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Abstract: In this paper, a loophole in the SU(2) gauge anomaly is presented. It is shown that using
several topological tools, a theory can be designed that implements the quantization of a single Weyl
doublet anomaly free while keeping the non-abelian character of the particle in the theory. This opens
the perspective for non-Abelian statistics of deconfined particle like objects in 3 + 1 dimensions and
for applications in quantum computing. Moreover, if this loophole cannot be closed, old arguments
related to anomaly cancellations must be reviewed.
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1. Introduction

It is a fundamental feature of quantum mechanics that ordinary many particle systems in three
dimensions obey one of the two statistics: Bose–Einstein or Fermi–Dirac. Although in most of the
textbook applications, this fact is implemented in the form of a postulate, it can also be derived from
topological arguments. The main advantage of the topological approach appears in the design of
topological quantum computers [1]. Following the ideas of [2], the indiscernibility of particles can be
implemented by means of restrictions imposed on the phase space. In fact, the symmetrization (or
antisymmetrization) of the standard wavefunction can be traced back to the procedure of identifying
the points in the phase space that differ by only a permutation p ∈ Sn of the constituent particles.
Here, Sn is the permutation group. Let XN be the N-dimensional phase space in the classical case.
After identifying the points that are equivalent with respect to Sn, we obtain the quotient space
XN/Sn. This space is locally isomorphic to XN , but has a different topological structure. It also
has several singular points where two or more particles occupy the same position. Its topological
structure depends on the dimensionality of the original space. In one or two dimensions, trajectories
are infinitely connected and can be reduced to circles around singular points. In three or more
dimensions, if one encircles a singular point once, the trajectory is homotopically equivalent to a circle.
If one encircles the singularity twice, the resulting trajectory can be reduced to a single point without
crossing the singularity. This particularity of the three- or higher dimensional spaces induces the
possibility of two distinct statistics: either Fermi–Dirac or Bose–Einstein. Moreover, it eliminates the
possibility for a point-like particle to obey a non-abelian statistics precisely because of these topological
particularities [3]. However, if one can add extra structure to the point-like particle, this restriction may
not apply. This would imply the possibility of consistently defining non-abelian fractional statistics in
3 + 1 dimensions between some special extended objects. Such objects (called hedgehogs) can trap
Majorana zero-modes, a phenomenon of importance in the theory of high temperature superconductors
(see for example the 2D p-wave superconductors as in [1,4,5]) The first proposal in this direction was
formulated by Teo and Kane [6], who introduced hedgehogs of a three-component order parameter
coupled to gapped fermionic excitations. These objects present a “projective ribbon statistics” [7] as
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far as multiple hedgehogs are associated with a non-local Hilbert space. Motions of the hedgehogs
implement unitary transformations in the non-local Hilbert space. In this case, exchanging identical
particles leads to non-trivial unitary transformations of the quantum state (not simply a phase) [8].
This results in the hedgehogs obeying a non-abelian statistics. Moreover, hedgehog defects support
real Majorana zero modes. It was a withstanding puzzle what happens to the Majorana zero modes
when the relevant order parameter field begins to fluctuate. Furthermore, some researchers are still
puzzled whether it is possible in principle to deconfine non-abelian particles in 3 + 1 dimensions:
if the order parameter field has nonzero stiffness, a single hedgehog is not a finite energy configuration.
Although there will be finite energy hedgehog configurations (essentially with zero net hedgehog
number), the confining force [9] between the hedgehogs will scale at least linearly with the distance
between them. A way of avoiding this would be to gauge the rotation symmetry in the order parameter
space [8]. Nevertheless, a major obstacle in solving these puzzles is what is known as the SU(2) gauge
anomaly [10,11]. In essence, this anomaly states that in 3 + 1 dimensions, an SU(2) gauge theory with
the required fermion content, i.e., a single Weyl doublet (or eight Majorana fields), cannot be defined
consistently. This no-go theorem originates in Witten’s observation that the sign of the fermionic
determinant for such a theory cannot be defined to satisfy both gauge invariance and smooth gauge
field dependence. Only for an even number of doublets is the theory well defined because in that case,
the sign can be compensated between the two doublets, making it irrelevant. To better understand
this effect, note that the set of SU(2) gauge transformations is not continuously connected, but rather
falls into two disjoint homotopy classes, i.e., π(SU(2)) = Z2. Therefore, there must exist topologically
non-trivial gauge transformations that cannot smoothly be deformed to the identity. Consider g to be a
non-trivial gauge transformation, then we can define the linear interpolation:

Aµ(x, t) = (1− t)Aµ(x) + tAg
µ(x) (1)

connecting an arbitrary gauge field Aµ and its gauge transformation Ag
µ = g(Aµ + ∂µ)g−1. This gauge

field depending on the parameter t defines a smooth path in configuration space. Consider this path
as the background gauge field for the massless Dirac operator:

D = γµ(∂µ + Aµ) (2)

D is anti-hermitian and anti-commutes with γ5, so the eigenvalues of D are purely imaginary and
come in complex conjugate pairs. Furthermore, the spectra at t = 0 and t = 1 are identical because the
gauge fields for these values of t are gauge equivalent. By employing the Atiyah–Singer index theorem,
it is possible to prove that along the path defined by the gauge field, an odd number of eigenvalue
pairs {λ(t), λ∗(t)} cross zero and change places:

