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Abstract: Spin-charge interconversion is currently the focus of intensive experimental and theoretical
research both for its intrinsic interest and for its potential exploitation in the realization of new spintronic
functionalities. Spin-orbit coupling is one of the key microscopic mechanisms to couple charge currents
and spin polarizations. The Rashba spin-orbit coupling in a two-dimensional electron gas has been
shown to give rise to the inverse spin galvanic effect, i.e., the generation of a non-equilibrium spin
polarization by a charge current. Whereas the Rashba model may be applied to the interpretation of
experimental results in many cases, in general, in a given real physical system, spin-orbit coupling
also occurs due to other mechanisms such as Dresselhaus bulk inversion asymmetry and scattering
from impurities. In this work, we consider the inverse spin galvanic effect in the presence of Rashba,
Dresselhaus and impurity spin-orbit scattering. We find that the size and form of the inverse spin
galvanic effect is greatly modified by the presence of the various sources of spin-orbit coupling. Indeed,
spin-orbit coupling affects the spin relaxation time by adding the Elliott–Yafet mechanism to the
Dyakonov–Perel, and, furthermore, it changes the non-equilibrium value of the current-induced spin
polarization by introducing a new spin generation torque. We use a diagrammatic Kubo formula
approach to evaluate the spin polarization-charge current response function. We finally comment about
the relevance of our results for the interpretation of experimental results.
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1. Introduction

The spin galvanic effect and its inverse manifestation have been intensively investigated over
the past decade both for their intrinsic fundamental interest [1] and for their application potential
in future generation electronic and spintronics technology [2,3]. The non-equilibrium generation of
a spin polarization perpendicular to an externally applied electric field is referred to as the inverse
spin galvanic effect (ISGE), whereas the spin galvanic effect (SGE) is its Onsager reciprocal, whereby
a spin polarization injected through a nonmagnetic material creates a charge current in the direction
perpendicular to the spin polarization. As an all-electrical method of generating and detecting spin
polarization in nonmagnetic materials, both of these effects may be used for applications such as
spin-based field effect transistors [4–7] and magnetic random access memory (MRAM) [8,9].

The ISGE, also known as the Edelstein effect or current-induced spin polarization, was originally
proposed by Ivchenko and Pikus [10], and observed by Vorob’ev et al. in tellurium [11]. Later, the ISGE
was theoretically analyzed by Edelstein in a two-dimensional electron gas (2DEG) with Rashba
spin-orbit coupling (SOC) [12] and also by Lyanda-Geller and Aronov [13,14]. Notice that the SGE in
the spin-charge conversion is sometimes referred to as the inverse Rashba–Edelstein effect. The SGE
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has been observed experimentally in GaAs quantum wells (QWs) by Ganichev et al. [15,16], where
the spin polarization was detected by measuring the current produced by circularly polarized light.
In semiconducting structures, the ISGE can be measured by optical methods such as Faraday rotation,
linear-circular dichroism in transmission of terahertz radiation and time resolved Kerr rotation [1,17–19].
Very recently, a new way of converting spin to charge current has been experimentally developed by
Rojas-Sánchez et al., where, by the spin-pumping technique, the non-equilibrium spin polarization
injected from a ferromagnet into a Ag/Bi interface yields an electrical current [20]. Successively, the SGE
has also been observed in many interfaces with strong spin-orbit splitting, including metals with
semiconductor giant SOC or insulators such as Fe/GaAs [21] or Cu/Bi2O3 [22].

Generally speaking, the SGE can be understood phenomenologically by symmetry arguments.
Electrical currents and spin polarizations are polar and axial vectors, respectively. In centro-symmetric
systems, polar and axial vectors transform differently and no SGE effect is expected. In restricted
symmetry conditions, however, polar and axial vectors components may transform similarly. Consider,
for instance, the case of electrons confined in the xy plane with the mirror reflection through the
yz plane. Under such a symmetry operation, the electrical currents along the the x and y directions
transform as Jx → −Jx and Jy → Jy. The spin polarizations transform as the components of angular
momentum, and we have Sy → −Sy and Sx → Sx. Hence, one expects a coupling between Jx and Sy

or between Jy and Sx. Such a coupling is the SGE.
At a microscopic level, the strength of the coupling is due to the SOC. Usually, the SOC is classified

