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Abstract: We study the ground state of a one-dimensional channel with strong attractive
electron–electron interactions at low temperatures. In spite of the fact that, at low temperatures,
the ground state of one-dimensional attracting electrons is a state with a macroscopically large
number of cooperons, the resulting superconducting phase has a number of significant differences.
Namely, the order parameter (which should appear in the superconducting phase according to
Landau’s phenomenological theory) turns out to be zero. However, elastic impurities implanted
in a one-dimensional channel will not lead to dissipation of the supercurrent associated with the
condensate movement as a whole.
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1. Introduction, Problem Statement and Qualitative Discussion of the Results

In connection with the development of nanotechnologies, which allow for the production of
one-dimensional ballistic channels, interest in the theory describing these objects was revived. Another
reason for traditionally stimulating theoretical work in this area is that exactly solvable one-dimensional
models (see, for example, the papers Luttinger [1], Schwinger [2,3]) gave hope to understand, at the
qualitative level, the phenomena occurring in a higher dimension systems. For example, the Schwinger
model, for a long time, has been the only field theory to discuss the confinement problem. It should
be said that, over a long time, the Luttinger model (one-dimensional interacting electrons without
backscattering) was considered a purely theoretical problem too. It gave a number of interesting
(from the theory point of view) results. Later, it served as the basis for considering problems
related with quasi-one-dimensional problems. However, at the beginning of this century, the first
experimental works on quantum wires appeared. One could hope that electrons occupy only the
lowest level of transverse quantization [4,5]. As a result, the electronic transport in the objects should
have been described by a one-dimensional model. It stimulated works related to the calculation of
the conductance in the one-dimensional channel, the influence of elastic impurities implanted into
the channel [6,7], and the effects associated with the screening of electron–electron interactions by
a three-dimensional environment.

In this paper, we will discuss the other question. We will show that (as was to be expected)
the ground state of the Luttinger model with a strong electron–electron attraction is a state with a
long-range order. Using direct calculation, we will make sure that, in the case of single-component
electrons, it contains a macroscopically large number of Cooper pairs (correlated states acting as
Bose-like particles). For the multicomponent system, correlated states consist of more complex
correlated complexes: fours for two-component fermions (electrons with spin), eights for conducting
nanotubes (four-component fermions), etc. This is a phenomenon known in relativistic theories as the
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t’Hooft principle. According to it, the interaction of n-component fermions leads to an appearance
in |in > and |out > states the correlated complexes consisting of the maximum possible fermions
number permitted by the Pauli principle [8]. In our problem, this means that, for two-component
fermions, the correlated complexes consist of two electrons with opposite spins moving right and the
same electrons moving left (see Equation (17)). We will call all such complexes cooperons. They always
consist of an even number of electrons, and their total spin is zero. From the statistics view point, such
objects look like extensive bosons. Therefore, the long-range order arising at the system has a purely
statistical nature.

Before discussing the detailed form of the ground state in the one-dimensional case, we briefly
discuss the questions of the physical picture: the three-dimensional superconductivity that is important
for the one-dimension case. The fundamental property of what we now call the phase with broken
symmetry is the “rigidity of the ground-state wave function”. It was understood at the early stages of
superconductivity theory development (F.London [9]). After understanding instability of the normal
metal ground state (Fermi sphere, |F >) relative to infinitely small attractions between electrons, one
made arguments in favor of the existence of correlated objects consisting of two electrons with opposite
momenta behaving like extensive boson particles in the new ground state (Cooper’s pairs [10]). It was
the basis for the creation of the consistent theory of superconductivity.

At a qualitative level, the connection between the rigidity of the ground state wave function
and the existence of a macroscopic bosons number (i.e., the boson number increase with an increase
the system volume, L) was understood, apparently, by R.P. Feynman. In essence, it is based on the
normalization factor

√
N + 1, arising from the action of the boson creation operator on N-bosons

wave function (let the state correspond to the movement of all Cooper pairs in one direction—the
supercurrent). Let us ask ourselves the following question: What is the probability of finding a
boson at another state elastically scattered by an impurity? The ratio of the probabilities (leaves in the
N-bosons state or scatters to the empty one) is about 1/N [11] (Bose-Einstein principle). If 1/N ∼ 1/Lβ,
(0 < β ≤ 1), then this relationship is vanishingly small. This shows that the coherence (rigidity) of
the ground state requires only a macroscopically large number of Bose particles in the state and not a
finite density of pairs. The finite density of Cooper pairs, β = 1, corresponds to the usual second-order
phase transition: β < 1 is the Kosterlitz–Thoules–Berezinsky (BKT) phase [12–14].

In fact, this picture needs to clarify the symmetry properties of the scattering, which can transfer
the boson to an empty state. Symmetry considerations are extremely important for second-order phase
transitions. It was pointed out in Landau phenomenological theory [15,16]. Its starting point was the
introduction of an order parameter, i.e., a quantity that would have to be zero due to the symmetry
of the Hamiltonian. However, it turns out to be nonzero due to the fact that the symmetry of the
ground state below the transition point turns out to be lower than the symmetry of the Hamiltonian.
Let us discuss what this means in terms of quantum mechanics. The appearance of the nonzero order
parameter signifies that a quantum mechanical operator connected with this quantity has the nonzero
matrix element < Ω|A|Ω > despite the fact that this contradicts the Hamiltonian symmetry (here,
|Ω > is the ground state wave function). The invariance of the Hamiltonian with respect to any
transformation means the existence of the conservation law and, corresponding to it, eigenvalues and
wave functions |Ω >n. At the same time, the operator Â has no diagonal matrix elements in the basis.
Therefore, the existence of a nonzero order parameter < Ω|Â|Ω > requires that the ground state wave
function should be a package |Ω >= ∑4n Cn|Ω >n. In turn, this suggests that many states |Ω >n

with different quantum numbers should be degenerate in energy. Exact energy degeneration of the
states is needed for a temperature (T) equal to zero. For finite temperatures, the packet can have finite
breadth with the level interval of the order of Td. We will call it the degeneration temperature (it should
be calculated in a microscopic theory). In such a case, the transition between states with different
quantum numbers is possible only for T > Td, and at a low temperature region T � Td, the existence
of a nonzero order parameter is impossible (this requirement is not important for three-dimensional
superconductors, where the phase transition temperature (Tc) is determined by the constants of the
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theory and the distance between the levels is determined by the size sample. Therefore, at the limit
L → ∞ Td → 0, while Tc remains finite. Therefore, for a three-dimensional sample, the question is
irrelevant, though the case of extremely low temperatures may be an exclusion. However, as we will
see later, it is important in a one-dimensional case).

