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Abstract: In this paper we give a derivation of a system of equations which generalize the London
brothers and Ginzburg–Landau systems of equations, to describe the electrodynamics of s-wave
superconductors. First, we consider a relativistically covariant theory in terms of gauge four-vector
electromagnetic potential and scalar complex field. We use the first-order formalism to obtain the
supplemented Maxwell equations for gauge-invariant electric, magnetic, four-vector fields and the
modulus of the superconducting order parameter. The new four-vector field appears in some
of the equations as a gauge-invariant super-current, and in other ones, while gauge invariant,
as a four-vector electromagnetic potential. This dual contribution of the new four-vector field is
the basis of the electrodynamics of superconductors. We focus on the system of equations with
time-independent fields. The qualitative analysis shows that the applied magnetic field suppresses
the superconductivity, while the applied electric field impacts oppositely, supporting it. Secondly,
we consider time-dependent non-relativistic Ginzburg–Landau theory.
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1. Introduction

The earliest study of the electrodynamics of s-wave superconductors is attributed to the London
brothers [1]. They supplemented the Maxwell system of equations with a set of equations to explain
the electrodynamics of superconductors, and more particularly, the Meissner–Ochsenfeld effect.
The generalized Maxwell–London equations are discussed in [2] without account for the spontaneous
breakdown of the charge symmetry. The quantum-mechanical foundation of these equations was
discussed in phenomenological Ginzburg–Landau theory [3].

There is also an attempt to explain the Meissner–Ochsenfeld effect in a purely classical way [4]
and superconductivity as a limiting phenomena [5]. In [6], a microscopic justification is given that
a superconductor may have an electric field in its interior. The phenomenon is considered as a
consequence of hole superconductivity [7] (see also [8]).

The main purpose of the present paper is to give a derivation of a system of equations which
generalize the London brothers’ and Ginzburg–Landau systems of equations. In the Londons’ theory,
the amplitude of the order parameter is not included, which does not permit the different impact
of the applied electric and magnetic fields to be obtained. The Ginzburg–Landau theory does not
consider the electric field.

The Londons’ system of equations is relativistic covariant [1]. We want to generalize this system,
and this is why we first consider a relativistically covariant theory in terms of gauge four-vector
electromagnetic potentials and scalar complex field.

The results of the relativistic theory are very important guidance for the non-relativistic one,
while the non-relativistic theory has more options.
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We focus on the system of equations with time-independent fields. The qualitative analysis
shows that the applied magnetic field suppresses the superconductivity, while the applied electric
field impacts oppositely, supporting it.

The system of equations is derived from a relativistically non-covariant theory, and shows that
the effect of the applied electric field depends on the direction of the field.

The paper is organized as follows: In Section 2, we derive the system of equations to
describe the electrodynamics of s-wave superconductors from relativistically covariant theory of
superconductivity. For the case when density of Cooper pairs is a constant, the system of equations
reduces to the London brothers’ equations. The system of equations derived in the present
paper includes an equation for the density of Cooper pairs which shows the different impacts of
applied electric and magnetic fields on superconductivity. In Section 3, we use the same technique
of calculations to consider time-dependent relativistically non-covariant Ginzburg–Landau theory.
The main results are reported and commented in Section 4.

2. Relativistically Covariant Theory of Superconductivity

We begin with a well-known field-theory action [9] for a relativistically covariant theory of
superconductivity

S =
∫

d4x
[
−1

4
(∂λ Aν − ∂ν Aλ)

(
∂λ Aν − ∂ν Aλ

)
+ (∂λ − ie∗Aλ)ψ∗

(
∂λ + ie∗Aλ

)
ψ (1)

+ αψ∗ψ− g
2
(ψ∗ψ)2

]
written in terms of gauge four-vector electromagnetic potential “A” and complex scalar field “ψ”,
the superconducting order parameter. The parameter

