) =
1√
N

N−1

∑
k=0

cke−i2πkj/N (9)

in position representation, and letting Pk = kh,

ck = ψ̂(Pk) =
1√
N

N−1

∑
j=0

ψ(Qj)ei2πkj/N , (10)

in the momentum representation. The dimension of the Hilbert space N is directly proportional to the
mass M of the particle: the classical limit can be obtained by keeping h̄ fixed to its real physical value and
by considering particles of increasing mass M.

The matrix representation of the evolution operator is computed in a straightforward fashion in [4].
In the position representation, where the wave-function takes the values ψ(Qj), j = 0, . . . , N, the evolution

U free induced by the free rotation P2

2M has matrix elements

U free

kl =
1√
N

e−(πil2/N)e2πikl/N . (11)

We denote by K the impulsive kick operator whose matrix elements are

Kkl =
1√
N

eiπl2/Nδk,l , (12)

where δk,l is the Kronecker delta. Finally, the quantum Arnol’d cat evolution operator is the product
U = KU free.

3. The MultiParticle Arnol’d Cat

The multiparticle Arnol’d Cat introduced in [22] is a many-body system composed of a particle of
mass M and of I lighter particles of mass m, also bound to move on the circle of length L = 1 where the
first particle evolves. We denote by qi and pi, i = 1, . . . , I coordinates and momenta of these particles,
respectively. Also imposing periodicity of period mL

T in the momenta pi yields the requirement

m
TL2 = nh, (13)
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where n must be an integer. The wave-functions of the new particles can also be written in the form of
Equations (9) and (10), where n substitutes N: remark that these lighter particles are characterized by
a smaller Hilbert space.

Neglecting any symmetry requirement, the many-particle wave-function can be written in the
momentum basis as

Ψ(Q, q1, . . . , qI) = N−1/2n−I/2
N−1

∑
k=0

n−1

∑
k1=0
· · ·

n−1

∑
kI=0

ck,k1,...,kI e
−2πi(kQ+∑i kiqi). (14)

To specify the coordinates qi, which belong to a lattice of spacing 1/n, containing n points, we perform
a similar analysis to that in the previous section. We choose N as an integer multiple of n (that is,
N = pn, which also implies that the mass M is a multiple of m, i.e., M = pm). We also require that the
position–momentum lattice of a small particle is a subset of that of the large one: the position lattice of the
i-th particle is

qi = j
1
n
+ si

1
N

, j = 0, . . . , n− 1, (15)

where si an integer measuring the shift of the position lattice of the i-th particle with respect to that of the
large particle. The allowed values of the constants si range from zero to N/n− 1. Similarly, the momenta
pi live on the lattice kh, with k = 0, . . . , n− 1.

In the position representation, the state of the system is encoded in the values of Ψ at (Q, q1, . . . , qI) =

( j
N , j1

n + s1/N, . . . , jI
n + sI/N), which we label as Ψj0,j1,...,jI using the index zero for the large particle.

Mapping to and from the two representations is easily affected by the multidimensional discrete
Fourier transformation.

The unitary evolution operator of the multiparticle Arnol’d cat is engendered by the Hamiltonian

H = Hcat(Q, P, t) +
I

∑
i=1

1
2m

p2
i + V

I

∑
i=1

Φ(qi −Q), (16)

where V is a coupling constant and the function Φ depends only on the difference between the coordinates
of the light particles with the large one. This form implies an elastic scattering between the heavy particle
and each of the lighter ones, which, for simplicity, are assumed not to interact with each other—although
a slight modification of theory and numerical codes would allow this. The form of the Hamiltonian (16) is
inspired by the decoherence program of Joos and Zeh [17]: the large particle encounters frequent collisions
with the small ones that should ultimately produce decoherence and classicality.

In fact, the interaction potential Φ appearing in the Hamiltonian (16) should somehow reproduce
a hard core potential equal to a Dirac delta function, representing a perfectly elastic scattering [46,47].
In our case, where kinematics take place in the tensor product of quantized two-dimensional tori, this
requires a model that is easily treatable. At the same time, it yields significant new features in the scattering
process, such as the possibility of missed interactions, which will be described in a different work.