In the case of three-dimensional superconductivity, the ground state ceases to be invariant with
respect to the gauge transformation (ψ→ exp (iΛ)ψ). The Hamiltonian invariance with respect to the
gauge transformation leads to the conservation of electric charge. Therefore, in the superconductivity
problem under |Ω >n, one should understand states with a fixed value of electric charge and that
the operator Â is an operator of the observed value changing the charge of a state. In particular, the
violation of the gauge invariance of the theory results in the fact that the charged particles fall out
to the condensate. They can consist of two electrons or two holes with opposite momenta. In the
usually discussed temperature region, above Td but below Tc, states with different charges have the
same energy. As a result, the ground state wave function is non-invariant with respect to the gauge
transformation, and one has a nonzero order parameter.

Another matter is the low-temperature region T � Td. Here, the ground state is non-degenerate
in charge, i.e., an order parameter turns out to be zero. Moreover, if the ground state has a charge equal
to zero (usually, it is the lowest energy state), then in this region, there is no global symmetry breaking.
In this case, the ground-state wave function has the same symmetry as the Hamiltonian despite the
fact that it consists of Cooper pairs and the wave function of each pair is non-invariant with respect to
the gauge transformation. However, the presence of impurities in this case does not result in resistance
appearance due to the factor 1/N ∼ 1/Lβ in the scattering probability. It is clear that our statement
about suppression in the cooperon scattering does not apply to the weak e–e interaction case (β� 1).
It is exactly the region where a renormalization group approach works (see Reference [17] and the
references there within).

Returning to properties of the scattering (which is suppressed by many Bose particles that fall out
to condensate), it should be invariant with respect to broken symmetry. Otherwise, scattering (it will
be strong in a one-dimension case due to e–e interaction renormalization) leads to the level shift and
can break up the whole package |Ω >. The electrons scattering on elastic impurities is invariant with
respect to the gauge transformation. Therefore, this scattering will be suppressed by the macroscopic
number of Cooper pairs existing in the ground state.

In the next section, we will calculate the ground state wave function in the Luttinger model
with a sufficiently strong attraction [18]. We will show that, at T = 0, the ground state of a 1-D
channel contains a macroscopically large cooperons number. However, the number of correlated
complexes consisting of electrons and holes is equal to each other. Thus, the ground state has an
electric charge equal to zero and the wave function of the ground state is invariant with respect to the
gauge transformation. It makes the existence of the order parameter impossible (note, we are talking not
about the density of the order parameter but about its total value. Normally, the latter is proportional
to the sample volume). The phase with a global violation of gauge invariance under these conditions is
not realized because, in the case of a strong attractive e–e interaction, Td � Tc. The small value of the
phase transition temperature is easy to understand, taking into account that, at gap-superconductor,
the transition temperature is of the order of normal excitations gap (careful consideration of normal
excitations problem is given in Reference [19]). The spectrum of these excitations is well-known

and, for the one-component electrons, is vc|pn| (here, vc(pn) = v f

√
1 + V0(pn)/πv f , v f is the Fermi

velocity, and pn is the electron momentum equals to 2πn/L. The quantity V0(pn) is the e–e interaction
“potential”, negative in the problem. We use the system units h̄ = 1). Thus, we see that the gap
in the excitation spectrum is of the order of vc/L. If the length of a one-dimensional channel is of
the order of a micron and the electron concentration is about of metallic, one can give the order of
magnitude estimation for transition temperature: vc/L ∼ 1oK · (vc/v f ) while Td ∼ v f /L (in fact, it is
the only remaining quantity with the dimension of energy and is proportional to 1/L). The specifics of
one-dimensional superconductivity is in a small critical temperature in comparison with the energy
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of degeneracy. Nevertheless, the absence of a global symmetry breaking at temperatures lower
than the degeneration temperature does not prevent the existence of a permanent supercurrent (the
motion of the condensate as a whole). In this sense, it is possible to speak of a phase transition to the
superconducting state in a one-dimensional channel.

2. Calculation of the Ground State Wave Function

Our task is to calculate the ground state wave function. In principle, one can find it by solving the
Schrödinger equation. However, due to a strong electron–electron interaction, the equation actually
has an infinite number of spatial variables and one has no effective method for solving this equation.

Another object that explicitly contains all information about the system is the well-known
evolution operator. In the Schrödinger representation (dependence on time is transferred to the
wave functions), it can be represented as

S (τ) = ∑
m,n
|n >< n| exp (−iĤτ)|m >< m|. (1)

The evolution operator expresses the development over a finite time τ as an exact (including interaction)
initial state < m| to all possible final states |n > (these states have yet to be calculated). By “summing
up” over all states, we mean the enumeration of all initial and final states, and the indices m and n are
complete description of this state. In our case, complete description of the state reduces to specifying
the particles number and their quantum numbers. We assume that the wave functions of the system at
the initial time t = 0 (final t = τ) are expressed in terms of the annihilation (creation) operators of the
right (left) electrons (holes), â(b̂)R,L. They are determined according to the following:

Ψ̂R,L (x) =
∞∫

0

dp
2π

(
exp (±ipx) âR,L (p) + exp (∓ipx) b̂†

R,L (p)
)
= (2)

= âR,L (x) + b̂†
R,L (x) ,

and H is the Hamiltonian of the system. In the case of one-component electrons, it is as follows:

Ĥ =
∫

dx
[
Ψ̂†

R (x) v f (−i∂x) Ψ̂R (x) + Ψ̂†
L (x) v f i∂xΨ̂L (x)

]
+
∫

dxdy$ (x)V0 (x− y) $ (y) .