as extrinsic and intrinsic, depending on the origin of the electrical potential. The intrinsic SOC arises due
to the crystalline potential of the host material or due to the confinement potential associated with the
device structure. On the other hand, the extrinsic SOC is due to the atomic potential of random impurities,
which determine the transport properties of a given material. The majority of the studies on SGE/ISGE
has focused on the Rashba SOC (RSOC) for electrons moving in the xy plane, which was originally
introduced by Rashba [23] to study the properties of the energy spectrum of non-centrosymmetric
crystals of the CdS type and later successfully applied to the interpretation the two-fold spin splitting
of electrons and holes in asymmetric semiconducting heterostructures [24]. RSOC is classified as being
due to structure inversion asymmetry (SIA), which is responsible for the confinement of electrons in the
xy plane. In addition, one may also consider the SOC arising from the bulk inversion asymmetry (BIA),
usually referred to as Dresselhaus SOC (DSOC) [25]. Both RSOC and DSOC modify the energy spectrum
by introducing a momentum-dependent spin splitting. This also can be understood quite generally on
the basis of symmetry considerations. In a solid spin degeneracy for a couple of states with opposite
spin and with cristalline wave vector k is the result of both time reversal invariance and parity (space
inversion invariance). By breaking the parity, as, for instance, in a confined 2DEG, the spin degeneracy
is lifted and the Hamiltonian acquires an effective momentum-dependent magnetic field, which is the
SOC. As a result, electron states can be classified with their chirality in the sense that their spin state
depends on their wave vector. In a such a situation, scalar disorder, although not directly acting on the
spin state, influences the spin dynamics by affecting the wave vector of the electrons and holes. Spin
relaxation arising in this context is usually referred to as the Dyakonov–Perel (DP) mechanism.

Extrinsic SOC originates from the potential that is responsible for the scattering from an impurity.
In this case, before and after the scattering event, there is no direct connection between the wave
vector and the spin of the electron. The scattering amplitude can be divided in spin-independent and
spin-dependent contributions

Sp,p′ = A + p̂× p̂′ ·σB, (1)

where p̂ and p̂′ are the unit vector along the direction of the momentum before and after the scattering
and σ is the vector of the Pauli matrices. As explained by Lifshits and Dyakonov [26], different
combinations of the amplitudes A and B correspond to specific physical processes. The |A|2 + |B|2
describes the total scattering rate, whereas |B|2 is associated with the Elliott–Yafet (EY) spin relaxation
rate. Interference terms between the two amplitudes yield coupling among the currents. In more
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detail, the combination AB∗ + A∗B describes the skew scattering, which is responsible for the coupling
between the charge and spin currents, whereas AB∗ − AB∗ gives rise to the swapping of spin currents.

As noted [1], when both intrinsic and extrinsic SOC are present, the non-equilibrium spin
polarization of the ISGE depends on the ratio of the DP and EY spin relaxation rates. This was analyzed in
[27] by means of the Keldysh non-equilibrium Green’s function within an SU(2) gauge theory-description
of the SOC. Successively, a parallel analysis by standard Feynman diagrams for the Kubo formula was
carried out in [28]. These theoretical studies indeed confirmed that the ratio of DP to EY spin relaxation
is able to tune the value of the ISGE. Such tuning is also affected by the value of the spin Hall angle due
to the fact that spin polarization and spin current are coupled in the presence of intrinsic RSOC.

Recently, it has been shown theoretically [29] that the interplay of intrinsic and extrinsic SOC
gives rise to an additional spin torque in the Bloch equations for the spin dynamics and affects the
value of the ISGE. This additional spin torque, which is proportional to both the EY spin relaxation
rate and to the coupling constant of RSOC, has been derived in [29] in the context of the SU(2) gauge
theory formulation mentioned above. Although the SU(2) gauge theory is a very powerful approach,
in order to emphasize the physical origin of this new torque, it is very useful to also show how the
same result can be obtained independently by using the diagrammatic approach of the Kubo linear
response theory. This is the aim of the present paper. In this paper, we obtain an analytical formula of
the ISGE in the presence of the Rashba, Dresselhaus and impurity SOC. In a 2DEG, we will show that
the intrinsic and extrinsic SOC act in parallel as far as relaxation to the equilibrium state is concerned.

The model Hamiltonian for a 2DEG in the presence of SOC reads

H =
p2

2m
+ α(pyσx − pxσy) + β(pxσx − pyσy) + V(r)−

λ2
0

4
∇V(r)× p ·σ, (2)

where p = (px, py) is the vector of the components of the momentum operator, and σ = (σx, σy, σz)

and r are the Pauli matrices and the coordinate operators, m is the effective mass, and α and β are the
Rashba and Dresselhaus SOC constants. V(r) represents a short-range impurity potential and finally
λ0 is the effective Compton wave length describing the strength of the extrinsic SOC. We assume
the standard model of white-noise disorder potential with 〈V(r)〉 = 0 and Gaussian distribution
given by 〈V(r)V(r′)〉 = niv2

0δ(r − r′) = (h̄/(2πN0τ0))δ(r − r′). N0 = m/2h̄2π, ni and v0 are the
single-particle density of states per spin in the absence of SOC, the impurity concentration and the
scattering amplitude, respectively. τ0 is the elastic scattering time at the level of the Fermi Golden Rule.
From now on, we work with units such that h̄ = 1.

