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Abstract: Surface plasmon resonance (SPR) biosensors based on transition metal dichalcogenides
(TMDC) materials have shown improved performance in terms of sensitivity, detection accuracy
(DA), and quality factor (QF) over conventional biosensors. In this paper, we propose a five-layers
model containing black phosphorus (BP) and TMDC (Ag/BP/WS2) in Kretschmann configuration.
Using TM-polarized light at 633 nm, we numerically demonstrate the highest sensitivity (375◦/RIU),
DA (0.9210), and QF (65.78 1/RIU) reported so far over similar materials. Refractive index (RI) of the
coupling prism has also played an essential role in enhancing the performance of these biosensors.
The research on TMDC materials is still new, and these materials bring about opportunities to develop
a new class of biosensor.

Keywords: transition metal di-chalcogenides; surface plasmon resonance; sensitivity; detection
accuracy; quality factor; biosensor

1. Introduction

Transition metal dichalcogenides (TMDC) materials such as MX2 (where M stands for Mo or
W and X for S or Se) exhibit unique optical and optoelectronic properties. The y are formed by
a hexagonal network of transition metal atoms (Mo, W) hosted between two hexagonal lattices of
chalcogenide atoms (S, Se). As a result, MX2 materials have been considered excellent candidates for
the semiconductor industry such as in high-speed electronics, flexible devices, next-generation solar
cells, touch screen display panels, DNA sequencing, and personalized medicine, to name a few [1].

MX2 materials behave like a two-dimensional semiconductor material with direct bandgaps lying
in the visible and near-IR range, which is different from other TMDC material such as graphene and
hBN whose bandgaps occur at much longer wavelengths. Because of these, recently MX2 has gained
considerable interest in biosensing based on surface plasmon polaritons (SPPs) [2–5].

SPPs are collective oscillations of the free-electron gas density at the boundary of the metal sensors
(negative permittivity) and dielectric probing media (positive permittivity). The wavevector of these
waves depends on the optical property of both the metal layers and surrounding dielectric media
involved, the excitation wavelength of the incident light, and excitation conditions [6].

SPR phenomena based on SPP holds the maximum label-free, rapid and real-time sensing capability
in the field of biochemical interactions on a surface. Recently, it has been shown that the reproducibility
and longevity of the SPR biosensors can be dramatically improved with the help of suitable protective
layers such as thin layers of carbohydrate as described in Ref. [7] and a Graphene-covered layer in
Ref. [8].
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SPR-based biosensors have numerous advantages in applications such as in food safety, biological
medicine [9] as well as immune adjustment. When an incident light fulfils the predetermined incident
condition, the corresponding surface plasmon waves get excited. As a result, a sharp dip is obtained in
reflected light [4,10]. Thus, SPR is mainly a product of electromagnetic energy conversion.

In this work, the materials chosen for the configuration are as follows: 3-d transition metals
(Au and Ag), black phosphorus (BP), and MX2. The Au and Ag are widely used for SPR-based
biosensor configuration [2]. In these materials, at the IR wavelength region, the reflectance spectrum
sharpens significantly, and a narrow SPR curve is produced, meaning high sensing contrast and
enhanced sensitivity. Au is also a chemically stable metal. However, the full width at half maximum
(FWHM) for Au-based sensors in our case is found to be 10.67◦ whereas for Ag-based sensors it is 0.71◦.
This result suggests that Ag provides higher contrast and the sharpest SPR signal over Au meaning
that Ag is more capable of enhancing the sensitivity of the biosensor [11–15]. Also, the penetration
length of a 50-nm-thick gold film is about 164 nm with a light source of 630 nm, whereas a 50-nm-thick
silver film has an enlarged penetration length of 219 nm [15].

The choice of MX2 is due to the higher optical absorption (~5%) over graphene (~2.3%). Likewise,
black phosphorus (BP) is chosen due to its direct band gap, higher carrier mobility, and interesting
electrical and optical properties [8]. The choice of CaF2 prism glasses is for enhancing sensitivity,
quality factor, and detection accuracy [16].

