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Abstract: The ability to tune the gaps of direct bandgap materials has tremendous potential for
applications in the fields of LEDs and solar cells. However, lack of reproducibility of bandgaps
due to quantum confinement observed in experiments on reduced dimensional materials, severely
affects tunability of their bandgaps. In this article, we report broad theoretical investigations of
direct bandgap one-dimensional functionalized isomeric system using their periodic potential profile,
where bandgap tunability is demonstrated simply by modifying the potential profile by changing the
position of the functional group in a periodic supercell. We found that bandgap in one-dimensional
isomeric systems having the same functional group depends upon the width and depth of the deepest
potential well at global minimum and derived correlations are verified for known synthetic as well as
natural polymers (biological and organic), and also for other one-dimensional direct bandgap systems.
This insight would greatly help experimentalists in designing new isomeric systems with different
bandgap values for polymers and one-dimensional inorganic systems for possible applications in
LEDs and solar cells.
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1. Introduction

One-dimensional materials are in focus amongst the current research areas for their remarkable
physical properties arising as a consequence of the reduced dimensionality. However, lack of control
over reproducibility of bandgap values in one-dimensional materials [1–3] is one of the challenges for
its electronic applications like LEDs and LASER diodes, as it affects their bandgap tunability. Several
theoretical studies have been reported to tune the bandgap of one-dimensional materials using various
methods like strain, functionalization at the edges, doping, etc. [4–6], however, the methods lack in
control over the bandgap values. Since, bandgap is one of the most important factors while selecting a
material for an electronic application; therefore, different direct bandgap materials have been explored
for LEDs and LASER applications, e.g., Aluminium gallium nitride (AlGaN) for ultraviolet LEDs (below
400 nm), while Aluminium gallium arsenide (AlGaAs) for infrared LEDs (above 760 nm). Therefore,
it would be of great interest if bandgap of a given material can be tuned, and this quest has been
extended to polymers. Several experimental and theoretical studies on bandgap in polymers [7–13]
have been reported aimed at their applications in organic LEDs [14–16] and solar cells [9,17–22].
However, different values of bandgap noticed in experiments on isomeric polymers [23–25] and also
in theoretical studies [12,25–27] suggest that bandgaps may be tuned in one-dimensional system, if the
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underlying physics is understood. The fact that the work so far reported on bandgaps in isomeric
polymers having the same functional group is still inconclusive [25–27], motivated us to investigate and
define the driving elements of different bandgaps seen in the isomeric systems. Once we understand
the mechanism behind this, we may be in a position to tune the bandgaps of such materials as per
our requirements. In this work, investigations are carried out on one-dimensional isomeric polymers
(synthetic and natural), and nanoribbons having the same functional groups. Since polymers are large
chain of monomers, Therefore, they are considered as one-dimensional periodic systems for band
structure calculations [28–32].

2. Results and Discussions

For investigating and defining the driving element of different bandgaps in isomeric
systems, an example of low bandgap synthetic polymer, polydithienyl naphthodithiophenes
(DThNDT) (C20H8S4)n is considered. It exists in two isomeric forms, poly(anti-DThNDT) and
poly(syn-DThNDT) [25] having periodic unit cell of length 14.681 Å, and 13.113 Å, respectively
(see Figure 1a). Cut-off energy of 500 eV is used for band structure calculations. Ground state energy
calculated per atom for poly(anti-DThNDT) and poly(syn-DThNDT) are −7.034 eV and −7.003 eV,
respectively, which are in close proximity of being isomers.

Figure 1. (color online) (a) Unit cells for poly(anti-DThNDT) and poly(syn-DThNDT) are represented
in the dotted boxes. Blue, yellow, and white spheres represent carbon, sulfur, and hydrogen atoms,
respectively; (b) Band structure plots corresponding to poly(anti-DThNDTP) and poly(syn-DThNDTP).

Given the one-dimensional nature of polymers, their band structures are plotted from Γ
to X point (see Figure 1b). Direct bandgaps are observed at Γ point for both the polymers of
poly(anti-DThNDT) and poly(syn-DThNDT) with bandgaps of 0.518 eV and 1.681 eV, respectively.
Bandgap for poly(anti-DThNDT) is smaller than that of poly(syn-DThNDT), which is in agreement with
the experimental report [25]. Band structures for these isomeric polymers are significantly different,
even though they have same chemical formula, and practically the same ground state energy.