λik |t=0 = λ∗ik |t=1, k = 1, ..., n, n = odd (3)

With this result of the spectral flow, the integration over the fermionic fields in the functional integrals
for a theory with a single doublet of Weyl fermions yields, up to a sign, the square root of the
determinant of the Dirac operator D. The sign of the square root is ambiguous and needs to be defined
separately. As a result of the change of places of the eigenvalues, however, any smooth local sign
definition leads to: √

det(D(Aµ(t = 0))) = (−1)n
√

det(D(Aµ(t = 1))) (4)

Whenever n is odd, gauge invariance is broken, and the theory is ill defined. Various anomalies can be
eliminated by adding a supplemental structure to a given space (e.g., spin structure and the fermion
anomaly). The situation for the problem of the SU(2) anomaly was somehow different.

The previous attempts to solve this problem, by means of gauge anomaly cancellations, are well
known [12]. The main idea was to eliminate anomalies by postulating new physical objects that may or
may not have correspondence in reality. The impossibility of doing this and preserving the non-abelian
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structure at the same time, by using traditional methods, has led to the belief that any theory presenting
such an anomaly is unphysical. This paper does not make any general statements about what should
be trusted more: currently available experiments or currently available mathematics. It just points out
that in one case, an alternative solution may be possible. The SU(2) problem originates in the existence
of a global anomaly (a gauge anomaly related to large gauge transformations, i.e., transformations
not simply connected to Id). The problem of non-abelian hedgehogs appeared mainly because of
the assumption that, in order to maintain the non-abelian structure of one hedgehog, a full rotation
of the hedgehog around a partner object must imply a change in the sign of the fermion parity.
The general assumption was that this partner object must be a physical object. This would suggest
the necessity of an even number of Weyl doublets. I hereby challenge precisely this assumption.
The partner object should be merely a “theoretical measuring device” and can be constructed simply
out of non-physical fields.

In this context, a theoretical measuring device is defined as a theoretical tool capable of obtaining
a certain type of information regarding the global properties of a space. One such tool could be
the coefficient structure in (co)homology. This tool adds additional structure to every point of the
space we wish to analyse leading to global structures that may reveal some properties of the original
space while hiding others. A well-known example in this sense is the twisted acyclicity of a circle
when analysed through (co)homology with twisted coefficients possessing non-trivial monodromy
over circles [13]. Such acyclicity under this cohomology implies that the complement of a tubular
neighbourhood of a link looks like a closed manifold because the boundary, being fibred to circles,
is invisible for the twisted (co)homology [13]. This is a clear example for a situation in which a
“theoretical measuring device” (the twisted coefficient structure with non-trivial monodromy) hides
a certain type of information (the presence of circular subspaces) while revealing another (the links
between spaces are seen as solid connections, allowing us to analyse the whole space without dealing
with the complexity of links or with singularities due to intersections of subspaces).

In order to gain an intuitive idea of what I call a “theoretical measuring device”, it is worth
recalling a basic quantum mechanical experiment: two entangled spin 1/2 particles generated at
some point move in opposite directions towards two detectors. The global state of the system is
such that when the projection of one particle’s spin on an axis is +1/2, the projection of the other is
−1/2, provided the two axes one projects upon are parallel. However, one cannot assign a particular
orientation to the spin of each individual particle before it reaches the axis of the detector. The
measuring device (the detector itself in this case) adds the information regarding the orientation of its
axis on which the measurement is performed, and therefore, we cannot speak about a particular spin
projection before the particles reach the detectors, as there is at this point no well-defined measuring
axis. This intuition led me to think of coefficient structures in cohomology in a similar way: certain
quantum field theories may not be well defined unless the “measuring device” adds the required
information that would give them a well-defined meaning.

To understand how (co)homology with coefficients can do this, it may be useful to recall the
Eilenberg–Steenrod axioms of (co)homology:

• Homotopy axiom: homotopic maps between topological spaces induce the same map
in homology;

• Excision axiom: one can extract subregions of topological spaces and analyse them separately by
means of homology before recombining them and obtaining the homology of the complete space
in a consistent manner;

• Dimension axiom: let P be the one-point space, then Hn(P) = 0 for all n 6= 0; in this case, H0(P)
is called the coefficient group, and is associated with the group of integers;

• Additivity axiom: if our topological space is a disjoint union of topological spaces, the homology
of our space will be the direct sum of the homology of the disjoint spaces;

• Exactness axiom: finally, each pair (X, A) induces a long exact sequence in homology via the
inclusions i : A→ X and j : X → (X, A).
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In order to talk about (co)homology with non-trivial coefficients, we must give up on the
dimension axiom. Cohomology theories that do not obey the dimension axiom are called “generalised
cohomology theories” and will associate with each point of our original space an algebraic structure
encoded in the structure of the coefficients. Exploring the effects of changing the coefficient structure
is a subject of great interest in mathematics, dealt with by the study of so-called universal coefficient
theorems. In this paper, I will present a situation in which a map seen to be homotopic to the constant
map by one coefficient structure belongs in fact to a non-trivial homotopy class when seen through
another coefficient structure. A more detailed discussion can be found in [14,15].