In this paper, we have proposed SPR-based biosensors using Au and Ag metal layers, black
phosphorus, four types of TMDC (MoS2, MoSe2, WS2, and WSe2) layers, and a CaF2 prism glass, and
theoretically analyzed the sensor performance using the transfer matrix method, MATLAB simulation,
and graphical analysis. By taking the refractive index values from 1.33 to 1.35 and using BP and
TMDC-coated CaF2 prism glass and a modified Kretschmann arrangement, we have theoretically
demonstrated the improved sensitivity of the biosensor for detecting changes in refractive indices of
the liquid media.

2. Design Consideration of the Proposed SPR Biosensor

Figure 1 shows a schematic of the proposed five-layer model used for simulation. The first layer
is the prism (CaF2, BK7, SF10, 2S2G). The Ag or Au are coupled with the prism and constitute the
second layer. In the third layer, black phosphorous (BP) is used for enhancing sensitivity. The fourth
layer consists of TMDCs, and the fifth layer is the probing medium as shown by the solid circles in the
fluidic channel.Condens. Matter 2019, 4, x FOR PEER REVIEW 3 of 11 
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Figure 1. Schematics of the proposed SPR biosensor.

The proposed SPR technology uses right-angled prism and metal layers for detecting the change
in the refractive indices. MATLAB simulation and graphical analysis have been used to study the
optical behaviour of the proposed sensor. The angular detection method has been employed for
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detection using a TM-polarized light having a wavelength of 632 nm. Reflected light intensity does not
only vary with the angle of incidence but also with the thickness of TMDC layers. For developing
optical nonlinearity for a specific frequency, p-polarized (TM-polarized) optical laser at the wavelength,
λ = 633 nm is used [16] and a detector is used for recording the reflected light from the biosensor.

As shown in Figure 1, the thickness of the metal and MX2 layers are defined by d2, d3, and d4,
and the fluidic channel by d5. The thicknesses of metal, BP, and TMDC layers are taken as d2, d3, and
d4 with d3 = L × 0.53 nm and d4 = L × 0.65 nm (MoS2), L × 0.7 nm (MoSe2), L × 0.8 nm (WS2) and
L × 0.7 nm (WSe2), where L is the number of BP and TMDC layers. The refractive index (n) of the
probing medium is 1.33, and the variation of n is considered in the range of 1.33 to 1.35, i.e., ∆n in
the range of 0.01 to 0.02. The se refractive indices correspond closely to the refractive index of urine
(a bio-sample) with various concentrations concerning the specific gravity depending on whether
the disease is normal, moderate, acute, or above average [17,18]. Due to the weak van der Waals
bonding which exists between successive layers in the multilayers and despite having significant lattice
mismatch between the layers, TMDC materials can form complex heterostructures with other layered
materials with no misfit dislocations. We plan to grow these layers using molecular beam epitaxy as it
has shown to enable high purity heterostructures [19].

3. Numerical and Mathematical Model

Out of three configurations (Otto, Kretschmann, and Grating) of exciting surface plasmons, in this
work, Kretschmann configuration is used, as it is more compatible for coupling the prism with the
metal film layers. For numerical analysis, we used the transfer matrix method and Fresnel equations
performing on the N layer model. Since these methods do not involve approximation, the methods
give the most accurate result.

For the calculation, the thicknesses of the layers, dk, are considered in the z-axis, and the refractive
index (n) of kth layers and the dielectric constant are considered as ek and nk, respectively. The tangential
fields at first boundary z = z1 = 0 are associated with the final boundary tangential field at z = zN−1 [20]
as: [

p1

Q1

]
= M

[
PN−1

QN−1

]
. (1)

Here, P1 and Q1 are the tangential elements of electric and magnetic fields of the first layer boundary,
and PN−1 and QN−1 are the boundary fields of the Nth layer where M is represented by the characteristic
matrix with Mij [20] and is given as:

Mi j = (
N−1∏
K=2

MK) =

[
M11M12

M21M22

]
, (2)

MK =

[
cos βK(−i sin βK/qK)

−iqK sin βK cos βK

]
, (3)
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√
µK

eK
cosθK =
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eK − n2

1 sin2 θ1
)

eK
, (4)

βK =
2πdK

λ

√(
eK − n2

1 sin2 θ1
)
. (5)

The coefficient of reflection and the reflectivity of the reflected light from the sensor are expressed as:

rp =

(
M11 + M12qN

)
q1 −

(
M21 + M22qN

)(
M11 + M12qN

)
q1 +

(
M21 + M22qN

) (6)

and,
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Rp =
∣∣∣rp

∣∣∣2 (7)

where M11, M22, M12, and M21 represent elements of the transfer matrix, respectively.