α = α0(Tc − T), (2)

where T is the temperature and Tc is the critical temperature, is positive when the system
is a superconductor. We use the standard notations for relativistically covariant systems:
x = (x0, x1, x2, x3) = (x0,−x1,−x2,−x3) = (υt, x, y, z), υ−2 = µε, where µ is the magnetic
permeability and ε is the electric permittivity of the superconductor. We assume that these
parameters do not change their values when the system undergoes normal-to-superconductor
transition. The action (1) is invariant under the gauge transformations

ψ′(x) = exp [ie∗φ(x)]ψ

A′ν = Aν − ∂νφ(x), (3)

where φ(x) is a real function.
We represent the order parameter ψ(x) in the form

ψ(x) = ρ(x) exp [ie∗θ(x)], (4)

where ρ(x) = |ψ(x)| is a gauge invariant, and the gauge transformation of θ(x) is

θ′(x) = θ(x) + φ(x). (5)
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The action (1), rewritten in terms of ρ and θ, adopts the form

S =
∫

d4x
[
−1

4
(∂λ Aν − ∂ν Aλ)

(
∂λ Aν − ∂ν Aλ

)
+ e∗2ρ2 (∂λθ + Aλ)

(
∂λθ + Aλ

)
(6)

+ ∂λρ∂λρ + αρ2 − g
2

ρ4
]

.

It is convenient to use the action in the first-order formalism

S =
∫

d4x
{
−1

2

[
(∂λ Aν − ∂ν Aλ) Fλν − 1

2
FλνFλν

]
+ 2e∗2ρ2

[
(∂λθ + Aλ) Qλ − 1

2
QλQλ

]
(7)

+ ∂λρ∂λρ + αρ2 − g
2

ρ4
}

,

where gauge potential Aλ, phase θ, gauge invariant antisymmetric field Fλν = −Fνλ, gauge invariant
four-vector field Qλ and gauge invariant scalar field ρ are assumed to be independent degrees of
freedom in the theory.

To derive the system of Maxwell equations for s-wave superconductors, we vary the action (7)
with respect to Fλν, Qλ, Aλ, θ, and ρ. The resulting system of equations reads:

Fλν = (∂λ Aν − ∂ν Aλ) (8)

Qλ = ∂λθ + Aλ (9)

∂λFλν + 2e∗2ρ2Qν = 0 (10)

∂λ

(
ρ2Qλ

)
= 0 (11)

∂λ∂λρ− αρ + gρ3 = 2e∗2ρ

[
(∂λθ + Aλ) Qλ − 1

2
QλQλ

]
(12)

If we set in Equations (10)–(12) the expressions for Fλν and Qλ from Equations (8) and (9), we
obtain the equations of motion following from the action (6). This means that theories with actions (6)
and (7) are equivalent.

Alternatively, one eliminates the gauge fields Aλ and θ from Equations (8)–(12) to obtain the
system of equations for the gauge invariant fields Fλν, Qλ and ρ:

∂λFνδ + ∂νFδλ + ∂δFλν = 0 (13)

∂λFλν + 2e∗2ρ2Qν = 0 (14)

∂λ

(
ρ2Qλ

)
= 0 (15)

∂λQν − ∂νQλ = Fλν (16)

∂λ∂λρ− αρ + gρ3 − e∗2ρQλQλ = 0. (17)

Equation (13) follows from Equation (8), while Equation (16) from Equation (9).
Straightforward calculations show that Equation (15) can be obtained from Equation (14) and

Equation (13) from Equation (16). The system of independent equations is:

∂λFλν + 2e∗2ρ2Qν = 0 (18)

∂λQν − ∂νQλ = Fλν (19)

∂λ∂λρ− αρ + gρ3 − e∗2ρQλQλ = 0. (20)
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We construct the antisymmetric tensor Fλν by means of the electric E and magnetic B fields
in a standard way: (F01, F02, F03) = E/υ, (F32, F13, F21) = B and (Q0, Q1, Q2, Q3) = (Q/υ, Q).
In terms of E, B, Q, and Q, the system of equations which describes the electrodynamics of s-wave
superconductors is:

−→∇ × B = µε
∂E
∂t
− 2e∗2ρ2Q (21)

−→∇ ×Q = B (22)
−→∇ · E = −2e∗2ρ2Q (23)
−→∇Q +

∂Q
∂t

= −E (24)

µε
∂2ρ

∂t2 − ∆ρ− αρ + gρ3 − e∗2ρ
[
µεQ2 −Q2

]
= 0. (25)

It is important to stress that the gauge-invariant vector Q and scalar Q fields take part in
Equations (22) and (24) as a magnetic vector and electric scalar potentials, while in Equation (21)
(−2e∗2ρ2Q) is a supercurrent and in Equation (23) (−2e∗2ρ2Q) is a density of superconducting
quasi-particles. This dual contribution of the new fields is the basis of the electrodynamics of
superconductors.