I propose a theory where the non-abelian character is protected by a particular behaviour of one
hedgehog under rotations around a fictitious unphysical object introduced in the theory such that the
theory itself is not otherwise altered. In fact, this “object” appears due to a special global configuration
of the functional space (in the sense of path integral quantization). This object is constructed by
means of BRST-dual-BRST (Becchi–Rouet–Stora–Tyutin and its dual) extensions and can be seen as a
modification in the coefficient structure of the cohomology used to analyse the field space.

I argue here that the SU(2) anomaly can be eliminated by using some specific topological tools
and some new ideas. Particularly, a global anomaly can be lifted if a suitable “measuring device”
presenting a similar (compatible) global “anti-anomaly” is employed in the process of gauge fixing.
This “measuring device” must be non-local in nature and is described either in terms of fields associated
with the BRST-dual-BRST quantization prescription or in terms of (co)homology with torsion coefficient
groups (e.g., Zp, p-prime). The idea of lifting the SU(2) anomaly has also been explored in [16], where it
was argued that incorporating additional discrete symmetries and flavour degrees of freedom amounts
to eliminating the topological obstruction for a single Weyl doublet in the context of K-theoretical
classification of topological phases. In the original article by Kitaev [17], the connection between
topological phases and K-theory is made explicit. There, a set of admissible Hamiltonians and some
equivalence relations between them were needed. The classes in which those Hamiltonians fall were
called the “phases”. The homotopy transformations connecting elements of such classes were part
of the definition of the equivalence relation. These equivalence relations, however, are known to
be insufficient for a final classification of topological phases. K-theory, however, in comparing two
objects, augments them by some trivial system. The possibility is mentioned in this article, that two
systems that cannot be continuously deformed one into the other become homotopic after such an
augmentation. A similar situation occurs when cohomology with non-trivial coefficients is being
employed. In this article, the addition of the non-trivial coefficient structure to the cohomology allows
me to avoid the SU(2) anomaly. This is also translated in the introduction of a trivial system, but this
time in the context of the auxiliary fields of the BRST-dual-BRST formalism. It is important to remember
that both the auxiliary fields and the coefficient groups in cohomology are arbitrary constructions that
do not change the physical content of the theory. In the case of the BRST-dual-BRST quantization, the
integration over the artificial fields reconstructs the original theory. In the case of the interpretation
using (co)homology with torsional coefficient groups, the universal coefficient theorem [18] (see page
153 for homology with coefficients, page 155 for an example and pages 190/261 for the universal
coefficient theorems in cohomology resp. homology) tells us that the choice of coefficients is to a large
extent arbitrary. One example of a situation where the coefficient groups in (co)homology are modified
in order to obtain a “diluted” cohomology isomorphic with the Chech cohomology group with integer
coefficients is [19]. These two ways of thinking (BRST-dual-BRST extension of a theory and the use of
“exotic” coefficient groups in (co)homology) are to a large extent isomorphic.

I start with a BRST-dual-BRST description, with the remark that, when introducing the effects
of the here presented method on the Atiyah–Singer index theorem, I will largely employ the
(co)homological interpretation, making extensive use of torsion coefficient groups.

The idea behind the Batalin Vilkoviski modified BRST quantization approach (BV-BRST) is to
generate a symplectic space suitable for geometric quantization.
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In general, we start with a classical action S[·] depending on a set of fields. The classical theory
provides the equations of motion via a minimization prescription. In a quantum theory, however, we
need extra information stored over the entire manifold associated with the fields. In order to access
this information, we complexify and exponentiate the classical action functional:

exp(iS[·]) : C → A (5)

Here, C is the configuration space, and A is a resulting space. We then perform a functional integration
over this construction. This definition is very formal. In practical cases, the measure of the path integral
is not always well defined. The configuration spaces are in general not even manifolds. Sometimes,
in order to obtain pertinent results, a so-called “cohomological integration” is necessary. When the
theory we want to quantize has redundancies (also called gauge symmetries), there exist two possible
approaches: when the gauge algebra is closed, a BRST quantization procedure can be implemented.
In general however, the gauge algebra is not closed. In this case, an alternative method developed
initially by Batalin and Vilkovisky is used.

The algebra of the operators of the gauge symmetry can in general be defined as:

δl Ri
α

δφj Rj
β − (−1)εαεβ

δl Ri
β

δφj Rj
α = 2Ri

γTγ
αβ(−1)εα − 4yjE

ji
αβ(−1)εi (−1)εα (6)

where yj = 0 represents the equation of motion, E and T represent coefficients, R represent the (gauge)
symmetry transformation operators and ε encodes the Grassmann parity of the associated field. One
can also define the BRST transformations of the original fields as δφi = Ri

α[φ]cα, i.e., one can define the
BRST symmetry transformations via R[φ] and the associated ghost field cα unambiguously. This is why,
when no confusion is possible, the terms Ri

α, R[φi, c, ...] or the BRST transformation rule δφA = RA[φB]

will be used alternatively as formal definitions.
If E = 0, the algebra is closed, and the nilpotency of the BRST operator is naively verified.