3.1. Optical Properties

For optical excitation at an oblique angle, we conceived four prism combinations, CaF2, BK7, SF10,
and 2S2G, and their refractive indices are 1.4329, 1.515, 1.723, and 2.358, respectively [21,22]. According
to the Drude model, refractive indices of proposed metals can be calculated using Ref. [23] as:

nm =

√1− λ2λC

λ2
P(λC + iλ)

, (8)

where λc and λP are the collision and plasma wavelengths, respectively. For Ag, λP = 1.4541 × 10−7 m
and λC = 1.7614 × 10−5 m, and for Au, λp = 1.6826 × 10−7 m and λC = 8.9342 × 10−6 m, respectively.
Hence, the refractive index of Ag = 0.8 + 4.236i and Au = 0.1378 + 3.6196i, and of BP = 3.5 + 0.01i.
The refractive indices of the TMDCs are MoS2 = 5.0805 + 1.1723i, MoSe2 = 4.6226 + 1.0063i, WS2 =

4.8937 + 0.3124i, and WSe2 = 4.5501 + 0.4332i, respectively [24]. The refractive index of CaF2 was
obtained from Ref. [25], and BK7 and SF10 were obtained from Ref. [26]. Various optical parameters
are summarized in Table 1.

Table 1. The material, dimension, and optical properties of materials at 633 nm.

Materials Thickness (nm) n + ik Sources

Ag 25–60 0.80 + 4.236i [21,22]
Au 25–60 0.1378 + 3.6196i [21,22]
BP 0.53 3.50 + 0.01i [21,22]

MoS2 0.65 5.0805 + 1.1723i [24]
MoSe2 0.70 4.6226 + 1.0063i [24]
WS2 0.80 4.8937 + 0.3124i [24]
WSe2 0.70 4.5501 + 0.4332i [24]

3.2. Sensitivity and Other Parameters

The sensitivity (S) of an SPR-based biosensor is the most important parameter for evaluating
the performance. It is ascertained by the ratio of change in the resonance angle, δθ, and change in
refractive index, ∆ns of probing media [27] as:

S =
δθ
∆ns

, (9)

The resonance condition is evolved as [28]:

ωo

C
nx sinθSPR =

ωo

C

√
εmn2d
εm + n2d

, (10)

where sinθSPR defines the resonance angle, nx is the prism RI, εm is the real part of the metal permittivity,
and nd is the RI of dielectrics or probing medium. The ratio of ωo and C measures the propagation
constant of an incident light beam (ωo = light frequency and C is the speed of the light). The detection
accuracy (DA) is calculated by the ratio of change in resonance angle (δθ) and the full width at half
maximum (FWHM) of the reflectance curve.

A relatively low FWHM is preferred when it comes to designing a biosensor that will show the best
performance. The sharper the FWHW, the accuracy in determining the angular modulation with high
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accuracy detection. The magnitude of FWHM is mainly dependent on the excitation configuration,
the layers, and the optical properties of the prism used. The detection accuracy can be given as [29]:

DA =
δθ

FWHM
. (11)

The quality factor (QF) is the ratio of the sensitivity of a biosensor and FWHM, and is given as [29]:

QF =
S

FWHM
. (12)

4. Results and Analysis

The optical properties of prism materials and their refractive indices have direct effects on the
sensitivity of the biosensor. Figure 2 shows the sensitivity of the sensor plotted as a function of the
refractive indices of the four types of prism materials at λ = 633 nm for a p-polarized (TM polarized)
incident light: CaF2, BK7, SF10, and 2S2G. As shown in Figure 2, the sensitivity decreases with the
increasing RI of the prism. The highest sensitivity is achieved for a prism with a smaller refractive
index, in this case, CaF2, and it is considered for the final design of the biosensor.Condens. Matter 2019, 4, x FOR PEER REVIEW 5 of 11 
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Figure 2. Sensitivity (%/RIU) versus refractive indices of four types of prisms at λ = 633 nm.