We focus on the system of equations with time-independent fields:

−→∇ × B = −2e∗2ρ2Q (26)
−→∇ ×Q = B (27)
−→∇ · E = −2e∗2ρ2Q (28)
−→∇Q = −E (29)

∆ρ + αρ− gρ3 + e∗2ρ
[
µεQ2 −Q2

]
= 0. (30)

To compare our result with the London equations [1], we assume that deep inside the
superconductor Q and Q are zero, while ρ = ρ0 is a constant determined from the equation
αρ0 − gρ3

0 = 0, which follows from Equation (30). The gauge transformation (5) of the phase of
the order parameter θ implies that one can impose the gauge fixing condition θ = 0. In that case,
the gauge-invariant vector is equal to the vector potential Q = A, the gauge invariant scalar field is
equal to the scalar potential Q = A0, and the system of Equations (26)–(29) adopts the form

−→∇ × B = −2e∗2ρ2
0A (31)

−→∇ ×A = B (32)
−→∇ · E = −2e∗2ρ2

0 A0 (33)
−→∇A0 = −E. (34)

With the London brothers’ postulates in mind

J/c = −2e∗2ρ2
0A (35)

ρ = −2e∗2ρ2
0 A0, (36)

we arrived at London equations [1] .
Taking the curl of (31), using Equation (32) and the identity

−→∇ · B = 0, which follows from this
equation, we obtain

∆B =
1

λ2
L

B, (37)
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where
λL =

√
g/(2e∗2α). (38)

Taking the divergence of (34) and using the Equation (33) we obtain

∆E =
1

λ2
L

E. (39)

Equations (37) and (39) imply that an electric field penetrates a distance λL as a magnetic field
does [10].

This approximation is very rough and does not account for the last term in Equation (30), which
is responsible for the different impact of applied electric and magnetic fields on the superconductivity.
If we apply magnetic field (E = 0, Q = 0), the qualitative analysis of Equation (30) shows that
the magnetic vector potential effectively decreases the α parameter, α → α − e∗2 < Q2 >, where
< Q2 > is some average value. Therefore, the Ginzburg–Landau coherence length increases (see
Appendix A), which means that applied magnetic field destroys superconductivity. On the other
hand, when the electric field is applied (B = 0, Q = 0), the electric scalar potential effectively
increases the α parameter α → α + e∗2µε < Q2 >. Hence, the Ginzburg–Landau coherence
length decreases. This qualitative analysis permits us to formulate the hypotheses that by applying
electric field at very low temperature one increases the critical magnetic field. This result is
experimentally testable.

3. Time-Dependent Ginzburg–Landau Theory

A number of authors have discussed the non-relativistic time-dependent generalization of the
Ginzburg–Landau theory [11–16]. We investigate a model with field-theory action [13,15,16]

S =
∫

d4x
[
−1

4
(∂λ Aν − ∂ν Aλ)

(
∂λ Aν − ∂ν Aλ

)
+

1
D

ψ∗ (i∂t − e∗ϕ)ψ (40)

− 1
2m∗

(∂k − ie∗Ak)ψ∗ (∂k + ie∗Ak)ψ

+ αψ∗ψ− g
2
(ψ∗ψ)2

]
,

where ϕ = υA0 is the electric scalar potential, with gauge transformation (3) ϕ′ = ϕ− ∂tφ, D is the
normal-state diffusion constant [16], and (e∗, m∗) are effective charge and mass of superconducting
quasi-particles. The index k runs k = x, y, z.