Imposing nilpotency on the fields φi, we get:

0 = δ2φi = Ri
αδcα +

δl Ri
αcα

δφj Rj
βcβ (7)

If we choose now:
δcγ = Tγ

αβ[φ]c
βcα (8)

the nilpotency condition on the “physical” sector is satisfied, and we obtain (considering E = 0):

δl Ri
αcα

δφj Rj
βcβ + Ri

γTγ
αβcβcα = 0 (9)

Furthermore, using the Jacobi identity, one can easily show that δ2cγ = 0. It will be seen later how
this can be generalized for the case of BRST-anti-BRST transformations (see also Appendix C). If the
algebra depends on the last term, i.e., E is not zero, we have an open algebra and an non-nilpotent
BRST transformation as acting on the initial fields. This is a fundamental topological issue as the
nilpotency of the δ operator (which is to be considered an exterior derivative in the BRST-cohomology)
implies that δ2 = 0 and, hence, is the translation of the fact that all exact forms are closed. In other
words, if δ is a boundary operator, this non-nilpotency translates into the sentence “the boundary of a
region has itself a boundary”, which is impossible. The gauge fixed action constructed in the naive
way would not be BRST invariant off-shell. In order to solve this problem (i.e., to close the boundary
of the region, if we insist on using the topological terminology), one has to introduce an artificial shift
symmetry and to move the non-nilpotency from the transformation rules of the original fields to the
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transformation rules of the collective (and in a sense unphysical) fields [20,21]. One certainly trivial
way of enlarging the field space is by introducing two fields Al and Bl such that:

δAl = Bl

δBl = 0
(10)

Obviously, as the initial action does not depend on Al , one can shift it with no practical effect. This
shift would be a local symmetry, and the fields Bl would be the associated ghost-fields. It is precisely
this idea that allows the redefinition of the field structure, as will be seen further on. Having more
fields of this type is of no physical consequence. What is important is the new perspective they can
open upon the useful mathematical properties that can be added through them in the theory. For
example, it becomes possible to move undesirable aspects of the theory to the collective sector. It is
also possible to transfer desirable properties to the physical field structure while using the unphysical
sector in order to compensate the unphysical changes and to keep the same physical properties in the
effective theory. By effective, it is usually understood a low energy, large-scale equivalent of a theory
obtained after the integration of microscopic details. However, it can also be considered to be a theory
obtained after the integration of non-physical structures introduced only for the convenience of the
calculation. In many situations, those non-physical structures may reveal different ways of integrating
in order to obtain an equivalent theory that is mathematically better defined. In particular, if there
are more symmetries available due to the extra fields, the interplay between them at the level of the
BRST (-anti-BRST-dual-(anti-)BRST) transformations introduces additional freedoms that I am using in
order to avoid the SU(2) anomaly. As one can see by now, the quantization prescription is not always
trivial. One must specify what quantization means in the framework of path integrals. Essentially,
the special way in which the functional integration is performed assures the correct quantization of a
classical theory. Moreover, the theory, defined by an action functional, is by no means unique. It is
well known that different representations can be chosen, but in general, in physics, this amounts to the
construction of effective low energy theories. However, this conclusion is not always necessary. By
making different choices, one can instead reveal useful properties in the theory that were not visible
before.

The main source of the anomaly discussed here is related to a particularity of the SU(2) group.
In fact, its fourth homotopy group is non-trivial, i.e., π4(SU(2)) = Z2. This means that in order to
reach identity with a gauge transformation, one has to “wrap” two times around the whole SU(2)
group. If only one turn is performed, no deformation to the identity is possible. After the second
turn, the identity is recovered, but the two situations (with identity and without) are related in a
continuous way by a gauge transformation. This means that the two regions are equally accessible
via a gauge transformation and cannot be correctly distinguished. This problem of indiscernibility is
considered to be fundamental mainly because the fermion integration for a theory with N massless
Weyl fermion doublets may change sign under such a transformation [22]. It is clear at this moment
that the two situations are related by a gauge transformation, but the anomaly has its origin in the
non-trivial global properties of the gauge group. In what follows, I will alter the field-space such that
the global non-triviality is being taken into account in a simple way. It is probably desirable to make a
clarification at this point: it is not the special property of the SU(2) group that is the problem here. The
topological properties of the SU(2) group are highly desirable and natural. The way we account for
them however must change if we want to construct theories of this kind that also make sense. This
can be accomplished either by changing the field structure and hence introducing artificial fields or,
equivalently, by changing the coefficient groups in (co)homology [19], i.e., going to a torsion coefficient
group. In order to be more specific, let me return to the theory describing a single Weyl doublet:∫

(dψdψ̄)Weylexp(ψ̄i /Dψ) = ±(det(i /D))
1
2 (11)
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As seen before, in this case, the ambiguity of choosing the sign is essential. While picking an
arbitrary sign for (det(i /D))1/2, in order to simultaneously satisfy the Schwinger–Dyson equation,
one has to allow a certain degree of freedom in the problem that will eventually change the sign of
the square root without any control from our part. This aspect is not trivial as the path integral will
gain an alternating sign, which will amount in an ambiguity of the form “0/0”. This problem can be
related to the fact that the eigenvalues of the Dirac operator can be rearranged when a continuous
gauge transformation is performed, but only in such a way that an odd number of eigenvalues change
sign from positive to negative. This of course generates a sign ambiguity. Nevertheless, one can
introduce additional symmetry into the problem so that the Schwinger–Dyson equation is satisfied in
the form of a Ward identity, and the actual eigenvalues of the extended operator do not change the
sign of the overall determinant. This can be done by keeping the same relevant information inside the
theory [20,21]. I underline that I eliminate the overall change in sign and not the relative change in
sign between the hedgehog and the auxiliary structure to be introduced in the theory. However, the
auxiliary structure is simply a “theoretical measuring device”, which can be interpreted as a particular
choice of a coefficient structure in cohomology. I call this idea “symmetry out of cohomology”.