Next, we optimize the Ag and Au layers. Figure 3 describes the calculated performance of
Ag- and Au-based sensor configurations with the CaF2 prism. As shown, the sensitivity of the
Ag-based configuration shows better coupling with the CaF2 prism over the Au-based configuration.
The sensitivity is also increasing with the increase of the refractive index of Ag as well as the overall
sensitivity of the model is higher than the sensitivity of the Au-based configuration, and therefore Ag
is chosen for the final design.

4.1. Determination of TMDC Performances

The proposed biosensors were optimized (layer thicknesses, minimum Rp, and δθ) using numerical
calculation. The performance results of the biosensors are listed in Table 2. As shown, among all the
types, sensors with the WS2 layer exhibit the highest sensitivity, QF, and DA for n = 1.3440. Likewise,
TMDCs, MoS2 shows the highest sensitivity for n = 1.3450, and MoSe2 and WSe2 showed the highest
sensitivity for n = 1.3460. Between all the four types of TMDCs-based sensors studied here, the sensors
with a WS2 layer have much lower energy loss and higher performance (sensitivity of 375◦/RIU, QF of
65.78 1/RIU and DA of 0.921).
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Table 2. Comprehensive performance results of a biosensor with different MX2 (M = Mo, W and X = S, Se).

TMDC Layers (nm) n δθ Sensitivity (◦/RIU) QF
(1/RIU) DA

MoS2 1 × 0.65 1.3450 4.85 323.333 47.90 0.7185
MoSe2 1 × 0.70 1.3460 5.30 331.250 50.77 0.8123
WS2 1 × 0.80 1.3440 5.25 375.000 65.78 0.9210
WSe2 1 × 0.70 1.3460 5.75 359.375 62.23 0.9957

4.2. Determination of Proposed Performance Parameter

Taking out the final model with the optimized layers, we must satisfy three steps: combination
parameter, sensitivity, and optimization of layer thickness, which we describe below.

4.2.1. Combination Parameter

The most fundamental aspect of understanding the performance of an SPR biosensor is the study
of spectral and angular studies at variable refractive indices. Figure 4 shows the reflectance versus
incident angle, θ. In modelling, we considered four types of structures. Firstly, we took Ag = 35 nm,
BP = 0 nm, and WS2 = 0 nm. The obtained sensitivity, QF and DA are 200◦/RIU, 43.96 1/RIU and 0.6154,
respectively. Secondly, taking Ag = 35 nm, BP = 3× 0.53 nm, and WS2 = 0 nm, the calculated parameters
sensitivity values, QA and DA, are 260.71◦/RIU, 47.40 1/RIU and 0.6636, respectively. Thirdly, taking
Ag = 35 nm, WS2 = 1 × 0.8 nm, and BP = 0 nm, the calculated parameters include: sensitivity =

239.29◦/RIU, QA = 41.98 1/RIU, and DA = 0.5877, respectively. Finally, we take all the values as:
Ag = 35 nm, BP = 3 × 0.53 nm, and WS2 = 1 × 0.8 nm. The proposed combination parameters give a
sensitivity of 375◦/RIU, QF = 65.78 1/RIU, and DA = 0.9210, which is the highest among all the first
three combinations.

4.2.2. Effect of Refractive Indices on Resonance Angle and Sensitivity

The refractive index plays a vital role in the minimum change for the resonance angle. For obtaining
better sensitivity, a high resonance angle is targeted as it shows a better response in the shortest change
of n. Figure 5a shows the relation between the resonance angle and variable n, and Figure 5b shows
the relation between sensitivity versus n with different layer compositions.
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4.2.3. Optimization of Layer Thicknesses

The individual layers and their thicknesses in the Kretschmann configuration have a large effect
on sensor performance such as sensitivity, minimum reflectance, and change in resonance angle (δθ).
In Figure 6a,b, Ag layers are optimized. As shown in Figure 6a, the maximum sensitivity is obtained
for the Ag layer thickness, tAg = 35 nm. The maximum δθ and minimum reflectance shown by these
sensors at tAg = 35 nm are shown in Figure 6b.

We also optimized the BP layers for the best sensor performance. Figure 7a shows the sensitivity
versus number of BP layers. Figure 7b shows δθ and Rp plotted against the number of BP layers.
The maximum sensitivity, minimum reflectance, and maximum change in resonance angle are observed
for L = 3 layers of BP in the configuration.