Here, $ is the electron density equal to $ = $R + $L. We will count all momenta (p) from Fermi one
(p f ). In addition, we will use periodic boundary conditions, i.e., strictly speaking, we should consider
the momentum as discrete. However, if the condition p f L � 1 is fulfilled, in most calculationsm
the sum can be replaced by an integral (as it is written in Equation (2)). The quantities ΨR,L are the
wave functions of right and left electrons. It can be determined through the complete electron wave
functions according to the following:

ψ̂(x) = exp(ip f x)Ψ̂R(x) + exp(−ip f x)Ψ̂L(x)

Note that, after transition to the “complex time” τ → −i/T, the evolution operator becomes the usual
density matrix. Recall that, by the indices “m” and “n” in this density matrix, one needs to understand
not only the quantum numbers of an electron but also the electrons number in a given state.

The expression for the evolution operator can be written as a functional integral:

S(τ) =
∫
(Ψ,Ψ)

DΨDΨ exp (S)
(
Ψ, Ψ

)
. (3)

Here, Ψ and Ψ are the electron fields (Grassmann variables) and S is the action. Dependence of the
evolution integral on τ arises from the fact that the integration over time is performed not on the
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infinite interval (−∞, ∞) but on the interval (0, τ). However, the main difference in the Equation (3)
from the ordinary Feynman partition function consists in the fact that the fields (Ψ, Ψ) do not tend to
zero at the ends of the time integration domain but satisfy the following boundary conditions:
At t→ +0,

ΨR,L (x, t) = aR,L (x) + arbitrary negative frequency part

ΨR,L (x, t) = bR,L (x) + arbitrary negative frequency part (4)

At t→ τ − 0,
ΨR,L (x, t) = b†

R,L (x) + arbitrary positive frequency part

ΨR,L (x, t) = a†
R,L (x) + arbitrary positive frequency part

In these boundary conditions, arbitrary positive (negative) frequency parts arise because, after
acting on the Fermi sphere (|F > is the vacuum state of our theory), they give zero. Note that the exact
states (that we have to find yet) in this representation have the form φ(x1, x2, · · ·)â†

R,L(x1)b̂†
R,L(x2) · · ·

|F >. The boundary conditions dramatically complicate the wave function calculation in comparison
with the Green function one (the latter satisfies the zero boundary conditions). In addition, summation
over all exact initial and final states in the expression for the evolution Operator in Equation (1),
in essence, means that the matrix element is the sum of all n-particle Green functions. As we will
see, the ground state wave functions can be analytically calculated only for a sufficiently strong
e–e interaction.

Now, let us consider the initial many-body state (|F >) over which the creation and annihilation
operators are defined. As usual, the operators Ψ̂†

R,L are defined over the empty state |0 > whereas
the operators â†

R,L (x) and b̂†
R,L (x) are defined over the filled Fermi sphere. Moreover, we suppose

that our system is neutral as a whole. Therefore, we should introduce some sort of positive charge
background (“jelly model”) and hence redefine the electric charge of the states. In the case the vacuum,
|F > is electrically neutral state. Cooper pairs Ψ̂†

RΨ̂†
L|0 >; â†

R (x) â†
L (x) |F > are the states with the

charge 2e, while the pair b̂†
L (x′) b̂†

R (x′) |F > has the charge −2e. Therefore, a two-cooperons state
â†

L (x′) â†
R (x′) b̂†

L (y
′) b̂†

R (y′) |F > is neutral. The charge redefined in such a way is directly connected
with gauge symmetry, which is usually broken during the superconductor transition. To avoid
misunderstandings, we note that the whole electric charge of the entire system, as always, remains.
In fact, its conservation is guaranteed by the time-independence normalizing factor of the electron’s
total wave function (or, in other words, the theory is unitary), unlike changing electric charge of one
state. The last simply means a redistribution of the charge between all states (or with a reservoir
connected to the sample).

We begin consideration from the limit T → 0. For this case, one should transform τ → −i/T.
The evolution operator for the Luttinger model with any e–e interaction was calculated in Reference [20].
However, the very cumbersome result was analyzed there only for repulsive electron potentials. Our
attention at that time was focused on the existence of the chiral phase. The phase was new to the solid
state physics. It is connected with the chiral symmetry violation (Ψ̂R,L → exp(±iΛ)Ψ̂R,L), and the
condensate is created by exciton-like neutral pairs â†

R (x) b̂†
L (x).

Now, we will consider the attraction interaction. Here, we restrict ourselves to discuss the case
point-like e–e interaction (Gorkov’s model) and equilibrium electron system. We will not reproduce a
calculation of the functional integral of Equation (3) in the case of attractive e–e electrons interaction.
Here, we limit ourselves by indicating the reason why the analytical expression for the evolution
operator allows us to write an expression for the ground-state wave function (at least in the form of
an infinite series). In the following, using the general expressions for the ground state wave function
obtained earlier in Reference [20], we will analyze it for the attractive electrons.

The possibility to obtain an expression for |Ω > out of the evolution operator is based on the
fact that the transition matrix element from the initial state < m| to the final one |n > factorizes (it is
represented as a product of two functions each of which depend only on coordinates particles at initial
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(final) states). Therefore, it can be explicitly represented as |Ωn > · < Ωm|. Later, everything will
depend on how effectively one can sum the perturbation series for the wave function |Ωn >.

At T = 0, the ground state wave function can be written as an infinite series:

|Ω >=
∞

∑
n=o

1
n!

[∫ dxdx′

πi
â†

R (x) b̂†
R (x′)

x′ − x− iδ
+

+
∫ dydy′

2πi
â†

L (y) b̂†
L (y

′)

y− y′ − iδ

]n

expScn f
(

x, x′, .., y, y′, ..
)
|F >, (5)

In this expression the pre-exponential factor actually is the most general type of wave function with
zero electric charge, and the whole really informative part is contained in the form of configuration
action (Scn f (x, x′, .., y, y′, ..)). It is different for each term of the series:

Scn f
(

x..., x′..., y..., y′....
)
=

π

L
α ∑

n 6=0

1
|pn|
R f (−pn)R f (pn) , (6)

where α = [1− vc/v f ]/[1 + vc/v f ] and

R f (p) = ∑
x..;x′ ..;y..;y′ ...

θ (p)
[
exp (ipx) + ...− exp

(
ipx′

)
− ...