The polymers are one-dimensional systems with a repeating unit cell (monomer), Therefore,
their bandgap may be related to their one-dimensional periodic potential profile similar to that of
Kronig–Penney model. Since, potential is a scalar quantity, Therefore, average of potentials in the
periodic direction of isomeric unit cell may be considered for comparative analysis of bandgap values.
Average potential profile for poly(anti-DThNDT) and poly(syn-DThNDT) are plotted in the periodic
direction as shown in Figure 2.
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Figure 2. Average potential profile corresponding to the unit cell in the periodic direction of poly(anti-
DThNDT) and poly(syn-DThNDT) are denoted in solid and dotted lines, respectively.

The periodic average potential profiles of poly(anti-DThNDT) and poly(syn-DThNDT) are quite
different to each other, and even to ideal rectangular potentials of the Kronig–Penney model [33].
Since a system prefers to stay in its ground state, the deepest potential well at global minimum in
the periodic potential profiles are considered for comparative analysis of bandgap values [34] for
isomeric systems. The global minimum for poly(anti-DThNDT) is located at 9.849 Å, enclosed between
two crests (barriers) located at 9.058 Å and 11.432 Å, while global minimum for poly(syn-DThNDT)
is located at 5.517 Å, enclosed between two crests (barriers) located at 4.466 Å and 6.480 Å. From
Figure 2, it can be seen that shape of the potential wells in the potential profile looks like inverse
Gaussians, consisting of both well and barrier width. Therefore, for simplifying the calculations,
potential well is considered as square well potential of equal width for well and barrier (half of the
distance between crests of the potential well). Since depth of the deepest potential well at global
minimum ‘V0’, and its corresponding width ‘a’ are finite and non-zero, distinct from the KP model
(where a→ 0 and V0 → ∞ for finite value of V0.a) [33]. Hence, Schrödinger equation needs to be solved
for the periodic square well potential of finite width and depth at global minimum to get first order
bandgap, which may be correlated with the bandgap calculated using DFT. The energy eigenvalues
corresponding to Schrödinger wave equation for an electron of mass ‘m’ and energy ‘E’ (where E < V0)
in a square well periodic potentials of finite depth ‘V0’ and width ‘a’ can be obtained by solving the
transcendental equation

β2 − α2

2αβ
sin(αa) sinh(βa) + cos(αa) cosh(βa) = cos(k.2a) (1)

where,

β =

√
2mV0

h̄2 − α2,
h̄2α2

2m
= E + V0 > 0 (2)

and,

h̄2β2

2m
= −E < 0 (3)
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For isomeric polymers of polydithienyl naphthodithiophenes (DThNDT) (C20H8S4)n, width
and depth of the deepest potential well at global minimum for poly(anti-DThNDT) are 1.187 Å and
0.212 eV, respectively, while for poly(syn-DThNDT) are 1.007 Å and 0.299 eV, respectively (Figure 2).
Using these values in Equation (1), it is found that poly(syn-DThNDT) has larger bandgap than
that of poly(anti-DThNDT), which is in agreement with bandgap values calculated using DFT, and
experimental reports [25]. Therefore, it is concluded that bandgap of one-dimensional isomeric systems
may be correlated with depth and width of the potential well at global minimum in the periodic
average potential profile.

In order to find out how bandgap of one-dimensional isomeric systems may be correlated with
their deepest potential well at global minimum in the periodic direction; a general correlation needs
to be formulated and establish its validity for other isomeric systems. Since isomeric systems usually
would have different dimensions (V0 and a) of the deepest potential well at global minimum, Therefore,
the transcendental Equation (1) needs to be solved for bound states of different ‘V0.a’ varying both
‘V0’ and ‘a’. In fact for bound states (E < V0), depth of potential well ‘V0’ should be greater than a
critical value for a given width ‘a’, which we have considered in the calculations; for example, the
critical value of depth calculated for potential well is 19.04 eV for a width of 1.4 Å, while critical depth
turns out to be 16.59 eV for a width of 1.5 Å. Bandgap for bound state periodic square well potential
obtained from energy-momentum dispersion relations on solving the transcendental Equation (1),
for different ‘V0.a’ are plotted in Figure 3.

Figure 3. (color online) First order bandgap plot as a function of ‘V0.a’ for different values of ‘V0’ and
‘a’ for the bound systems corresponding to a square well potential represented in the inset.