Figure 8a,b shows the sensitivity, δθ, and Rp of the biosensor with optimized WS2 layer thicknesses.
By analyzing these figures, the value of maximum sensitivity, δθ, and minimum reflectance are obtained
for L = 3, 1, 1, respectively.
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Ultimately, Table 3 renders all the performance parameters of the biosensors studied in this
paper. The se include the materials used, the sensitivity, QF, DA, resonance angle, θSPR and change in
resonance angle, δθ where the proposed model substantiated the highest sensitivity, QF, and DA.
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Table 3. Performance comparison for different conditional models.

Ag (1)
(nm)

BP (0.53)
(nm)

WS2 (0.8)
(nm)

Sensitivity
◦/RIU

QF
1/RIU DA Resonance

Angle (θSPR) δθ

35 0 0 200 43.96 0.6154 79.95 2.80
35 3 0 260.71 47.40 0.6636 83.25 3.65
35 0 1 239.29 41.98 0.5877 82.25 3.35
35 3 1 375 65.78 0.9210 87.50 5.25

A comparison of the sensitivity values shown by some of the prism-based SPR biosensors reported
elsewhere and in this paper is shown in Table 4. As shown, the table corroborates that the proposed
model ensured the highest sensitivity among all the reported results. The improvement of the
sensitivity of our configuration is also due to the addition and optimization of a black phosphorus
(BP) layer as it is found to significantly improve the electric field at the interface of the metal sensor
and probing medium. For example, at room temperature, BP is thermodynamically stable, and it
has a puckered lattice configuration that gives the benefit of a higher surface to volume ratio. Since.
Van der Waals forces—the attraction of intermolecular forces between molecules is higher for BP;
these forces tightly hold multiple layers of BP and consequently offer a higher molar response factor.
The chosen WSe2 is also an excellent candidate for the SPR study as it offers a direct bandgap, higher
absorption rate, and less energy loss of electrons. The refractive index difference between the metal
sensor and probing medium (∆n) was kept constant at 0.014 to investigate the performance of the
proposed biosensor. With the addition of a new magnetic layer in the proposed configuration and
magnetic activity, our proposed structure is expected to exhibit an excellent magneto-optic effect and
enhanced sensitivity, detection level and quality factors over the SPR biosensors as well.

Table 4. Sensitivity comparison of prism-based SPR biosensor with the present work (λ = 600 &
633 nm).

References Sensor Configuration Wavelength (nm) Sensitivity (◦/RIU)

Ouyang and Zeng (2016) [30] Prism/Au/Si/MoS2 600 155.68
Lin (2016) [8] Prism/Au/MoS2/Au 633 182
Pal (2017) [29] Prism/Au/Bp 633 180

Shushama (2017) [20] Prism/Au/Si/MoS2/Au/Graphene 633 210
Hamid (2019) [17] Air/MoS2/Nanocomposite/MoS2/Graphene 633 200

Proposed [This Work] Prism/Ag/BP/WS2 633 375

The refractive index values of the probing samples used in our calculation closely correspond to
the refractive index of a bio-sample such as urine, as the biological properties are dependent on the
variation of the refractive index of the dielectric medium. The proposed biosensor, if manufactured, is
suitable for practical applications, for example, they can be used in public washrooms or private toilets
in homes where people can test the samples. The measured results can act as a primary indicator for
possible health issues in humans, thus preventing frequent visits to the doctor or hospital.

5. Conclusions

We numerically investigated biosensors based on transition metal dichalcogenides (TMDC) and
black phosphorous layers and accomplished an excellent sensitivity, detection accuracy and quality
factor. Among all the TMDCs, WS2 ascertained the highest sensitivity of 375◦/RIU, a quality factor
of 65.78 1/RIU, and a detection accuracy of 0.9210. We also explored the ability of Ag and Au layers
to tune on the sensitivity, optimized prism material, and chose CaF2 as the coupling prism. A long
range of refractive indices is used for ensuring the maximum sensitivity of the proposed SPR biosensor.
Although the research on TMDC-based biosensors is still very young, it offers many exciting promises
and opportunities in biomedical industries.
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