]
+ (7)

θ (−p)
[
exp (ipy) + ...− exp

(
ipy′

)
− ...

]
.

Here and below, we will denote the letter x as the coordinates of the right electrons, x
′

- holes,
and, respectively, y and y

′
coordinates of the left electrons and holes that appear in each term sums

(Equation (5)). “Summation” occurs over all particles of which the creation operators are in the
pre-exponential factor in the expression for the ground-state wave function. In these expressions, we
can already move from the discrete to the continuous spectrum (L→ ∞). The finite size of the system
for our problem is only important until the moment of neglecting of the terms exponentially small in
the parameters 2πnv( f , c)/LT. As a result, the channel length is included only in the parameters of the
theory related to temperatures, and all calculations, in fact, are done as for an infinite sample.

In order to transform Equation (5), one recalls that, according to the logarithm connectedness
theorem (in statistical physics, it is known as the first Mayer theorem [21]), the wave function can be
represented as an exponent of the connected diagrams sum [22], i.e., connected terms of Equation (5).
Disconnected diagrams, which also exist in |Ω >, are generated by the power terms of the exponent
decomposition. This means that the expression for the ground state wave function can be represented
in an explicit analytical form in the case when the number of connected diagrams is small.

The task is extremely simplified in the case of a strong e–e interaction. As we will see, in this
limit, the condensate consists of a macroscopically large number of point-like Cooper pairs. They do
not interact with each other. In the case of point-like e–e interactions, the scattering of the pairs is
possible if the two identical electrons (that make up the Cooper pairs) are at the same point. This is
excluded by the Pauli principle. At a weaker e–e interaction, the Cooper pair acquires a finite radius
and the Pauli principle ceases to suppress the scattering of cooperons. However, from the expression
for vc, it is seen that, with a very large constant of the attractive e–e interaction, the excitation spectrum
becomes imaginary, i.e., the system collapses. Physically, this means that it is necessary to modify the
potential of the e–e attraction, adding a hard repulsive core to it. It makes calculations much more
complicated. Instead, we restrict ourselves to the case of a relatively weak interaction (|V0|/πv f ≤ 1)
when the spectrum of the excitations still remains real.

In order to understand the specifics of our problem, we first consider the maximally strong
attraction |V0|/πv f = 1, i.e., vc = 0. We will see that this limit describes a ground state with a nonzero
concentration of noninteracting Cooper pairs and a total electric charge equals to zero. Next, we will
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take into account small corrections in the configuration action, proportional to vc, and make sure that
they transform this state into a Kosterlitz–Thoules–Berezinsky phase [10,12,13].

Consider the first few terms of the series in Equation (5). Because of the θ functions included
in R f (p), in the wave function, there are nonzero only terms containing right and left electrons
simultaneously and the number of electron and hole operators have to be the same. The simplest of
these states is â†

R (x) b̂†
R (x′) â†

L (y) b̂†
L (y

′) |F >. The contribution of this configuration to the action at
vc = 0 is

Scn f
(

x..., x′..., y..., y′....
)
= − ln

(x− y + iδ) (x′ − y′ + iδ)
(x′ − y + iδ) (x− y′ + iδ)

(8)

As a result, in the expression for the wave function of the ground state, we obtain the following:

∫ dxdx′dydy′

(2πi)2
â†

R (x) b̂†
R (x′) â†

L (y) b̂†
L (y

′)

(x′ − x− iδ)(y− y′ − iδ)
(x′ − y + iδ) (x− y′ + iδ)
(x− y + iδ) (x′ − y′ + iδ)

.

Further analysis of a contribution will be based on the analytical properties of the creation and
annihilation operators. As follows from Equation (2), the operators a†

L (y) and b̂†
L (y

′) are analytical in
the upper half-plane and â†

R (x) b̂†
R (x′) is analytical in the lower one. Thus, the integrals are determined

by the pole residue at the points x′ = y′ − iδ; x = y− iδ and become the product of two disconnected
diagrams describing two noninteracting Cooper pairs.∫

dxâ†
R (x) â†

L (x)
∫

dx′ b̂†
L
(
x′
)

b̂†
R
(

x′
)
|F > . (9)

Let us make sure that all other diagrams that are not reducible to the power of that one are equal to
zero. Consider, for example, the six-fermion contribution to Equation (5):

â†
R (x) b̂†

R (x′) â†
R (x1) b̂†

R
(

x′1
)

â†
L (y) b̂†

L (y
′)

(x′ − x− iδ)(x′1 − x1 − iδ)(y− y′ − iδ)
(x′ − y + iδ) (x1 − y′ + iδ)

(
x′1 − y + iδ

)
(x− y′ + iδ)

(x− y + iδ) (x1 − y + iδ) (x′ − y′ + iδ)
(
x′1 − y′ + iδ

)
This integral will be determined by the poles x → y→ x1; x′ → y′ → x′1 in the lower half-plane, and
we get the configuration â†

R (x) â†
R (x) â†

L (x) · b̂†
R (x′) b̂†

R (x′) b̂†
L (x′). It is equal to zero according to the

Pauli principle. It can be verified that the remaining diagrams reduce to these two cases. Therefore,
one has only two connected diagrams. However, applying the logarithm connectedness theorem, one
should keep in mind that, in our case, only states with a total electric charge equal to zero exist and
that the remaining states should be omitted. We denote as P(Q = 0), the projector onto this state is
as follows:

|Ω >= N0P(Q = 0) exp
[∫

dxâ†
R (x) â†

L (x) +
∫

dx′ b̂†
L
(
x′
)

b̂†
R
(
x′
)]
|F >, (10)

Here, the N0 is the normalization factor, and it can be calculated. Thus, in this approximation,
we have obtained the condensate composed of the non-interacting Cooper pairs in one state:
â†

R (x) â†
L (x) ; b̂†

L (x′) b̂†
R (x′) (with a nonzero density and full charge equal to zero). We note once

again the peculiarity of the obtained ground state. On the one hand, there is no global violation of
gauge invariance (each configuration contains an equal number of electrons and holes, and the phase
of the gauge transformation vanish). As a result, the long range order parameter (one can enter it, for
example, like this: < Ω|â†

R (x) â†
L (x) |Ω >) is equal to zero due to the electric charge conservation law.