We follow the same procedure to derive the system of equations which describe the
electrodynamics of s-wave superconductors. We represent the order parameter ψ by means of
modulus and phase (4), and write the field-theory action, in the first-order formalism, in the form

S =
∫

d4x
{
−1

2

[
(∂λ Aν − ∂ν Aλ) Fλν − 1

2
FλνFλν

]
− e∗

D
ρ2 (ϕ + ∂tθ) (41)

− e∗2

m∗
ρ2
[
(∂kθ + Ak) Qk −

1
2

QkQk

]
− 1

2m∗
∂kρ∂kρ + αρ2 − g

2
ρ4
}

.
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It is important to stress that Qk is a three-component vector field and k = x, y, z. Using a
variational principle, we obtain the system of equations

Fλν = (∂λ Aν − ∂ν Aλ) (42)

Qk = ∂kθ + Ak (43)

∂λFλ
k +

e∗2

m∗
ρ2Qk = 0 (44)

∂kF0k −
υe∗

D
ρ2 = 0 (45)

∂tρ
2 +

D
m∗

∂k

(
ρ2Qk

)
= 0 (46)

1
2m∗∆ρ + αρ− gρ3 − e∗

D
ρ (ϕ + ∂tθ)

=
e∗2

m∗
ρ

[
(∂kθ + Ak) Qk −

1
2

QkQk

]
. (47)

We supplement the system of Equations (42)–(47) with Equation (48):

Q = ∂tθ + ϕ, (48)

which is a definition of the new gauge-invariant field Q. In the same way, starting from the
system of Equations (42)–(48), we arrive at the Maxwell equations for superconductors in a
non-relativistic theory.

−→∇ × B = µε
∂E
∂t
− e∗2

m∗
ρ2Q (49)

−→∇ ×Q = B (50)
−→∇ · E =

µεe∗

D
ρ2 (51)

−→∇Q +
∂Q
∂t

= −E (52)

1
2m∗

∆ρ + αρ− gρ3 − e∗

D
ρQ− e∗

2m∗
ρQ2 = 0. (53)

The system of equations for time-independent fields is:

−→∇ × B = − e∗2

m∗
ρ2Q (54)

−→∇ ×Q = B (55)
−→∇ · E =

µεe∗

D
ρ2 (56)

−→∇Q = −E (57)
1

2m∗
∆ρ + αρ− gρ3 − e∗

D
ρQ− e∗

2m∗
ρQ2 = 0. (58)

There are two important differences between Equations in relativistic theory (26)–(30) and
Equations in non-relativistic one (54)–(58). In contrast to Equation (28), in Equation (56) there is no
dependence on gauge-invariant scalar field Q. The last Equation (58) depends on the electric potential
Q linearly, which makes the impact of the applied electric field on superconductivity quite nontrivial.

4. Summary

The electrodynamics of superconductors is based on the fundamental phenomenon in
physics-spontaneous breakdown of U(1) gauge symmetry. The system of equations depends on the
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mechanism of symmetry breaking. The equations in the present paper describe the electrodynamics
of s-wave superconductors, while the equations for d-wave or p-wave superconductors look in
a different way. The equations are different if the superconductor is a metal or insulator in
normal state. If the material is metal above the critical temperature, we have to account for the
Ohm law, and we have to supplement Equation (26) with a term proportional to the electric field
J = σE. The conductivity σ depends on the density of conducting electrons, and is responsible
for the screening of the electric field [17]. The density of normal quasiparticles decreases at low
temperature; at very low temperature σ is zero, there is no quasiparticle current, and the system
of Equations (26)–(30) is appropriate to describe the electrodynamics of s-wave superconductors.
On the other hand, there are materials which possess superconductor–insulator transition. For these
systems, Equations (26)–(30) describe the properties of the material well when an electric field is
applied, even near the critical temperature. Therefore, we can apply an electric field near the
critical superconductor–insulator transition temperature to study the critical behavior of this type
of superconductor. One of the examples is sulfur hydride [18]. It is a superconductor at very
high pressure and temperature. Temperature dependence of the resistance, measured at different
pressures, shows that the material undergoes a superconductor-insulator transition below 129 GPa.