The layout of the paper is as follows. In the next section, we formulate the ISGE (the SGE can be
obtained similarly by using the Onsager relations [30]) in terms of the Kubo linear response theory.
In Section 3, we derive an expression for the ISGE in the presence of the RSOC and extrinsic SOC.
This case with no DSOC, where it is important by itself, allows for understanding the origin of the
additional spin torque in a situation which is technically simpler to treat with respect to the general
case when both RSOC and DSOC are different from zero. In Section 4, we expand our results to the
specific case when the both RSOC and DSOC, as well as SOC from impurities, are present. We show
how our result can be seen as the stationary solution of the Bloch equations for the spin dynamics.
We comment briefly on the relevance of our result for the interpretation of the experiments. Finally,
we state our conclusions in Section 5.

2. Linear Response Theory

In this section, we use the standard Kubo formula of linear response theory to derive the ISGE in
the presence of extrinsic and intrinsic SOC. The in-plane spin polarization to linear order in the electric
fields is given by

Si = σ
ij
ECEj, i, j = x, y, (3)
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where Ei is the external electric fields with frequency ω and σ
ij
EC is the frequency-dependent Edelstein

conductivity [31] given by the Kubo formula [32]

σ
ij
EC(ω) =

(−e)
2π ∑

p
Tr[GA(ε + ω)Υi(ε, ω))GR(ε)Jj], (4)

where the trace symbol includes the summation over spin indices. We keep the frequency dependence
of σ

ij
EC(ω) in order to obtain the Bloch equations for the spin dynamics. In Equation (4), Υi(ε, ω) is the

renormalized spin vertex relative to a polarization along the i-axis, required by the standard series
of ladder diagrams of the impurity technique [33,34]. Jj are the bare number current vertices. In the
plane-wave basis, their matrix elements from state p′ to state p read

Jx = δp,p′
( px

m
− ασy + βσx

)
+ δJx,pp′ , (5)

Jy = δp,p′
( py

m
+ ασx − βσy

)
+ δJy,pp′ . (6)

The latter term δJj,pp′ in Equations (5) and (6), which depends explicitly on disorder, is of order λ2
0 and

originates from the last term in the Hamiltonian of Equation (2). Such a term gives rise to the side-jump
contribution to the spin Hall effect [35,36] due to the extrinsic SOC. The side-jump and skew-scattering
contributions to the spin Hall effect in the presence of RSOC have been considered in [27,37,38]. A
similar analysis of the side-jump and skew-scattering contributions to the ISGE has been carried out
within the SU(2) gauge theory formualtion in [27] and, more recently, in [28] by standard Kubo formula
diagrammatic methods. For this reason, we will not repeat such an analysis here, where we concentrate
instead on the contributions generated by the first term on the right-hand side of Equations (5) and (6).

Within the self-consistent Born approximation, the last two terms of the Hamiltonian (2) yield an
effective self-energy when averaging over disorder. The self-energy is diagonal in momentum space
and has two contributions due to the spin independent and spin dependent scattering [31,39]

ΣR
tot(p) ≡ ΣR

0 (p) + ΣR
EY(p)

= niv2
0 ∑

p′
GR

p′ + niv2
0

λ4
0

16 ∑
p′

σzGR
p′σz(p× p′)2

z, (7)

whereas the imaginary part of the first term gives rise to the standard elastic scattering time

ImΣR
0 (p) = −i2πN0niv2

0 = − i
2τ0

. (8)

The second one is responsible for the EY spin relaxation. From the point of view of the scattering
matrix introduced in the previous section (cf. Equation (1)), the two self-energy contributions correspond
to the Born approximation for the |A|2 and |B|2, respectively. Given the self-energy (7), the retarded Green
function is also diagonal in momentum space and can be expanded in the Pauli matrix basis in the form

GR
p = GR

0 σ0 + GR
x σx + GR

y σy, (9)

where

GR
0 =

GR
+ + GR

−
2

,

GR
x = (αp̂y + βp̂x)

GR
+ −GR

−
2γ

,

GR
y = −(αp̂x + βp̂y)

GR
+ −GR

−
2γ

. (10)



Condens. Matter 2017, 2, 17 5 of 14

The above GR
±(ε) = (ε− p2

2m ∓ γp + i
2τ±

)−1 is the Green’s function corresponding to the two
branches in which the energy spectrum splits due to the SOC. The factor γ2 = α2 + β2 + 2αβ sin(2φ)

with p̂x = cos(φ) and p̂y = sin(φ) describes the dependence in momentum space of the SOC,
when both RSOC and DSOC are present. Notice that inversion in the two-dimensional momentum
space ((px, py) → (−px,−py)) leaves the factor γ invariant, since it corresponds to φ → φ + π.
As a consequence, Gx,y → −Gx,y, whereas G0 is invariant. This observation will turn out to be useful
later when evaluating the renormalization of the spin vertices. The advanced Green’s function is
easily obtained via the relation GA