On the other hand, one has a macroscopically large number of Bose-like particles in one state, i.e., the
system turns out to be completely statistically correlated (all electrons are pairing. In the ground state,
there are only Cooper pairs and their number is macroscopically large). In this case, the Bose–Einstein
principle guarantees the impossibility of scattering pairs on elastic impurities added to the system
under consideration.
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We now discuss how this picture changes when small corrections proportional to vc/v f are
taken into account (that is, α is close to 1). In order to show that, in this case, one has a condensate
that consists of the macroscopically large number of Cooper pairs, we should extract the correlated
complexes from the whole wave function (Equation (5)). For this, one should present the four-particles
state that we discussed earlier,

∫ dxdx′dydy′

(2πi)2
â†

R (x) b̂†
R (x′) â†

L (y) b̂†
L (y

′)

(x′ − x− iδ)(y− y′ − iδ)
[
(x′ − y + iδ) (x− y′ + iδ)
(x− y + iδ) (x′ − y′ + iδ)

]α|F >

as a two correlated complexes product (their sizes should be small compared to the sample size). They
are separated from each other by a large distance (of the order of L). It can be seen from this expression
that the probability of finding the right electron near the left hole (|x− y′| → 0) is suppressed by the
interaction and that the probability of finding the left electron near the right one (|x− y| → 0) increases.
Therefore, the contribution from the correlated complexes consisting of right and left electrons is
determined by the cut at the points x− y + iδ = 0; x′ − y′ + iδ = 0. Moreover, we should assume that
|y− x′| ∼ |x− y′| ∼ R→ ∞. Therefore, the contribution from the first cut is proportional to

(
1− e2πiα

) ∫ x

−∞

dy
2πi

â†
L (y)

(x− y)α
(x′ − y)α

(y− y′)
∼ â†

L(x)(
d
R
)1−α.

Here, we have taken into account that the integrand converges well for y → ∞ (due to the
boundary conditions, the fields â†

L(y) are zero on the sample’s surface). In this case, the contribution
from the complex is determined by the upper limit of integration and should be cut off at |y− x| ∼ d
(here, d is the ultraviolet cutoff. It is of the order of the channel thickness: On this scale, the e–e
interaction becomes three-dimensional and one-dimensional effects are suppressed). Similarly, the
“integration” over x′ is done (later, this procedure will be done more carefully for multicomponent
fermions). As a result, the whole four-particles contribution describes a state with two interacting
complexes (two Cooper pairs â†

R(x)â†
L(x) and b̂†

L (y) b̂†
R) are separated from each other by a large

distance (of the order of the channel length):

|Ωcpl >=
∫

dxdy
(

d
|x− y|

)2(1−α)

â†
R (x) â†

L (x) b̂†
L (y) b̂†

R (y) |F > . (11)

Thus, instead of a disconnected diagram (9), at vc 6= 0, we have a united complex consisting of two
interacting Cooper pairs. From this calculation, it becomes clear that the connected diagrams number
is infinite and that the theory does not have a parameter that allows one to discard a large number of
interacting many-body complexes. It does not allow one to write the wave function of the ground state
in a simple form. However, the general form of Scn f (see Equation (7)) is valid for any value of vc 6= 0.
It guaranties us that all these terms contain the same number of electron and hole operators (i.e., their
electric charge is zero). Consequently, as in the term we considered (Equation (11)), all correlated
complexes consist of Cooper pairs interacting with each other and located at a distance of the order
of L. Therefore, for any vc, the ground state will consist of an infinite number of Cooper pairs and,
for T = 0, will have an electric charge equal to zero.

In fact, even the index in the expression of Equation (11) is calculated up to a factor about unity. We
calculated it in an approximation in which the cooperons interact only “directly” (their interaction with
each other through the other pairs in the intermediate states is not taken into account). However, it is
not difficult to correct. For that, it is necessary to renormalize the interaction of the two labeled pairs,
taking into account all other cooperons. To do this, it suffices to calculate the two-particle correlator
< ΨR(x)Ψ†

R(y)ΨL(x)Ψ†
L(y) >=< GR(x − y)GL(x − y) > at |x − y| = R → L and to compare the

degree of R. Probably, direct renormalization of the interaction in the wave function is possible.
It requires derivation of a closed equation for the renormalized interaction of two Cooper pairs in the
absence of a parameter. However, the final answer at the output of this procedure is clear from the
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correlator. In it, the renormalization of the interaction for the two-particles Green function is taken into
account exactly. Therefore, we should replace α by

αT = 1− vc

v f
.

Note that, for small vc, αT differs from α only by a factor before vc/v f . However, even a decomposition
of the ground state wave function with respect to the interacting pairs number makes it possible to
verify that the number of cooperons in the ground state increases with increasing L. Indeed, it is
clear from Equation (11) that the probability (Z(R)) to find two Cooper pairs separated by a distance
R can be estimated as (1/|R|)2(1−αT). Therefore, the number of Cooper pairs for any vc/v f can be
estimated from

N2 ∼
∫ L

0
dxdyZ(x− y) ∼ L2αT , (12)

and N grows with sample size as
N ∼ L1−vc/v f .

As we have already discussed in the Introduction, this fact alone is sufficient to state that, according to
the Bose–Einstein principle, a supercurrent in one-dimensional channel does not dissipate due to the
scattering of the Cooper pairs on elastic impurities. An exception can be the case of a relatively weak
e–e interaction where the factor 1/N is not too small [11].

We now turn to the discussion of the finite temperature region Td � T � Tc. For the theory
with a repulsion e–e interaction (where the opposite inequalities are realized), the finite temperatures
were carefully studied in Reference [20]. We will not reproduce this derivation for attracting electrons
because, first, the value of Tc is understandable from general considerations (it was discussed in
Introduction). Secondly, the impossibility existence of a phase with a global violation gauge symmetry
in this case is visible without computing. Therefore, we confine ourselves to discuss changes in the
expression for the condensate wave function of Equation (5) in the temperature region.