On comparing the bandgap values of two isomeric systems with their corresponding width (‘a’)
and depth (‘V0’) of potential well e.g., (4Eg1, V1, a1) and (4Eg2, V2, a2) for different product of ‘V0.a’,
following correlations are derived

Case I (a1 = a2, V1 = V2) then4Eg1 = 4Eg2

Case II (a1 = a2, V1 > V2) then4Eg1 > 4Eg2

Case III (a1 > a2, V1 = V2) then4Eg2 > 4Eg1

Case IV (a1 > a2, V2 > V1) then4Eg2 > 4Eg1

Case V (a1 > a2, V1 > V2)

In this case, sign of slopes for bandgap as a function of ‘V0.a’ may change on changing ‘V0’ and ‘a’
w.r.t. a reference point, Therefore, bandgap correlation can be predicted only on solving Equation (1)
for corresponding ‘V0’ and ‘a’.



Condens. Matter 2018, 3, 34 5 of 10

For isomeric polymers of polydithienyl naphthodithiophenes (DThNDT) (C20H8S4)n, the width
and depth of the deepest potential well at global minimum in the periodic potential profile
for poly(anti-DThNDT) are 1.187 Å (say ‘a1’) and 0.212 eV (say V1), respectively, while for
poly(syn-DThNDT) are 1.007 Å (say ‘a2’) and 0.299 eV (say V2), respectively (see Figure 2). Since
a1 > a2 and V2 > V1, Therefore, according to correlations of Case IV, poly(syn-DThNDT) should have
larger bandgap than poly(anti-DThNDT); which agrees with our band structure calculations using
DFT, and other experimental reports [25]. The agreement of derived correlation with theoretical and
experimental results establishes its validity.

To verify it further, the investigation is extended to other isomeric synthetic polymer
polydialkylterthiophenes (C36H54S3)n (see Supplementary Material Figure S1) and natural polymers
(biopolymers and organic polymers) (see Supplementary Material Figure S2 and S3), bandgaps are
found to be correlated with the dimension of the potential well at a global minimum as per the derived
correlations. The investigations have been extended to natural polymers for extensive validity of the
correlations, even though they are insulating and of little importance to electronic applications.

On the basis of theoretical analyses, it is established that bandgaps of isomeric systems are
correlated with width and depth of the deepest potential well at global minimum in their periodic
potential profile. From derived correlations, it may be predicted that bandgap of one-dimensional
periodic system may be tuned, if width and depth of the deepest potential well in the periodic potential
profile is altered on changing the position of functional group in the periodic unit cell.

To establish the concept of bandgap tunability in one-dimensional systems, the investigation is
extended to theoretical GNRs (same molecular formula for the unit cells) having the same functional
group in the periodic unit cell but of different arrangements. Zigzag GNRs (ZGNRs) of the same
width functionalized at the edges with oxygen atoms in two typical ways (say Config. I and Config.
II as shown in Figure 4a) are considered for calculations. sp2 and sp3 hybridized carbon atoms are
considered at edges for visible distinction of isomeric change in the periodic unit cell (7.378 Å) of
zigzag GNRs. Typical edge configurations of ZGNRs (Nz = 7) are shown in Figure 4a. Periodic average
potential profiles corresponding to Config. I and Config. II are plotted in Figure 4b. Even though their
average potential profiles look different, their potential profiles superpose on each other on relative
shifting in the periodic direction. The width and depth of potential well at global minimum for Config.
I and Config. II are exactly same 0.614 Å (a1 = a2) and 0.648 eV (V1 = V2). Since a1 = a2 and V1 = V2,
Therefore, according to the derived correlations (Case I), bandgap of both the configurations of ZGNRs
should be equal.

Figure 4. (color online) (a) Unit cells corresponding to two configurations Config. I and Config. II of
7-ZGNRs, where blue and red spheres represent carbon and oxygen atoms, respectively. (b) Average
potential profile of the unit cell for Config. I and Config. II in the periodic direction of 7-ZGNRs are
denoted with solid and dotted curve, respectively. Inset shows the overlap of potential profiles on
relative shifting along the periodic direction.
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To check the validity of the correlations, band structure calculations for 7-ZGNRs are performed
with cut-off energy of 450 eV. Band structures are plotted from Γ to X point for Nz = 7 (Figure 5). Direct
bandgap of 0.393 eV is observed at Γ point for both the configurations. It is found that bandgap values
of ZGNRs for Config. I and Config. II are same, even ground state energy per atom of the unit cell
calculated for both the configurations are same, −8.762 eV. On further analyses of potential profiles
of ZGNRs, the same correlations are found to be held for other odd ZGNRs (Nz = 3 to 17), which are
verified with the band structure calculations using DFT.