± = (GR
±)
∗. In the expression for GR

±, 1
2τ±

is a band-dependent time
relaxation and plays an important role in our analysis. In order to obtain this term, we note that, after
momentum integration over p′ in Equation (7), the imaginary part of the retarded self-energy reads

ΣR
± = −i

1
2τ0
− i

(
λ2

0
4

)2
1

4τ0
p2

F p2
± ≡ −

i
2τ±

. (11)

Above, we indicate with pF the Fermi momentum without RSOC and DSOC and with p± the
γ-dependent momenta of the two spin-orbit split Fermi surfaces. To the lowest order in the spin-orbit
splitting, we have

p± = pF(1∓
γ

vF
), (12)

where vF = pF/m. The momentum factors originate from the square of the vector product in the
second term of Equation (7). The factor p2

F is due to the inner p′ momentum, which, upon integration,
is eventually fixed at the Fermi surface in the absence of RSOC and DSOC. More precisely, when
evaluating the momentum integral, one ends up by summing the contributions of the two spin-orbit
split bands in such a way that the α- and β-dependent shift of the two Fermi surfaces cancels out in
the sum. However, the outer p momentum remains unfixed. Its value will be fixed by the poles of
the Green function in a successive integration over the momentum. Then, the γ-dependent relaxation
times of the two Fermi surfaces read

1
τ±

=
1
τ
(1∓ τ

τEY

γ

vF
), (13)

where
1
τ
=

1
τ0

+
1

2τEY
, (14)

with the standard expression for the EY spin relaxation rates

1
τEY

=
1
τ0

(
λ0pF

2

)4
. (15)

In order to evaluate Equation (4), we need the renormalized spin vertex Υi, whose explicit
dependence on ε and ω has been dropped for simplicity’s sake. In the absence of impurity scattering,
this vertex has its bare form in terms of Pauli matrices as expected for spin operators Υ(0)

i = σi.
The superscript (0) indicates the bare character of the vertex. As shown below, multiple impurity
scattering taken into account by ladder diagrams yields the renormalized vertex Υi, which, in general,
will be a matrix in spin space and can then be represented by an expansion in Pauli matrices
Υi = ∑ρ=0,1,2,3 Υρ

i σρ.
For vanishing RSOC or DSOC, symmetry reveals that the renormalized spin vertices share the

same matrix structure of the bare ones Υi ∼ σi, i.e., in this case, the renormalized vertex differs by
the bare one just by a factor. This is the case in Equation (20) below. However, when both RSOC and
DSOC are present, symmetry arguments again indicate that Υx and Υy are not simply proportional
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to σx and σy, but acquire both σx and σy components. By following the standard procedure [39], after
projecting over the Pauli matrix components, the vertex equation reads

Υρ
i = δρi +

1
2 ∑

µυλ

IµυTr[σρσµσλσυ]Υλ
i +

1
2 ∑

µυλ

JµυTr[σρσzσµσλσυσz]Υλ
i , (16)

where
Iµυ =

1
2πN0τ0

∑
p′

GA
µ (ε + ω)GR

υ (ε), Jµυ =
τ0

2τEY
Iµυ. (17)

Once the spin vertices are known, the Edelstein conductivities from Equation (4) can be put in
the orm

σ
ij
EC = Υρ

i Πρj, (18)

with the bare Edelstein conductivities given by

Πρj =
(−e)
2π ∑

p
Tr[GA(ε + ω)

σρ

2
GR(ε)Jj]. (19)

The bare Edelstein conductivities are those one would obtain by neglecting the vertex corrections
due to the ladder diagrams. It is useful to point that one could have adopted the alternative route to
renormalize the number current vertices and use the bare spin vertices. Indeed, this was the route
followed originally by Edelstein [31]. Since the renormalized number of current vertices in the DC
zero-frequency limit vanish [34], the evaluation of the Edelstein conductivity reduces to a bubble with
bare spin vertices and the current vertices in the absence of RSOC and DSOC.

3. Inverse Spin-Galvanic Effect in the Rashba Model

To keep the discussion as simple as possible, in this section, we confine first to the case when only
RSOC is present. We will derive the spin polarization, Sy, when an external electric field is applied
along the x direction. Then, in the next section, we will evaluate the Bloch equation in the more general
case when both RSOC and DSOC are present. In the case β = 0, the renormalized spin vertex Υy is
simply proportional to σy, which means that Υy = Υy

yσy. Upon the integration over momentum in
Equation (16), only I00 is non-zero and the other eight possibilities of (µ, ν) in Iµ,ν are zero. The cases
(0, x/y), (x/y, 0), (x, y) and (y, x) vanish because of angle integration, whereas the two other cases
(x, x) and (y, y) cancel each other out after taking the trace in Equation (16).