The model that we choose is the following: we choose the interaction potential Φ in the form

Φ =
I

∑
i=1

Φ(i) ⊗ I(i), (17)

in which Φ(i) is the interaction matrix in the (0, i) subspace (for convenience of notation, we shall also let
the index 0 label the position-momentum of the large particle: q0 := Q, p0 = P) and I(i) is the identity in
the orthogonal complement of the (0, i) subspace. The interaction between the heavy (zero-th) particle and
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the i-th is effective only when they occupy the same lattice point. It is therefore convenient to define the
scattering potential directly in the position representation, where Ψ is defined by its values at the lattice
positions defined above: (Q, q1, . . . , qI) = ( j

N , j1
n + s1/N, . . . , jI

n + sI/N). In this basis, we have

Φ(i)
l0,ki ;l′0,k′i

= δl0,l′0
δki ,k′i

δl0,pki+si
, (18)

where p = N
n and where l0 and l′0 range from 0 to N− 1, while ki and k′i range from 0 to n− 1. As anticipated,

the last Kronecker delta requires that the particle 0 and i sit at the same lattice point. According to
Equations (17) and (18), the full matrix elements of Φ are therefore

Φl0,k1,...,kI ;l′0,k′1,...,k′I
= δl0,l′0

I

∏
i=1

δki ,k′i

I

∑
i=1

δl0,pki+si
. (19)

It is apparent that Φ is diagonal in the coordinate representation.
Finally, the form of the Hamiltonian (16) suggests a numerical technique for the quantum evolution.

Write symbolically

H = Hfree + Φscat + K
∞

∑
j=−∞

δ(t/T − j), (20)

where Hfree is the free motion Hamiltonian, Φscat is the scattering contribution, and K is the impulsive
force (acting only on the Q coordinate). Then, the full period evolution operator U can be written as the
product of

Ukick := e−ih̄TK

and of the time-ordered exponential
Urot := e−ih̄T(Hfree+Φscat)

that generates the rotation in the presence of scattering. This latter is conveniently computed in a Trotter
product form

Urot =
R−1

∏
r=0

e−ih̄ T
R Hfree

e−ih̄ T
R Φscat

, (21)

whose accuracy increases by increasing the number of subintervals R of the interval (0, T). It is apparent
that each exponential must be computed in the basis where the corresponding operator is diagonal. This is
easily obtained by the repeated usage of the multidimensional Fourier transform.

4. Evolution, Density Matrix, and Decoherence

It is well known that the most general formulation of a quantum system involves the concept of density
matrix. This approach has been widely used in the investigation of decoherence. The initial point of the
evolution is a density matrix composed of a pure state Ψ defined as in Equation (14): ρ = |Ψ〉〈Ψ|. Its time
evolution is fully unitary and follows from the evolution operator U(0, t) defined by the Hamiltonian in
Equation (20).

ρ(t) = U(0, t) ρ(0) U†(0, t) (22)

Observe now that the Hilbert spaceH of the system is the tensor product of the single particle Hilbert
spaces and that we focus our attention on the heavy particle: we may consider this latter as the system
and the remaining ones as the environment, so that the Hilbert space is the product

H = HS ⊗ HE . (23)
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The reduced density matrix of the system, ρS, is obtained by tracing over the degrees of freedom of
the environment:

ρS = TrEρ. (24)

It contains the full information to determine the outcomes of measurements on the system S when
the environment is not observed. The von Neumann entropy S quantifies the amount of information in
the eigenspectrum of ρS : this is easily seen, since S is defined as

S = −TrS ρS log ρS , (25)

and since ρS is unit trace, Hermitean and positive semi-definite, letting λi be its eigenvalues, one has

S = −∑
i

λi log λi, (26)

which is the Shannon entropy of the set of eigenvalues. At the same time, it is clear that when the density
matrix is in the form of a pure state, it has a single non-zero eigenvalue whose value is one, and the entropy
is null. Therefore, the von Neumann entropy can also be considered a measure of the decohering influence
of the environment on the system.

A first consequence of decoherence is the fact that coupling to the environment suppresses the
out-diagonal elements of the density matrix, or in other words, suppresses the coherence of entangled
states. This can be verified in the model system under investigation by preparing the initial state of the
system in a Schrödinger cat configuration and by turning off the kick Hamiltonian, i.e., setting κ = 0,
so that only free motion and collisions play a role. We choose a heavy particle of mass M = 27h (recall
that we choose T = L = 1) interacting with three light particles of mass m = 2h, with coupling constant
V = 40. In Figure 1, we plot the intensity profile of the density matrix, in the position representation,
at time zero and at time t = 0.3, while in Figure 2, the same is represented at times t = 0.6 and t = 0.9.
Fading of the out-diagonal components is observed, which is almost complete at time t = 1.7, pictured in
the left frame of Figure 3. In the right frame of the same figure, at time t = 2.9, interference patterns due to
the finite size of the Hilbert space start appearing.
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Figure 1. Reduced density matrix ρS picturing a Schrödinger cat in the position representation, at time
t = 0 (left frame) and at time t = 0.3 (right frame). Physical parameters in the text.
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Figure 2. Following from Figure 1: reduced density matrix ρS in the position representation, at time t = 0.6
(left frame) and t = 0.9 (right frame).
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Figure 3. Following from Figure 1: reduced density matrix ρS in the position representation, at time t = 1.7
(left frame) and t = 2.9 (right frame).