Figure 5. Band structure plots corresponding to Config. I and Config. II for Nz = 7.

Further, we have considered even Nz-ZGNRs (Nz=8). The unit cells corresponding to Config. I
and Config. II are shown in Figure 6a for NZ = 8. The lattice parameters in periodic direction for both
the configurations are equal to 7.378 Å. The ground state energy per atom for Config. I and Config. II
are −8.818 eV and −8.817 eV, respectively, which are practically the same.

Average potential profiles in the periodic direction of unit cell corresponding to Config. I and
Config. II are plotted in Figure 6b. The width and depth of potential well at global minimum for Config.
I are 0.614 Å(‘a1’) and 1.091 eV (V1), respectively, while for Config. II are 0.614 Å(‘a2’) and 0.721 eV (V2),
respectively. Since a1 = a2 and V1 > V2, Therefore, from the proposed theory, Config. I should have
higher bandgap than that of Config. II (Case II). From band structure calculations, direct bandgaps
of 0.792 eV and 0.342 eV are observed at Γ point for Config. I and Config. II, respectively (Figure 7).
Thus, bandgap of Config. I is significantly higher than that of Config. II, which is in agreement with
derived correlation using potential profiles (Figure 6). On further analyses of potential profiles of even
ZGNRs, the same correlations are found to be hold for other even ZGNRs (Nz = 10 to 18), which are
verified with the band structure calculations using DFT. However, potential profiles of even Nz-ZGNRs
for Nz < 6 are found to fall under Case V (see Supplementary Material Figure S4). Thus, it justifies
tunability of a bandgap value in direct bandgap one-dimensional systems.
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Figure 6. (color online) (a) Unit cells corresponding to two different configurations Config. I and Config.
II of even ZGNRs corresponding to Nz = 8, where blue and red spheres represent carbon and oxygen
atoms, respectively; (b) their corresponding potential profiles.

Figure 7. Band structure plots corresponding to Config. I and Config. II for Nz = 8

3. Computational Details

Band structure calculations are performed using Density Functional Theory (DFT) as implemented
in Vienna ab initio simulation package (VASP) [35]. Generalized gradient approximation (GGA) [36] is
used for exchange-correlation of electron-electron interactions as implemented in projected augmented
wave (PAW) formalism [37]. Further, a vacuum layer of at least ≈15 Å is used to avoid interlayer
interactions. The system is relaxed until a force on each atom in the unit cell is less than 0.001 eV.Å−1.
k-mesh of size 25× 1× 1 is used in Monkhorst–Pack formalism for momentum space sampling.

4. Conclusions

On the basis of theoretical analyses of one-dimensional systems having the same functional group
in the periodic unit cell, but of different arrangements, it is observed that:

• Bandgaps of one-dimensional systems are correlated to the depth and width of potential well at
global minimum in the periodic potential profile.

• The correlations derived between bandgap and dimension of periodic potential well at global
minimum is verified for known isomeric systems of synthetic as well as natural polymers



Condens. Matter 2018, 3, 34 8 of 10

(biological and organic), and bandgap tunability is also established for one-dimensional
nanoribbons.

Finally, it is concluded that bandgap of one-dimensional system can be tuned by changing the
position of functional group in the periodic unit cell of the same material, which may be used for
designing materials of different bandgap values for LEDs applications and effectively harvesting
energy in solar cells; and insight may be extended to understand the different physical properties of
isomers of biopolymers such as proteins.

Supplementary Materials: The following are available online at http://www.mdpi.com/2410-3896/3/4/34/s1,
Figure S1: Verification of the proposed theory for different bandgap values in isomers of polydialkylterthiophenes,
Figure S2: Verification of the proposed theory for different bandgap values in Cellulose and Starch, Figure S3:
Verification of the proposed theory for different bandgap values in Kevlar and nomex, Figure S4: Verification
of the proposed theory for different bandgap values in even zigzag graphene nanoribbons (Nz = 6) of different
arrangements.
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