As a result, we finally obtain (in the diffusive approximation ωτ � 1)

Υy = Υy
yσy =

1
1− I00 + J00

σy =
1− 4iωτ
τ
τs
− iωτ

σy, (20)

where the integral I00 has been evaluated in Appendix A

I00 =

(
1− 3iωτ− τ

τα

1− 4iωτ

)(
τ

τ0

)
, (21)

with the total spin relaxation rate being 1
τs

= 1
τEY

+ 1
τα

. Here, 1/τα = (2mα)2D defines the DP spin
relaxation rate due to the RSOC. Notice that, in the absence of SOC, the vertex becomes singular by
sending to zero the frequency, signaling the spin conservation in that limit. One sees that the EY and
DP relaxation rates simply add up. This then gives σyx = Υy

yΠyx. Physically, in the zero-frequency
limit, the factor Υy

y = τs/τ counts how many impurity scattering events are necessary to relax the spin.
In the diffusive regime τs � τ, i.e., many impurity scattering events are necessary to erase the memory
of the initial spin direction.
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By neglecting the contribution from the extrinsic SOC in Equation (5) for the current vertex, the
bare conductivity Πyx naturally separates in two terms Π(A)

yx and Π(B)
yx due to the components px/m

and −ασy of the number current vertex. The expression for Π(A)
yx reads

Π(A)
yx = (−e)

1
2π ∑

p
Tr
[

GA(ε + ω)
σy

2
GR(ε)

px

m

]
=

e
4πm ∑

p

p
2

[
GA
+(ε + ω)GR

+(ε)−GA
−(ε + ω)GR

−(ε)
]

=
e

4m

(
p+N+

−iω + 1
τ+

− p−N−
−iω + 1

τ−

)
. (22)

In the above p±, N± and τ± refer to the Fermi momentum, density of states and quasiparticle
time in the ±-band. To order α/vF, one has

p± = pF(1∓ α/vF), N± = N0(1∓ α/vF). (23)

By including the contribution of the quasiparticle time in the ±-band from Equation (13), one gets

Π(A)
yx = S0

(
1− τ

2τEY
− iωτ

1− 2iωτ

)
, (24)

where S0 = −eN0ατ.
The evaluation of Π(B)

yx is more direct. It gives

Π(B)
yx =

eα

2π ∑
p

Tr
[

GA(ε + ω)
σy

2
GR(ε)σy

]
=

eα

2π ∑
p

(
GA

0 (ε + ω)GR
0 (ε)

)
= −S0

(
1− τ

τα
− 3iωτ

1− 4iωτ

)
. (25)

Combining both contributions with accuracy up to order ωτ gives

Πyx = Π(A)
yx + Π(B)

yx = S0

(
τ
τα
− τ

2τEY

1− 6iωτ

)
. (26)

By combining the vertex correction Equation (20) and the bare conductivity Πyx in Equation (18),
we get the following contribution to the frequency-dependent spin polarization

(Sy)(1) =
1

( τ
τs
− iωτ)

(
1− 4iωτ

1− 6iωτ

)
Sx

α

(
τ

τα
− τ

2τEY

)
, (27)

with Sx
α = −eN0ατEx.

This is not the full story yet, as we are going to explain. What we have learned up to now is
that the momentum dependence of the EY self-energy on the two spin-split Fermi surfaces yields
an extra term to the Edelstein polarization. Such a momentum dependence can also modify the
vertex corrections—the integrals Jµυ in Equation (17)—which lead to the renormalized spin vertex.
To appreciate this aspect, we notice that, in evaluating such integrals in the absence of the RSOC, the
moduli of p and p′ are taken at the Fermi surface in the absence of spin splitting. We emphasize that
taking into account the momentum dependence on the Rashba-split Fermi surfaces one instead gets
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an extra contribution. Consider the diagram of Figure 1. After integration over p′, the left side of the
diagram gives

−
(λ2

0/4)2p2
F p2

2τ0
τ = − τ

2τEY

p2

p2
F

.

Figure 1. The diagram needed to evaluate the extra vertex correction to the inverse spin galvanic effect
(ISGE) due to extrinsic spin-orbit coupling (SOC). The left and right vertices denote the spin vertex
Sy and the component (px/m) of the number current vertex Jx, whereas the crosses on the top and
bottom Green functions line stand for −i(λ2

0/4)p′ × p and −i(λ2
0/4)p× p′, respectively.