5. Scaling Relations for Decoherence

The fully dynamical model introduced above permits us to study quantitatively the effect of collisions
on the onset of decoherence in the motion of the heavy particle. This can be done in a sequence
of experiments.

5.1. Behavior of V-N Entropy for Chaotic and Non-Chaotic Systems

Firstly, we want to investigate the characteristics of the entropy growth in time in chaotic and
non-chaotic systems. This can be obtained by considering the evolution of the cat map system on the
one side, and on the other side, of the free rotation. Among these extrema, one can also choose to act
with the kick operator at times that are multiples of T, of course while keeping the same intensity of
the perturbation. Figure 4 reports the results of this investigation. We choose M = 28h, m = 2h, I = 8,
and V = 55. The adopted value of the intensity V of the scattering coupling is derived from the analysis to
be presented in the next section.

In the dynamics of the “conventional” cat, with kicks spaced at T = 1 intervals, we observe an initial
almost linear growth of the entropy, with slope approximately equal to the Lyapunov exponent of the
classical map. For long times, the value of the entropy saturates at the theoretical limit log(N), which in
this case is Smax = 8 log(2).
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When kicks are spaced every 2T intervals of time, the entropy growth is still of the same kind.
Next, consider data for spacings 4T and 8T. A moment reflection reveals that in the general case of spacing
mT, with m being an integer, dynamics can be thought of as a periodic evolution, of period mT, composed
of m− 1 iterations of Urot followed by one iteration of U. The picture shows that the amount of chaoticity
infused by the action of U, which contains the combination free rotation and kick generating the Arnol’d
cat, is immediately reflected by an increase of the von Neumann entropy. Successively, this increase slows
down before the next action of U.

Finally, data are shown for when the dynamics are generated solely by Urot, that is, free motion of
all the particles and scattering. For what concerns the heavy particle, this is the motion of a system with,
at most, linear separation of trajectories. We observe a logarithmic increase of entropy. We will comment
in the conclusion on the relation of these findings with the more cogent test of A-F dynamical entropy.

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20  25  30  35  40

S
(t

)

t

Figure 4. Von Neumann entropy S as a function of time t for various values of the spacing ∆ between
kicks. From the highest curve to the lowest: ∆ = T (red), ∆ = 2T (green), ∆ = 4T (blue), ∆ = 8T (grey).
Also plotted is the case with no kicks (black dots). The blue line is the function S(t) = log(λ)t when
λ = 1

2 (1 +
√

5); the horizontal grey line is the value Smax = 8 log(2); the brown curve is the function
log(1 + 0.18t). Physical parameters are M = 28h, m = 2h, I = 8, and V = 55.

5.2. Behavior of V-N Entropy When Increasing Scattering Intensity

One of the main conclusions of [40] is that the rate of entropy production becomes independent
of the intensity of decohering perturbation when this latter surpasses a certain threshold, and this rate,
at short times, equals the classical dynamical entropy. While the model of decoherence in [40] is admittedly
phenomenological, the one examined here is fully dynamical and can be used to test this conclusion.

For this investigation, we have at our disposal the coefficient V in Equation (16), which can be varied
to increase or decrease the scattering interaction between the heavy particle and the lighter ones. As in the
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previous section, we consider a system with M = 28h, m = 2h, I = 8, and we let V vary. Entropy versus
time is plotted in Figure 5. One must obviously focus on the initial part of the graph, before the saturation to
the value Smax = 8 log(2). In such a range, an almost linear increase is observed, in line with the theoretical
prediction just discussed. Upon increasing the value of the coupling V, the slope of the linear part increases,
but apparently it does not reach a limiting value, which should be given by the logarithm of the Lyapunov
exponent of the classical cat map, λ = 1

2 (1 +
√

5). For large couplings, this value is surpassed.
This leads to two considerations. Firstly, as observed in the classical investigations of systems

with added noise [48], such interactions can add complexity to the motion. This is most likely the case
here: coupling with light particles reveals the complexity of the motion of the heavy particle, but it also
contributes a positive amount to the entropy. Secondly, it might be surmised that for this procedure to
work, the amount of “disturbance” brought about by the small particles should be negligible yet effective.
When considering the classical limit, i.e., the case of larger and larger M, this might require a particular
scaling relation between M, the number of light particles, and their masses. This study has not been
performed, and its physical significance is as yet unclear.