Dependence of the ground state wave function occurring from boundary conditions (from the
terms with creation and annihilation operators in Equation (2)) can be extracted easily from the entire
action. In Reference [20], it is shown that the contribution to the action from the nonzero boundary
conditions is equal to

S0 = ∑
i=R,L

∫
dxdx′

[
bi
(

x′
)

Gi
(

x′, 0; x, ε
)

ai (x) + a†
i
(
x′
)

Gi
(

x′, τ; x, τ − ε
)

b†
i (x)

− a†
i
(

x′
)

Gi
(
x′, τ; x, 0

)
ai (x)− bi

(
x′
)

Gi
(

x′, 0; x, τ
)

b†
i (x)

]
. (13)

Therefore, Ŝ(τ) ∼ exp(S0)|F >< F| (in the expression for the ground state wave function |Ω >

(Equation (5)), the factor obtained by factorizing this contribution in the density matrix was expanded
into the series). To get this expression, we used the Hubbard trick [23] and reduced the e–e interaction
problem to the problem of noninteracting electrons placed in a slowly varying external field (later, a
result should be averaged over all realizations of the random Hubbard’s field). Therefore, Gi (x′, t′; x, t)
appearing in the equation is the noninteracting electron Green function in the external field (ε in
Equation (13) is a infinitely small value). It is well-known that the Green function of an electron
in an external field is proportional to the free Green’s function, which we should write in the
final-size volume:

G0
R,L
(

x′, t′; x, t
)
=

1
L ∑

n 6=0
e2πin[x−x′∓v f (t−t′)]/L. (14)

In order to present it in a usual pole form the neighboring terms in the sum, it should not change much.
This is so, in the first two terms of the action S0, the Green function enters at coinciding times. In the
third and fourth terms, the time argument is large and, after transition to imaginary time, has the
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exponent index −2πTdn/T. Therefore, in the region of interest to us (Td/T � 1), these contributions
to the action are exponentially small. That is why they were omitted at T → 0. Now, we have to ignore
them too. The first two terms at T → 0 have been taken into account. We have seen that they brought
about to the states with zero electric charge. In the case of repulsive electrons (where Tc/Td � 1), we
could consider the region Td/T � 1. Then, the last two terms brought about the states with nonzero
chiral charges.

In the temperature range T � Tc, dramatic changes also occur in the expression for the
configuration action arising from the first two terms. The coefficient α in Equation (6) changes.
It is replaced by a function proportional to |pn|vc/T. The last leads to the destruction of the logarithmic
divergence in the region of small momenta. It makes the existence of a correlated phase impossible.
Therefore, Tc really is the critical temperature.

An estimation of the phase transition temperature can be understood from another point of view.
As it is known, according to the Landau–Mermin–Wagner theorem, the existence of the BKT phase
in one-dimensional systems is impossible at a nonzero temperature. The proofs of this statement for
different problems were given first in Reference [24,25]. However, this statement relates to infinite
samples and is based on the Goldstone theorem, according to which the spontaneous violation of
continuous symmetry must be accompanied by the appearance of a massless boson field (an acoustical
mode). Such fields at finite temperatures strongly fluctuate the results in the exponential decay of a
correlator at large distances. In our case, the massless Goldstone’s mode will be the phase of operator
Ψ†

R(x)Ψ†
L(x), while the correlator which characterizes the system is < Ψ†

R(x)Ψ†
L(x)ΨL(y)ΨR(y) >.

This correlator for an infinite sample can be calculated (see, e.g., Reference [20]). The power-like
behaviour of the correlator is valid in the region |x− y| � vc/T, and it is exponential at the inverse
limiting case. For the finite sample at temperatures T � Tc = vc/L and |x− y| ∼ L, the exponential
asymptotic does not realize inside a one-dimensional channel. Therefore, inside of the sample, the
decay of the correlator is power-like and slower as compared to the case of noninteracting electrons.
Just because of this, the number of cooperons in a condensate becomes macroscopically large (see
Equation (12)). In this case, the phase transition temperature can be obtained as the estimate |x −
y| ∼ L ∼ vc/T. Thus, at a temperature lower than Tc, the BKT phase can be realized in the finite
one-dimensional sample. Actually, we only define more accurately what one should understand under
zero temperature in the Landau–Mermin–Wagner theorem.

Just in case, let us discuss our results, taking into account the duality requirement of the theories
with attractive and repulsion electrons. It is clearly visible in the boson representation and requires
the replacement of vc/v f < − > v f /vc (the ratio v f /vc is usually called the Luttinger parameter, K).
According to it, the solution number of a hypothetically solved many-electron Schrödinger equation
for these problems has to be the same. At the same time, in the theory with repulsion electrons, there
are two correlated phases: with a global violation of chiral symmetry and with a chiral charge equal
to zero while, in the case of attraction, there is only one: electrically neutral. Therefore, the question
arises whether this fact does not contradict to the duality requirement? One has a new value with
the dimension of energy namely the temperature. In fact, we have just seen that, at the level of the
Hamiltonian solutions, an oscillating wave function with a nonzero electric charge also exists for
attractive electrons, as duality requires (see the last two terms in Equation (13)). Any correlated phase
will be destroyed since, at a sufficiently high temperature, the normal excitations begin to emerge in a
large number. Therefore, the temperature of Tc in the gap-superconductors is determined by a gap
in the spectrum of the excitations: ω(pn) = vc|pn|. It follows that a distance up to an excited state in
the Luttinger model is about 2πvc/L for the both types interactions. This value plays role of a gap
(it is clear, at least from dimension considerations, that the replacement vc− > 1/vc in the spectrum
of excitations during the transition from one problem to another is impossible). Therefore, a solution
with a global symmetry violation is realized in the case of repulsive electrons (v f /L� Tc and terms
with the factor exp(−|pn|v f /LT) at the region Td � T � Tc should be considered). However, this
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solution cannot realize in the problem with attracting electrons, since in this case, the destruction of
the superconducting phase occurs first.