2. Preliminaries, Artificial Symmetries in Gauge Theories

In this section, I introduce, following mainly [20] and [21], a method of adding several independent
gauge symmetries apart from the original gauge symmetry of the theory. At this moment, only
continuous gauge symmetries are considered. However, in the next sections and following [23], I will
describe how a discrete symmetry can be added to the gauge structure. I also show here that it is
possible to preserve the Schwinger–Dyson equations by means of the modified BRST algebra obtained
in the process of adding auxiliary gauge symmetries. The fact that the Schwinger–Dyson equations
are automatically fulfilled liberates us from the requirement of avoiding a benchmark that would
notify us when we move from the branch of the SU(2) group simply connected to Id to the other
branch. This possibility makes this preliminary section of major importance for the rest of this article.
It also serves as a model calculation for the fact that integration of an extended theory can be done in
several physically equivalent, but mathematically different ways. Some integration prescriptions lead
to significant simplifications.

For now, we can start with a pure Yang–Mills action S[Aµ]. We call A the connection that can be
used to define a covariant derivative as:

D(A)
µ = ∂µ − [Aµ, ·] (12)

In order to enforce the Schwinger–Dyson equations as a result of the BRST algebra, we may introduce
a collective field:

Aµ(x)→ Aµ(x)− aµ(x) (13)

The transformed action S[Aµ − aµ] has two independent gauge symmetries. Due to the redundancies
introduced by the collective field, we can write the two symmetries in different ways. One way of
doing this is:

δAµ(x) = Θµ(x)
δaµ(x) = Θ(x)− D(A−a)

µ ε(x)
(14)

We may choose the original symmetry of the original field structure to be carried entirely by the
collective field. The transformation of the original gauge field is always just a shift. Θ(x) includes
arbitrary deformations. However, it only leaves the transformed field invariant. The action is also
invariant under Yang–Mills gauge transformations of the transformed field itself. This is why two
independent gauge transformations are being included. These two gauge symmetries have to be gauge
fixed in the standard BRST fashion. We therefore introduce a suitable multiplet of ghosts and auxiliary
fields. The shift symmetry of Aµ requires a vector ghost field ψµ(x). One Yang–Mills ghost field c(x)
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will also be necessary. Gauge fixing the shift symmetry of Aµ by removing the collective field aµ leads
to the introduction of a corresponding anti-ghost A∗µ(x) and of an auxiliary field bµ(x).

The nilpotent BRST algebra now becomes:

δAµ(x) = ψµ(x)
δaµ(x) = ψµ(x)− D(A−a)

µ c(x)
δc(x) = − 1

2 [c(x), c(x)]
δψµ(x) = 0
δA∗µ(x) = bµ(x)
δbµ(x) = 0

(15)

By adding:
− δ[A∗µ(x)aµ(x)] = −bµ(x)aµ(x)− A∗µ(x){ψµ − Dµ

(A−a)c(x)} (16)

to the Lagrangian, we fix aµ(x) to zero. At this point, we can make the choice of integrating over
pairs of ghosts and anti-ghosts. Hence, we can integrate over ψµ(x) and A∗µ(x) while keeping c(x)
unintegrated at this point. The extended, but not yet fully gauge fixed action is:

Sext = S[Aµ − aµ]−
∫

dx{bµ(x)aµ(x) + A∗µ(x)[ψµ(x)− Dµ

(A−a)c(x)]} (17)

with the partition function:

Z =
∫

dAµdaµdψµdA∗µdbµexp[
i
h̄

Sext] (18)

In order to continue, we first integrate out aµ and bµ, and then, integration over A∗µ leaves a trivial ψµ

integral. In this way, we obtain back the starting point, namely the Yang–Mills action S[Aµ] integrated
over the original measure.

We must insist that the Schwinger–Dyson equations involving the field c(x), i.e., equations of
the form:

0 =
∫

dc
δl

δc(x)
[Fe

i
h̄ [S]] (19)

are satisfied automatically when employing the full, unbroken BRST algebra. In order to achieve this,
we have to introduce yet another collective field, say c̃(x). We now shift the Yang–Mills ghost:

c(x)→ c(x)− c̃(x) (20)

From this shift results a new fermionic gauge symmetry, which we have to fix via the introduction of a
new BRST ghost-anti-ghost pair and an auxiliary field. We let the transformation of the new collective
field c̃(x) carry the BRST transformation of the original ghost.