 0
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 0  2  4  6  8  10

S

t
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S(t)
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V=65
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V=80
V=90

V=120

Figure 5. Von Neumann entropy S as a function of time t, for M = 28h and various values of V (labels in
the legend). The black line is the function S(t) = log(λ)t when λ = 1

2 (1 +
√

5).

5.3. Behavior of V-N Entropy When Increasing the Mass of the Large Particle

Finally, let us examine the behavior of the V-N entropy when the mass of the heavy particle increases.
As mentioned in the previous paragraph, this investigation is relevant to the deep question on the nature
of the correspondence principle. In these numerical experiments, the large particle interacts with I = 12
particles of mass m = 2h. We let the mass M increase by a factor two from M = 24h to M = 28h.
In Figure 6, we plot the corresponding graphs of the entropy as a function of time. As remarked in the
previous sections, in order to have a region of linear increase with a slope comparable to the logarithm
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of the Lyapunov exponent, the intensity V of the coupling must be chosen appropriately. Yet, since we
elect in this section to keep the mass and the number of light particles constant while the large particle
gets heavier and heavier, in order to have a comparable effect of the perturbation, the coupling constant
must increase accordingly: when the mass M doubles, so must V. In the experiments, M = 2lh for various
values of l, and therefore, we set V = 2lV0. We observe that the curves tend to adhere more and more
to the linear part as the mass of the heavy particle increases. We can now comment on the relevance of
these findings.

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20

S
(t

)

t

Figure 6. Von Neumann entropy S as a function of time t, for M = 2lh and V = 2lV0, with V0 = 0.15625
and l = 4, . . . , 8. The different values of l can be easily distinguished, since curves saturate at Smax = log(2)l,
hence l = 4 (red), l = 5 (green), l = 6 (blue), l = 7 (magenta), l = 8 (light blue). The red line is the function
S(t) = log(λ)t when λ = 1

2 (1 +
√

5).

6. Conclusions: Quantum Dynamical Entropies and Decoherence

The behavior observed in Figure 6 of the previous section is analogous to that found in the
investigation of the A-F entropy of the Arnol’d cat mapping in [28]: the finite size of the Hilbert space
limits quantum pseudo-chaos (to use Chirikov’s terminology) to a time span that is only logarithmic in the
semiclassical parameter. Yet, a fundamental difference is to be remarked: the calculation of A-F entropy
does not require the introduction of a decohering mechanism but is defined on the quantal evolution plus
the essential ingredient of defining a coarse-graining, which leads to symbolic dynamics. This considers
the “quantum history” of a state vector ψ as the result of repeated projections on macro-states, followed by
unitary evolution.

Secondly, but also importantly, the von Neumann entropy of the reduced density matrix is bounded
by the logarithm of the cardinality of the Hilbert space, which we have seen here to be proportional to
the mass of the particle under observation. The same bound also affects the A-F information (whose time
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increase defines the entropy), but only in the absence of decoherence. Indeed, the analysis of [22] suggested
that this bound could be overcome, precisely owing to decoherence. This fundamental capability is not
shared by von Neumann entropy, which, in our view, puts it in a different level of theoretical relevance,
as compared to that of Alicki and Fannes: it is more readily computable and applicable to derive physical
consequences of real experiments, but it does not capture all the dynamical features of quantum motion.

Yet, it is to be recalled that in [22], it was also found that too strong a decoherence results in an increase
of A-F information larger than what is observed in the classical system. The same scenario is found in this
paper when considering the von Neumann entropy: contrary to the case studied in [40], we find that to
achieve concordance with the classical entropy—albeit in a limited range—the parameter governing the
momentum transfer from system to the environment must be accurately tuned.

It seems therefore, that to achieve the same results of classical mechanics, a balance between the mass
of the semiclassical system and the intensity of decoherence should hold. Clearly, a theory of this sort can
be physically satisfactory only if some sort of universality is found when taking this classical limit: as we
suggested in [22], this means that when letting the mass M of the large particle grow, one should be able
to find that for a large, physically reasonable set of sequences m, I, V, the quantum von Neumann entropy
S(t) agrees with the classical information production.
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