We now briefly discuss the problem of multicomponent fermions (for repulsive electrons, this
problem was discussed in Reference [26]). From a technical point of view, this problem is much more
cumbersome. There is no parameter under which the correlated complexes would not dissipate each
other. The latter follows from the fact that the Pauli principle does not forbid the interaction of the
complex containing the â†

R,↑ particle with the complex having â†
R,↓ even in the case of a point-like

e–e interaction (here, ↑, ↓ is a spin index; we will denote it later as α = ±1) (in fact, the scattering
of complexes is much stronger because, even in the case of the strongest e–e interaction (vc = 0),
the correlated complexes are not point-like). However, in the problem of multicomponent fermions,
one can write an analytical expression for the ground state wave functions, then make sure that
the ground state of the system contains the macroscopic number of Bose particles, and identify the
quantum numbers of this state.

In order not to complicate the discussion, we consider the case when the interaction of all electrons
is the same. Then, the spectrum of quasiparticle excitations for all possible states will be also the same
and equal to

ω(pm) = |pm|vF

√
1 +

nV0 (pm))

πvF
, (15)

Here, n is the fermion components number (we will discuss mainly the case n = 2).
The contribution of boundary conditions to the action remains the same (Equation (13)) with one
exception: One should add the sum over the spin index α (in our case, each term in S0 is diagonal
over the spin-index because the Luttinger model contains only a density–density interaction. That is,
it does not describe the Kondo effect). This immediately implies that, in the case of multicomponent
fermions, only the state with zero charges will be realized (in this case, one more quantum number is
added to the electric charge—the total spin of the state). This follows from the fact that, in S0, the first
two terms consist of the same number of electron and hole operators (i.e., they are neutral in the
sense of any charge) and only the last two terms can lead to configurations with nonzero quantum
numbers. The latter will bring into the action the summands smallness exp(−Td/Tc). Therefore,
the superconducting phase exists only in the region T � Tc � Td.

We will now discuss the question about the form of correlated complexes in a problem with
multicomponent fermions at vc = 0. The configuration action in this case undergoes a minimal change;
the expression in Equation (6) gets the common factor 1/n. As we will see, such interaction weakening
is compensated by an increase in the number of particles at each correlated complex.

In order to verify this, we first need to discuss the following question: How, in the case of
multicomponent electrons, will we see a combination of particle operators is a correlated complex?
In the one-component fermions problem and vc = 0, this question was irrelevant. The infrared
divergence of the action led to the appearance of logarithmic terms of Equation (8) in Scn f with a
coefficient equal to 1. This meant the emergence of new poles and the destruction of the poles arising
from the free Green function. As a result, the analytical properties of the annihilation operators
allowed us to “calculate” the integral, knowing the residue at the appeared pole. After this, the
expression entering the wave function of the ground state was factorized, and for vc = 0, we obtained
noninteracting Cooper pairs. Now, the logarithmic terms in the action have a coefficient of 1/2 and
cuts appear in the integrand. This makes representing an operator expression in a compact form
impossible. From a common point of view, this means the nonlocality of cooperon (even in the
strongest interaction case).

In order to present a general expression for the wave function of the ground state as interacting
complexes, we should take several steps. First of all, we should take the connected diagram in the
expression for the wave function and try to divide it on the connected compact complexes consisting of
a smaller number of particles. To do this, we should move apart the complexes in a large distance (∼ L),
keeping the distances between the particles inside each complex small. If, in this limit, the expression
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for our contribution to |Ω > is factorized and c-number function in the expression will not tend to
zero, then we can consider these complexes as “new particles” (in this case, the probability to find
one complex does not depend on the coordinates of the other complex). In other words, we should
consider our contribution to |Ω >∫ dx+dy+

2πi
. . . â†

R,+ (x+) . . . K (x+, . . . , y+ . . . ) a†
L,+ (y+) . . . .

and to look at the behavior of amplitude K (x+, . . . , y+ . . . ) provided that the coordinate difference
inside the group of variables x and y is small (� L) while the coordinates difference between the
variables x and y is about L. If we chose cooperons correctly, then in this limit, K (x+, . . . , y+ . . . )→
k1 (x+, . . . ) k2 (y+ . . . ). This means that, as a result of the interaction, two correlated complexes
appeared and their contribution to the ground-state wave function is as follows:∫ dx+√

2πi
. . . k2 (x+ . . . , ) â†

R,+ (x+)· · ·
∫ dy+√

2πi
k1 (y+ . . . , ) â†

L,+ (y+) . . . |F >,

while the connected part, K− k1k2, is the scattering amplitude (it tends to zero when |xi − yj| → ∞).
The amplitude should be taken into account at renormalizing interaction between two complexes
(as it was done early when α was replaced by αT at |Ωcpl >). It is reasonable to leave it in the
Hamiltonian for the interaction cooperons and to consider the obtained ground state as the |out >
state (it is exactly the out-state wave function of the scattering problem). The logarithm connectedness
theorem [21,22] ensures that the entire wave function will be represented as an exponent of the sum
connected complexes. However, later, we will have to take into account the quantum numbers selection
rules (for our case, apply a projector onto the state with charge zero to the wave function).

We will show how this procedure can be implemented in the case of two-component fermions with
vc = 0. Based on previous experience, one would expect that the smallest of the possible complexes
are ordinary Cooper pairs. The procedure described above gives the following:∫

dxdyâ†
R,+ (x) â†

L,− (x) b̂†
L,− (y) b̂†

R,+ (y)
d

|x− y| |F > .

Therefore, their feasible contribution to the |out > state is of the order of d/L (moreover, the term does
not factorize).