δc(x) = C(x)
δc̃(x) = C(x) + 1

2 [c(x)− c̃(x), c(x)− c̃(x)]
δC(x) = 0
δc∗(x) = B(x)
δB(x) = 0

(21)

Now, in order to gauge fix c̃(x) to zero, we add the term:

− δ[c∗(x)c̃(x)] = B(x)c̃(x)− c∗(x){C(x) +
1
2
[c(x)− c̃(x), c(x)− c̃(x)]} (22)
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to the Lagrangian. This leads to the fully-extended action:

Sext = S[Aµ − aµ]−
∫

dx{bµ(x)aµ(x) + A∗µ(x)[ψµ(x)− Dµ

(A−a){c(x)− c̃(x)}]
−B(x)c̃(x) + c∗(x)(C(x) + 1

2 [c(x)− c̃(x), c(x)− c̃(x)])}
(23)

In the partition function, all fields appearing above are being integrated except the field c(x) for
which another anti-ghost c̄ must still be introduced when the original Yang–Mills symmetry will be
fixed eventually. The extended action and the functional measure are invariant under the following
transformations:

δAµ(x) = ψµ(x), δψµ(x) = 0

δaµ(x) = ψµ(x)− D(A−a)
µ [c(x)− c̃(x)], δc(x) = C(x)

δA∗µ(x) = bµ(x), δbµ(x) = 0
δc̃(x) = C(x) + 1

2 [c(x)− c̃(x), c(x)− c̃(x)], δC(x) = 0
δc∗(x) = B(x), δB(x) = 0

(24)

The fields A∗µ(x) and c∗(x) are the anti-ghosts of the collective fields, which enforce the
Schwinger–Dyson equations through shift symmetries.

I used this preliminary section to show how additional shift symmetries can be used in order
to encode the Schwinger–Dyson equations directly via the BRST algebra. The example given in
this section is not new, but serves as a model for the following chapters. It can be seen that by
judiciously using artificial symmetries and gauge fixing, additional properties can be added to the
original field structure. This is being done such that, by carefully integrating over the supplemental
fields, we obtain the same theory again. It will be clear in what follows that, by choosing to perform an
extension of the field structure and a special field-integration, we can map an anomalous theory into
another one carrying the same information in an effective way. This theory will not be plagued by the
original anomaly.

3. Theoretical Approach

Let me start with a partition function plagued by the SU(2) anomaly:

Z =
∫

dψdψ̄
∫

dAµexp[−
∫

d4x[(1/2g2)tr(F2
µν) + ψ̄i /Dψ]] (25)

where Aµ is the gauge field, (1/2g2)tr(F2
µν) is the associated kinetic term and Fµν is the field strength

tensor (in other words, we have the connection A and the curvature two-form F = dA± A ∧ A). We
also have ψ̄i /Dψ, the associated fermionic term. I consider now the integration over the fermionic fields.
This will present the problem related to the fermionic sign and the proposed solution of the SU(2)
anomaly. For the sake of brevity, I will consider only the fermionic part. The kinetic term for the gauge
fields is considered implicitly. The dynamics-less auxiliary fields to be used in this paper do not affect
the kinetic term in a relevant way for this paper. However, they do affect the structure of the fermionic
determinant in a way described in what follows.

Let me start with showing how to introduce the Schwinger–Dyson equations as Ward
identities [24,25]. Consider the actual form of the fermion field as:

ψ = χα (26)

where α represents the spin index. The covariant derivative is:

(Dµχ) = ∂µχ− igAµξ Tξ χ (27)
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Here, ξ is a gauge index. Following the procedure by Batalin and Vilkovisky [26], I extend the example
presented in the preliminary section, and I insert now two auxiliary fields:

Aµξ → Aµξ − φ1 − φ2 (28)

These encode a trivial gauge symmetry representing a shift. The Jacobian associated with the above
transformation is trivial. However, this symmetry involves additional freedoms to be employed in
what follows. The new symmetry has to be gauge-fixed. In doing so, via the BRST-anti-BRST formalism
(Becchi, Rouet, Stora and Tyutin [27]), the Schwinger–Dyson equation emerges as a Ward identity [20].
The field multiplets introduced are the ghosts (π1, A∗2) and the anti-ghosts (A∗1 , π2). The BRST and
anti-BRST transformations are as follows:

δ1 A = π1 δ2 A = π2

δ1φ1 = π1 − A∗2 δ2φ1 = −A∗1
δ1φ2 = A∗2 δ2φ2 = π2 + A∗1
δ1π1 = 0 δ2π2 = 0
δ1 A∗2 = 0 δ2 A∗1 = 0

(29)

Here, δ1 and δ2 are respectively the BRST and anti-BRST transformations. The next step is to impose
gauge fixing. This is done in the standard way by adding more bosonic fields, call them B and λ. The
BRST transformation rules extend according to:

δ1π2 = B δ2π1 = −B
δ1B = 0 δ2B = 0
δ1 A∗1 = λ− B

2 δ2 A∗2 = −λ− B
2

δ1λ = 0 δ2λ = 0

(30)

These rules imply the nilpotency conditions:

(δ2δ1 + δ1δ2)A = 0 (31)

(δ2δ1 + δ1δ2)φ1 = 0 (32)

δ2
1 = δ2

2 = 0 (33)

One can choose the gauge fixing condition such that both auxiliary fields are fixed to zero by
adding the BRST-anti-BRST closed term:

Scol =
1
2

δ1δ2[φ
2
1 − φ2

2 ] (34)

By using the BRST-anti-BRST transformations above, this becomes:

Scol = −(φ1 + φ2)λ +
B
2
(φ1 − φ2) + (−1)a A∗a πa (35)

which makes the gauge fixed action:

Sg f = S0[A− φ+]− φ+λ +
B
2

φ− + (−1)a A∗a πa (36)

where φ± = φ1 ± φ2. Here, the index a = 1, 2 represents the field-anti-field index, and summation
over it is implied. Now, the theory is well defined. At this moment, the Schwinger–Dyson equation is
encoded via an emerging Ward identity

〈
δ1[A∗1 F[Aµ]]

〉
= 0 (See Appendix A or [20]). Alternatively,

this can be written as:
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0 =< δ1[A∗µF(Aµ)] >=

=
∫

dµ[A∗µ1
δl F
δAµ

π1 + (λ− B
2 )F(Aµ)]e

i
h̄ Sg f

(37)

Here, F is a general functional on the fields Aµ, and δl

δAµ
is the left functional derivative. It gains a sign

with respect to the right derivative when acting on fermionic fields.
The next step is to implement an artificial discrete symmetry that corresponds to the anti-unitary

time reversal. Indeed, this can be done if one considers the de-Rham cohomology. Here, we cannot
restrict ourselves to the BRST-anti-BRST operators, but we need all of the operators of the de-Rham
cohomology, including the dual-BRST-anti-BRST operators. One has to acknowledge that the field
structure of a theory is not fundamental. In fact, following [21], the anti-fields used to extend the
usual field structure can be considered on equal footing with the usual fields. In most of the cases,
however, one starts from a theory where these have been integrated out in advance. This, however, is
not necessary and implies some information loss when thinking at the procedure of integrating out
the auxiliary fields. If one starts with a theory containing fields and anti-fields and integrates them
in a symmetric way, the resulting theory can be constructed such that its field space has a Kahlerian
structure. Imposing a Kahlerian structure is not an ad hoc construction. First, the complexification
required implies a simpler encoding of non-local properties, and second, the holomorphicity of the
field space will play the role of a “benchmark” between the region simply connected to Id in SU(2)
and the other region. The theory constructed in this way also manifests a discrete symmetry. The
Kahler structure makes this discrete symmetry appear in the form of an anti-unitary time reversal
symmetry induced by the Hodge star operator. This “mirror” symmetry cannot introduce divergencies
in the theory. However, the Kahler-structure imposed over the field space, which can be interpreted
as a choice of a Kahler quantum polarization, assures that the extra fields protect on one side the
non-abelian statistics of the remaining hedgehog, but also assure a constant overall sign in the full
fermionic determinant.

In order to be more specific (for more details, see Appendix B), if we are given a differential
manifold M and a tensor of type (1, 1) J such that ∀p ∈ M, J2

p = −1, the tensor J will give a structure
to M with the property that the eigenvalues of it will be of the form ±i. This means that Jp is an even
dimensional matrix and M is an even manifold. It also follows that Jp can divide a complexified space
at a point p into two disjoint vector subspaces:

Tp MC = Tp M+ ⊕ Tp M− (38)

Tp M± = {Z ∈ Tp MC | JpZ = ±iZ} (39)

One can also introduce two projection operators:

P± : Tp MC → Tp M± (40)

P± =
1
2
(1± i Jp) (41)

which will decompose Z as Z = Z+ + Z−. This construction will generate a holomorphic and an
antiholomorphic sector: Z± = P±Z ∈ Tp M±, Tp M+ being the holomorphic sector. A complex
manifold appears when demanding that given two intersecting charts (Ui, γi) and (Uj, γj), the
map ψij = γjγ

−1
i from γi(Ui ∩ Uj) to γj(Ui ∩ Uj) is holomorphic. Here, γi and γj are chart

homeomorphisms, and ψij is the transition map. In this case, the complex structure is given
independently from the chart by:

Jp =

(
0 1
−1 0

)
∀p ∈ M (42)
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In the complex case, there is a unique chart-independent decomposition in holomorphic and
antiholomorphic parts. This means we can now choose as a local basis for those subspaces the
vector ( δ

δzµ , δ
δz̄µ ) where (zµ, z̄µ) are the complex coordinates such that the complex structure becomes:

Jp =

(
i1 0
0 −i1

)
∀p ∈ M (43)

The additional structure over the field space can be introduced in several different ways. Here, I
show a method suitable for the current problem. Consider another extension of the field structure in
the following way:

{Aµ} → {Aµ, AΩ, ĀΩ̇} (44)

This method is similar to the previous method of introducing additional auxiliary (unphysical) fields.
However, the way these fields are introduced here is special because they also carry topological
information. They are also introduced in such a way that a Kahler structure emerges over the resulting
field space. This is also ensured by the special form of the matrix h introduced in what follows:

Z =
∫
(dψdψ̄dAµdAΩdĀΩ̇dµ)

exp[ψ̄(σ̄µ
αβ(i∂µ + g(Aµ − φ+ + igµν AΩhν

ΩΩ̇
ĀΩ̇)))ψ−

−φ+λ + B
2 φ− + (−1)a A∗a πa]

(45)

where dµ represents the integration measure with respect to the rest of the auxiliary fields,
σ̄ = (1,−−→σ ) and gµν is the standard space-time metric. The matrix hΩΩ̇ assures in this case that
the gauge fixing procedure is done in a BRST-anti-BRST invariant way. It also assures that entries
between the Grassmann odd and Grassmann even sectors vanish. This will imply that a term of the
form φAhABφB has ghost-number zero and even Grassmann parity. Otherwise, hAB has a flexible form
required in defining a corresponding metric over the field space. The indexes Ω and Ω̇ refer to an
internal space used to define the Kahler structure over the field space.