The shape of the sample is very important. In the present paper, we study systems with half
space (z > 0) occupied by the superconductor. We assume that deep inside the superconductor the
electric and magnetic fields approach zero and hence the fields Q and Q are zero, while ρ = ρ0 is
a constant. In this way, we obtain London brothers equations and Equations (37) and (39), which
imply that an electric field penetrates as a magnetic field does. This approximation fails when the
geometry of the system is with finite size—slab geometry. This is because the electric and magnetic
fields are finite within a finite-size sample. Therefore, the vector and scalar fields Q and Q are not zero,
and one cannot neglect them in the last term of Equation (30), and cannot set the density of Cooper
pairs ρ equal to constant. Due to this, Equations (37) and (39) cannot be considered even as a rough
approximations. They are not a correct description of the electrodynamics of finite-size samples.
This makes the electrodynamics of superconductors with finite sizes more difficult to investigate.

The possibility that a superconductor may have an electric field in its interior has been discussed
in other theoretical frameworks [1,6,10]. The equations in these papers discuss the charge and electric
field distribution in superconductors. They result from assumptions [1] and phenomenological
considerations. This is in stark contrast to the present paper, where the Maxwell equations for
s-type superconductors are obtained from first principles. In References [1,6,10], authors consider
a system of equations for electric field, magnetic field, scalar electric potential and vector magnetic
potential. They consider the density of Cooper pairs equal to constant included in the London
penetration depth λL (38). While the resulting Equation (37) explains the Meissner–Ochsenfeld effect,
Equations (37) and (39) do not match the physical reality.

In the present paper, a system of equations based on strong mathematical fundament is derived.
They describe the electrodynamics of all s-wave superconductors at low temperature, where there are
no normal quasiparticles and electric field can penetrate, and at all temperatures below the critical one
when the normal state of the superconductor is insulator.

When the model is relativistically covariant, we obtained that the applied electric field supports
the superconductivity. When the model is non-relativistic, the impact of the applied electric field on
superconductivity is more complicated.

The equations in relativistic theory (26)–(30) are invariant under the discrete transformation
B→ −B, Q→ −Q, and independently under the transformation E→ −E, Q→ −Q. In contrast, the
system of equations in non-relativistic theory (54)–(58) are invariant under the discrete transformation
of magnetic field B and gauge-invariant field Q, but they are not invariant under the discrete
transformation of electric field E and gauge-invariant field Q. This means that the effects of the
applied electric fields E0 and −E0 on superconductivity are different.
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It is important to underline that the fields Q and Q are gauge-invariant. This is why they
should be measurable, as the electric and magnetic fields are measurable. The role of these fields
is fundamental in superconductivity, but is not investigated.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

To elucidate the qualitative analysis in Section 2, we consider the system of Equations (26)–(30)
for fields which depend on z coordinate only. Then, the system of equations for the fields Q(z),
Q(z) = (0, Qy(z), 0), E(z) = (0, 0, Ez(z)), B(z) = (Bx(z), 0, 0), and ρ(z) adopts the form

dBx

dz
= −2e∗2ρ2Qy (A1)

dQy

dz
= −Bx (A2)

dEz

dz
= −2e∗2ρ2Q (A3)

dQ
dz

= −Ez (A4)

∆ρ + αρ− gρ3 + e∗2ρ
[
µεQ2 −Q2

y

]
= 0. (A5)

After some calculations, one reduces the system (A1)–(A5) to a system of equations for Q, Qy,
and ρ

d2Q
dz2 = 2e∗2ρ2Q (A6)

d2Qy

dz2 = 2e∗2ρ2Qy (A7)

∆ρ + αρ− gρ3 + e∗2ρ
[
µεQ2 −Q2

y

]
= 0. (A8)

It is convenient to introduce dimensionless functions f1(ζ), f2(ζ) and f3(ζ) of a dimensionless
distance ζ = z/ξGL, where

ξGL = 1/
√

α (A9)

is the Ginzburg–Landau coherence length:

Q(ζ) = −E0ξGL f1(ζ)

Qy(ζ) = −B0ξGL f2(ζ) (A10)

ρ(ζ) = ρ0 f3(ζ).