If we set p = pF, we would recover the standard diagrammatic calculation in the absence of
intrinsic RSOC. By combining the above left side with the rest of the diagram, one gets an additional
contribution to the bare conductivity

(δΠ) = − τ

2τEY

(
− e

2π ∑
p

p2

p2
F

Tr
[

GA(ε + ω)
σy

2
GR(ε)

px

m

])

=
−τ

2τEY
(

e
4mp2

F
)

(
p3
+N+

−iω + 1
τ+

−
p3
−N−

−iω + 1
τ−

)
. (28)

To this expression, we must subtract the one obtained by replacing p = pF, which is already
accounted for in the ladder summation. Hence, the extra vertex part (δΠ) modifies the spin polarization
to give the second contribution

(Sy)(2) =
1(

τ
τs
− iωτ

) (1− 4iωτ

1− 6iωτ

)
Sx

α

(
− τ

2τEY

)
. (29)

Hence, by summing the above result with Equation (27), the total spin polarization reads

Sy =
1(

1
τs
− iω

) (1 +
2iωτ

1− 6iωτ

)
Sx

α

(
1
τα
− 1

τEY

)
≈ 1(

1
τs
− iω

)Sx
α

(
1
τα
− 1

τEY

)
. (30)

In the diffusive regime, terms in ωτ in the second round brackets on the right-hand side of
Equation (30), which are responsible for higher-order frequency dependence, can be neglected. In the
zero-frequency limit, Equation (30) has two main contributions described by the two terms in the last
round brackets. The first term is responsible for the Edelstein result [31] due to the intrinsic SOC,
whereas the second one, which arises to order λ4

0, is an additional contribution to the spin polarization
due to the extrinsic SOC. In the Rashba model without extrinsic SOC, only the first term is present,
and, indeed, Equation (30) reduces to it when λ0 = ω = 0. After Fourier transforming, the above
equation can be written in the form of the Bloch equation

∂tSy = −
(

1
τα

+
1

τEY

)
Sy +

(
1
τα
− 1

τEY

)
Sx

α. (31)
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The terms on the right-hand side describe the various torques controlling the spin dynamics.
The first term, which includes DP and EY contributions, is the spin relaxation torque, whereas the
second term represents the spin generation torque. The above result coincides with that obtained
in [29] by the SU(2) gauge theory formulation. We have then succeeded in showing by diagrammatic
methods the origin of the EY-induced spin torque discussed by [29]. In the next section, we will
generalize this result to the case when both RSOC and DSOC are present.

4. Inverse Spin-Galvanic Effect in the Rashba–Dresslhaus Model

As we have seen in the previous Section, the size and form of the ISGE is greatly modified by the
presence of the EY spin relaxation due to the extrinsic SOC. To analyze this fact more generally, we
focus here on the model with RSOC and DSOC as well as SOC from impurities. In order to evaluate
Equation (4) for the Edelstein conductivity, we need the renormalized spin vertex Υi. For vanishing
RSOC or DSOC, the renormalized spin vertices share the same matrix structure of the bare ones Υi ∼ σi.
However, when both RSOC and DSOC are explicitly taken into account, Υx and Υy are not only simply
proportional to σx and σy, but also acquire components on both σx and σy. By following the procedure
shown in Equation (16) and upon integration over momentum, the vertex equation for Υy reduces to(

1− I00 + J00 −2(Iyx − Jyx)

−2(Ixy − Jxy) 1− I00 + J00

)(
Υy

y
Υx

y

)
=

(
1
0

)
, (32)

while that forΥx is (
1− I00 + J00 −2(Ixy − Jxy)

−2(Iyx − Jyx) 1− I00 + J00

)(
Υy

x
Υx

x

)
=

(
0
1

)
, (33)

where

1− I00 + J00 '
(
−iω + 〈 1

τγ
〉+ 1

τEY

1− 4iωτ

)
τ

−2(Ixy − Jxy) '
(

1− iωτ

1− 4iωτ

)(
1− τ

τEY

)
2τ

ταβ
, (34)

where 〈. . . 〉 indicated the average over the momentum directions. The technical points of the
calculation in Equation (34) are given in Appendix A at the end of the paper. In the diffusive regime,
1

τγ
= (2mγ)2D and 1

ταβ
= (2m)2αβD are the DP relaxation rates due to the total intrinsic spin-orbit

strength and the interplay of RSOC/DSOC, respectively. For vanishing DSOC, Equation (34) reduces
to the same expression in Equation (20) as expected in the Rashba model. However, with both RSOC
and DSOC, spin relaxation is anisotropic and one needs to diagonalize the matrix on the left-hand
side of Equations (32) and (33). Such a matrix then identifies the spin eigenmodes. Having in mind to
derive the Bloch equations governing to spin dynamics, we rewrite Equation (3) by using Equation (18)(