The first complexes correlating at the scale of about L consist of four particles (as it should be
expected from the t’Hooft principle [8]). They are derived from the term

â†
R,+(x+)b̂†

R,+(x
′
+)

x′+ − x+ − iδ
â†

R,−(x−)b̂†
R,−(x

′
−)

x′− − x− − iδ
â†

L,+(y+)b̂
†
L,+(y

′
+)

y+ − y′+ − iδ
a†

L,−(y−)b
†
L,−(y

′
−)

y− − y′− − iδ

obtained as a decomposition of eS0 . The amplitude of K resulting from the e–e interaction and valid on
all scales equals

K (x+, . . . ) =
1

x′+ − x+ − iδ
1

x′− − x− − iδ
1

y+ − y′+ − iδ
1

y− − y′− − iδ

×

√
∏α,β

(
x′α − yβ + iδ

) (
xα − y′β + iδ

)
√

∏α,β
(
xα − yβ + iδ

) (
x′α − y′β + iδ

) . (16)

We should select correlated complexes from our common operator expression. The new complex
appearance is due to the fact that the interaction suppresses the probability to find an electron
near a hole (see the pole terms) and increases the probability to find two electrons with opposite
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spins close to each other (or two holes). Therefore, the candidates for cooperons are the states
â†

R,+(x+)â†
L,−(y−)â†

R,−(x−)â†
L,+(y+) and b̂†

R,+(x′+)b̂†
L,−(y

′
−)b̂†

R,−(x′−)b̂†
L,+(y

′
+). We should assume that

the distances between the particles entering each state are close to each other and that the distances
between these states are large (of the order of L). In this case, the amplitude (Equation (16)) factorizes
but does not tend to zero. Each particle configuration enters the ground state wave function with the
factor V4. It depends only on one-complex coordinates and is equal to

V4(xα, ..) = 1/
√

∏
α,β=±

(
xα − yβ + iδ

)
.

It is easy to verify that the connected part of the scattering amplitude is not factorized and tends to
zero when cooperons move apart at a distance about L:

Vcoll(xα.., x′α...) = K
(

x+, . . . x′α . . .
)
−V4(xα, ..)V4(x′α, ..).

Therefore, it should be interpreted as a vertex in the interacting cooperons Hamiltonian. The wave
function of the ground state is

|Ω >= N0P(Q = 0) exp[
∫

dx+...V4(x+, ..)â†
R,+(x+)â†

L,−(y−)â†
R,−(x−)â†

L,+(y+)+ (17)

+
∫

dx′+...V4(x′+, ..)b̂†
R,+(x′+)b̂

†
L,−(y

′
−)b̂

†
R,−(x′−)b̂

†
L,+(y

′
+)]|F > .

The state is realized when the interaction between cooperons, Vcoll , is adiabatically turned off at
t→ (τ, 0), i.e., it is the |out > state of the system in the cooperons representation.

The ground state of a strong interacting two-component electrons system is a macroscopically
large number of Bose-like strongly correlated cooperons consisting of two right and two left electrons
(or holes) with opposite spins. The wave function of each complex is non-invariant with respect to the
gauge transformation, but the number of complexes consisting of electrons and holes is always equal
to each other. Therefore, there is no global violation of gauge invariance in the system.

As we have just seen, even in the case of the strongest e–e interaction (vc = 0), our task has
been reduced to the interacting cooperons system. An analysis of diagrams describing the mutual
scattering of cooperons shows that, although their interaction is not weak, the qualitative picture of the
phenomenon will not change (it also happened in the case of one-component fermions at vc 6= 0; see
Equation (11)). All that is possible to write in this case is the infinite decomposition of the exact wave
function cooperons by their number. This expansion looks rather cumbersome and, from a physical
point of view, does not provide new information.

Accounting the finiteness of vc in our case leads to the replacement of the powers in the expressions
for V4 and Vcoll . The degrees 1/2 are replaced by α/2 = (1/2) · [1 − vc/v f ]/[1 + vc/v f ]. After
replacement, Equation (17) remains correct. It is clear that the case of vc/v f → 1 is outside of our
approach. In this region, the interaction of the cooperons will lead to the destruction of the coherence
phase. In this case, it is more rational to use the renormalization group approach formulated in the
original electron wave functions representation [17].

The conducting carbon nanotubes give one more example of multicomponent interacting electrons
(n = 4). According to Reference [27], a conductive nanotube can be consider a cylinder of small radius
obtained by gluing a monatomic layer of graphite. If the technology of nanotube production is
sufficiently perfect (there is no electron’s reflection along the gluing line), then the e–e interaction in the
case is described by the Luttinger model with four-component fermions. One can make sure that, in
this case, the cooperons will be eight-component correlated complexes.

It remains to discuss the experimental possibility to confirm the form of the ground state in
one-dimensional superconducting channels. We have just shown that the distinctive feature of the
superconducting ballistic channels is the electroneutrality of the ground state. This means that in the
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one-dimensional case only, simultaneous addition of two Cooper pairs is possible (for the case of the
single-component fermions, it is â†

R â†
L and b̂†

R b̂†
L). Therefore, we believe that the effects associated with

coherent tunneling of cooperons are promising for researches.

3. Conclusions

In the paper, it was shown that, at a low temperature (less than 2πvc/L), a Luttinger liquid
with attraction between n-component electrons is a system with a macroscopically large number
(i.e., increasing with increasing channel length) of the Bose-like particles (cooperons) in one state.
These correlated complexes consist of 2n electrons (or holes). It is the maximum possible number of
fermions of which the existence at one point is allowed by the Pauli principle. Although the wave
function of each correlated complex is non-invariant with respect to the gauge transformation, the
ground-state wave function turns out to be invariant with respect to this transformation. Therefore,
the symmetry of the ground state wave function coincides with the symmetry of the Hamiltonian.
A global spontaneous violation of gauge invariance does not occur in the system. It takes place because
the ground state degeneration temperature in the case of one-dimensional superconductivity turns
out to be higher than the temperature of the phase transition to the normal state. As a consequence
of this fact, it is impossible to introduce an order parameter in one-dimensional superconductivity.
Nevertheless, the presence of the macroscopic number of cooperons in the ground state ensures a
long-range order with the suppression of cooperon-impurity scattering and, as the consequence, to the
absence of relaxation in the permanent supercurrent in a 1-D channel. Also, the absence of charge
degeneration of the ground state (see Equations (10) and (17)) permits adding cooperons only by pairs
that conserve the condensate charge.
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11. In order to estimate the ratio let us discuss at first the results obtained for one-component electrons in the
case of very strong electron-electron interaction (vc = 0). At this limit the problem has the exact solution and
the expression (10) shows that all electrons form pairs and the ground state represents a gas of non-interacting
point-like Cooper pairs. From the statistic point of view these pairs manifest themselves as bosons in the same
state. Now include the electron-impurity scattering and try to formulate the problem in terms cooperons
scattering on impurities. In the case the transition amplitude (due to the impurity scattering) from the state
with N cooperons (< N|) into an empty state |0 > and the amplitude of the system to remain in the state
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