In Equations (A10) ρ0 =
√

α/g, the applied electric field is E0 = (0, 0, E0) and the applied
magnetic field is B0 = (B0, 0, 0). The representations of the electric and magnetic fields by means of
f1 and f2 are the following:

Ez(ζ) = E0
d f1(ζ)

dζ

Bx(ζ) = B0
d f2(ζ)

dζ
(A11)



Condens. Matter 2017, 2, 20 9 of 11

The system of Equations (A6)–(A8), rewritten in terms of the new functions, reads:

d2 f1(ζ)

dζ2 =
1
κ2 f3(ζ) f1(ζ)

d2 f2(ζ)

dζ2 =
1
κ2 f3(ζ) f2(ζ) (A12)

d2 f3(ζ)

dζ2 + f3(ζ) − f 3
3 (ζ) = − f3(ζ)

[
γE f 2

1 (ζ)− γB f 2
2 (ζ)

]
In (A12), κ is the Ginzburg–Landau parameter

κ =
λL
ξGL

, (A13)

which satisfies κ < 1/
√

2 for type I superconductors and κ > 1/
√

2 for type II ones, and parameters
γE and γB are

γE =
e∗2µεE2

0
α2 , γB =

e∗2B2
0

α2 . (A14)

For semi-infinite superconductors, with a surface of superconductor orthogonal to the z-axis, the
boundary conditions are:

d f1(0)
dζ

= 1 f1(∞) = 0

d f2(0)
dζ

= 1 f2(∞) = 0 (A15)

f3(0) = 0 f3(∞) = 1

If neither electric nor magnetic fields are applied, the equation for the dimensionless function
f3(ζ) = ρ(ζ)/ρ0

d2 f3(ζ)

dζ2 + f3(ζ) − f 3
3 (ζ) = 0 (A16)

is exactly solvable, and the solution for z ≥ 0 is

f3(ζ) = f3(
z

ξGL
) = tanh(

z√
2ξGL

) (A17)

The qualitative analysis in Section 2 shows that applied electric field increases the α parameter
α → αE = α + e∗2µε < Q2 >, where < Q2 > is an average value of the scalar field. Within this
approximation, the expression for f E

3 is

f E
3 (ζ) = f E

3 (
z

ξE ) = tanh(
z√
2ξE

), (A18)

where ξE = 1/
√

αE < ξGL. When the magnetic field is applied, α decreases, α → αB = α− e∗2 <

Q2 >, and function f B
3 reads

f B
3 (ζ) = f B

3 (
z

ξB ) = tanh(
z√
2ξB

), (A19)

where ξB = 1/
√

αB > ξGL.
The three curves (A17)–(A19) are depicted in Figure A1. Graph (a) shows the function

ρ(z/ξGL)/ρ0 (A17) when neither electric nor magnetic fields are applied, graph (b) shows the
function (A18), ρ(z/ξE)/ρ0 = ρ((ξGL/ξE)z/ξGL) with ξGL/ξE = 2, and graph (c) shows the
function (A19) ρ(z/ξB)/ρ0 = ρ((ξGL/ξB)z/ξGL) with ξGL/ξB = 0.6.
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Figure A1. Curve a: function (A17); Curve b: function (A18) ρ(z/ξE)/ρ0 = ρ((ξGL/ξE)z/ξGL) with
ξGL/ξE = 2; Curve c: function (A19) ρ(z/ξB)/ρ0 = ρ((ξGL/ξB)z/ξGL) with ξGL/ξB = 0.6.

The Ginzburg–Landau (GL) coherence length measures the distance over which the
superconducting order parameter increases up to the bulk value, measured from the surface of the
superconductor (z > 0). The applied electric field decreases the GL coherence length, which means
that the electric field supports the superconductivity, while the applied magnetic field increases the
GL coherence length, which means that the magnetic field destroys the superconductivity.

The numerical solutions of the system of Equation (A12) [19] supports the qualitative analysis in
Section 2 and Appendix A.
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