Sx

Sy

)
=

(
Υx

x Υy
x

Υx
y Υy

y

)
∑

j

(
Πxj
Πyj

)
Ej, (35)

where, by virtue of Equations (32) and (33),(
Υx

x Υx
y

Υy
x Υy

y

)−1

=
τ

1− 4iωτ

(
−iω + 〈 1

τγ
〉+ 1

τEY
2

ταβ
(1− iωτ)

2
ταβ

(1− iωτ) −iω + 〈 1
τγ
〉+ 1

τEY

)
. (36)

In the diffusive regime, we can safely neglect the factor ωτ with respect to unity in the
denominator in front of the matrix and in the off diagonal elements of the matrix. The quantities Πρj
appearing on the right-hand side of Equation (35) can be evaluated by standard techniques. However,
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some care is required when evaluating the momenta due to the extrinsic SOC at the spin-split Fermi
surfaces, as we did in Equation (28). The final result for the bare conductivities reads

Πxx =
−τSx

β

1− 6iωτ
〈 1

τγ
− 1

τEY
− 2

τγ

α2

γ2 〉, (37)

Πxy =
−τSy

α

1− 6iωτ
〈 1

τγ
− 1

τEY
− 2

τγ

β2

γ2 〉, (38)

Πyx =
τSx

α

1− 6iωτ
〈 1

τγ
− 1

τEY
− 2

τγ

β2

γ2 〉, (39)

Πyy =
τSy

β

1− 6iωτ
〈 1

τγ
− 1

τEY
− 2

τγ

α2

γ2 〉, (40)

with

Sx
β = −eN0τβEx, (41)

Sy
α = −eN0ταEy, (42)

Sx
α = −eN0ταEx, (43)

Sy
β = −eN0τβEy. (44)

We take the angular average over the DP relaxation rates in Equations (36)–(40)

2π∫
0

dφ

2π

1
τγ

=
1
τα

+
1
τβ

, (45)

(−2)(α2 or β2)

2π∫
0

dφ

2π

1
τγ

1
γ2 =

−2
τα

or
−2
τβ

, (46)

where 1
τα

= (2mα)2D, 1
τβ

= (2mβ)2D are the DP relaxation rates due to RSOC and DSOC in the
diffusive approximation. By inserting the above expression into Equations (37)–(40) and vertex
correction in Equation (36) and using Equation (35), we may write the expression of the ISGE
components in a form reminiscent of the Bloch equations(
−iω + 1

τα
+ 1

τβ
+ 1

τEY
2

ταβ
2

ταβ
−iω + 1

τα
+ 1

τβ
+ 1

τEY

)(
Sx

Sy

)
=

(
−Sy

α(
1
τα
− 1

τβ
− 1

τEY
)− Sx

β(
−1
τα

+ 1
τβ
− 1

τEY
)

Sx
α(

1
τα
− 1

τβ
− 1

τEY
) + Sy

β(
−1
τα

+ 1
τβ
− 1

τEY
)

)
. (47)

Indeed, by performing the anti-Fourier transform with respect to the frequency ω, Equation (47)
can be written as

∂tS = −(Γ̂DP + Γ̂EY)S + (Γ̂DP − Γ̂EY)
N0

2
B, (48)

where B represents the internal SOC field induced by the electric current. The Γ̂DP and Γ̂EY are the DP
and EY relaxation matrix

B = 2eτ

(
βEx + αEy

−(αEx + βEy)

)
, Γ̂DP =

( 1
τα

+ 1
τβ

2
ταβ

2
ταβ

1
τα

+ 1
τβ

)
, Γ̂EY =

(
1

τEY
0

0 1
τEY

)
. (49)

Equation (48) is the main result of our paper. It shows that the intrinsic and extrinsic SOC act in
parallel as far as relaxation to the equilibrium state is concerned, i.e., the DP and EY spin relaxation
matrices add up. However, as far as the spin generation torques are concerned, DP and EY processes
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have opposite signs. This is in full agreement with the result of [29] once we also take into account
the spin generation torque due to side-jump and skew-scattering processes discussed diagramatically
in [28]. This is simply obtained by multiplying the DP relaxation matrix Γ̂DP in the second term on the
right-hand side of Equation (48) by the factor 1 + θsH

ext/θsH
int , where θsH

ext and θsH
int are the spin Hall angles

for extrinsic and intrinsic SOC.
To develop some quick intuition, one may notice that again for β = λ0 = 0 and Ey = ω = 0,

Equation (47) reproduces the Edelstein result for the Rashba model [12]. Furthermore, when also
ω 6= 0, it reproduces the frequency-dependent spin polarization for the Rashba model as shown in the
previous section. When λ0 6= 0 and β = 0, we see that the ISGE, due to the interplay of the extrinsic
and intrinsic SOC, gets an additional spin torque, suggesting that the EY spin-relaxation is detrimental
to the Edelstein effect. The diagrammatic analysis reported here provides the following interpretation.
The EY spin relaxation depends on the Fermi momentum. When there are two Fermi surfaces with
different Fermi momenta, the one with the smaller momentum undergoes less spin relaxation of the
EY type than the one with larger momentum. On the other hand, the ISGE arises precisely because
there is an unbalance among the two Fermi surfaces with respect to spin polarization. For a given
momentum direction, the larger Fermi surface contributes more to the Edelstein polarization than the
smaller Fermi surface. Hence, the combination of these two facts suggests a negative effect from the
interplay of Edelstein effect and EY spin relaxation. By neglecting the EY relaxation, one sees that the
DP terms can cancel each other out if the RSOC and DSOC strengths are equal. This cancellation or
anisotropy of the spin accumulation could be used to determine the absolute values of the RSOC and
DSOC strengths under spatial combination of spin dependent relaxation.

Finally, we comment on the relevance of our theory with respect to existing experiments [40].
These show that the current-induced spin polarization does not align along the internal magnetic field
B due to the SOC. According to our Equation (48), this may occur due to the presence of the extrinsic
SOC both in the spin relaxation torque and in the spin generation torque. Indeed, when the extrinsic
SOC is absent, the spin polarization must necessarily align along the B field. Hence, our theory could,
in principle, provide a method to measure the relative strength of intrinsic and extrinsic SOC.

5. Conclusions

In this present work, we showed how the interplay of intrinsic and extrinsic spin-orbit coupling
modifies the current-induced spin polarization in a 2DEG. This phenomenon, known as the inverse spin
galvanic effect, is the consequence of the coupling between spin polarization and electric current, due
to restricted symmetry conditions. We derived the frequency-dependent spin polarization response,
which allowed us to obtain the Bloch equations governing the spin dynamics of carriers. We identified
the various sources of spin relaxation. In fact, the precise relation between the non-equilibrium
spin polarization and spin-orbit coupling depends on the ratio of the DP and EY spin relaxation
rates. More precisely, the spin-orbit coupling affects the spin relaxation time by adding the EY
mechanism to the DP and, furthermore, it changes the non-equilibrium value of the current-induced
spin polarization by introducing an additional spin torque. Our treatment, which is valid at the
level of Born approximation and was obtained by diagrammatic technique agrees with the analysis
of [29], derived via the quasiclassical Keldysh Green function technique. Finally, to make a comparison
between theory and experiments, we found that the spin polarization and internal magnetic field will
not be aligned if the EY is strong enough.
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Appendix A. Integrals of Products Involving Pairs of Retarded and Advanced Green Functions

To perform the calculations of the renormalized spin vertex in Equation (34) and also in all of the
analysis, we encounter the following kinds of integrals, which are evaluated to the first order in γ

vF
and ωτ

∑
p

pnGR
±(ε + ω)GA

±(ε) ≈ 2πN±pn
±

1
−iω + 1

τ±

, (A1)

∑
p

pnGR
±(ε + ω)GA

∓(ε) ≈ 2πN0pn
±

1
−iω± 2iγpF +

1
τ

, (A2)

where n = 0, 1. We can then evaluate the I00 integral as

I00 =
1

2πN0τ0
∑
p′

GA
0 (ε + ω)GR

0 (ε)

=
1

2πN0τ0
∑
p′

1
4

(
GA
+(ε + ω)GR

+(ε) + GA
+(ε + ω)GR

−(ε) + GA
−(ε + ω)GR

+(ε) + GA
−(ε + ω)GR

−(ε)
)

=
1

4N0τ0
〈 N+

−iω + 1
τ+

+
N−

−iω + 1
τ−

+
N0

−iω + 2ipFγ + 1
τ

+
N0

−iω− 2ipFγ + 1
τ

〉

≈ (
τ

τ0
)

(
1− 3iωτ− 〈 τ

τγ
〉

1− 4iωτ

)
, (A3)

and the same calculations for 2Ixy = 2Iyx yields

2Ixy = 2
2πN0τ0

∑p′ GA
x (ε + ω)GR

y (ε)

= 2
2πN0τ0

(
−αβ

4γ2

)
∑p′

(
GA
+(ε + ω)GR

+(ε)−GA
+(ε + ω)GR

−(ε)−GA
−(ε + ω)GR

+(ε) + GA
−(ε + ω)GR

−(ε)
)

≈ ( 4τ
τ0
)( 2τ

τγ
)
(
−αβ

4γ2

)
( 1−iωτ

1−4iωτ )

= − 2τ
ταβ

( 1−iωτ
1−4iωτ ).

(A4)
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