Of course, gauge fixing is needed. In order to do this, one may add the closed form:

Ω = iδδ̄(K(A, Ā)− ihΩΩ̇ AΩ ĀΩ̇) (46)

Here, Ω plays the role of the Kahler form. K(A, Ā) is the Kahler potential, and it has the property of
generating the metric when the co-exterior and anti-co-exterior derivatives act on it:

Ki : Ui → R

G = δδ̄Ki

(47)

where δ and δ̄ can be associated with the dual-BRST and dual-anti-BRST operators and G is the induced
metric over the field space. This will ensure the Kahler structure and will not alter the rest of the
structure, as it is a closed form under the co-exterior derivative:

d∗Ω = (δ + δ̄)Ω = 0 (48)

It also forms a class with respect to the de-Rham cohomology, and it is not an exact form, i.e., it cannot
be written as Ω = d∗Ψ. The fact that this form is closed, but not exact is implied by the fact that the
construction of the field space (a compact manifold in this case) was designed such that the Kahler
form was made manifest and a Kahler form cannot be exact on a compact space. When the operators of
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the direct and dual sector are made manifest, the theory is best described by the de-Rham cohomology,
and the Kahler form represents a distinct class in this cohomology.

We now define the Hodge star operator in the following way (see Appendix B): let α and β be two
N-forms,

α, β ∈
N∧

(49)

then ∗β is defined such that given the metric G over the considered manifold and dvG a unit N-vector,
we have:

α ∧ ∗β = Gp(α, β)dvG (50)

(∗∗) = 1 on
∧N (we are at the level of the first doubling, so, already N = 2d), which means that

∧N

splits into eigenspaces as:
N∧

=
N∧
+

+
N∧
−

(51)

where the two eigenspaces correspond to eigenvalues +1 and −1, respectively. An N-form, which
belongs to

∧N
+ , is called self-dual, whereas if it belongs to the other eigenspace, it is called anti-self-dual.

An important remark to be done here is that given a p-vector λ ∈ ∧p V, then ∀θ ∈ ∧n−p V, there exists
the wedge product such that λ ∧ θ ∈ ∧n. The (anti-)BRST and dual-(anti-)BRST operators are then
equivalent to the operators:

d :
k∧
→

k+1∧
(52)

d∗ = ∗d∗ :
k∧
→

k−1∧
(53)

∆ = dd∗ + d∗d :
k∧
→

k∧
(54)

In the context of algebraic geometry, these are in order: the exterior differential, the co-exterior (dual)
differential and the Laplace operator (see Appendix B). The exact and co-exact forms are orthogonal.
Here, we have the exterior derivative:

d = δ1 + δ2 (55)

and its dual:
d∗ = ∗d∗ = δ + δ̄ (56)

This gives rise to a suitable candidate for a “barrier” that would allow one to discern whether one
is on the side connected to id or on the other side or, probably better formulated, it would make the
two parts properly separated with id↔ id∗. The integration is performed in the same way with the
exception that due to the Kahler structure, any change in the sign in one sector is compensated by a
corresponding change in the dual sector. This is being done while allowing the fermionic parity of an
individual hedgehog to vary when considering its behaviour under relative rotations around the fictive
Kahler structure associated with it. Please note how dual-space gauge fixing and the implementation
of a Kahler structure interplay in order to keep an overall positive fermionic determinant and a
non-abelian statistics for the hedgehog. Of course, this would not be possible if additional structure
could not be added to the problem in a chomologically-invariant way, i.e., for fundamental particles.
Fortunately, the condensed matter background allows this auxiliary and otherwise inert structure in
the theory.

In a more illustrative way, one could imagine that at every point in the space considered, one
could add a circular space. While the integration would diverge due to uncontrollable integration
over the circular space at each point, the gauge fixing would solve this problem by picking a single
representative in the circular space. However, the choice of a representative in the internal circular
space would not solve on its own the change in sign due to the topology of the original space. The
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solution in this case is the addition of a dual space to this construction. In this case, a dual circular space
will also introduce an uncontrollable integration, and it will also have to be gauge fixed. However,
this can be done in the functional space such that the global change in sign is compensated. In fact, a
discrete symmetry is constructed in the action functional from the way in which the gauge is fixed
over the direct and dual spaces. If the resulting field-space is Kahlerian (as intended in this paper),
the discrete symmetry, induced by the Hodge star operator, mimics the time reversal symmetry and
conserves an apparent non-abelian statistics. It is this discrete artificial symmetry that plays here the
role of a non-local measuring device, to be encoded later in the coefficient groups in cohomology.
As for now, this Z2 symmetry has the role of controlling the change in sign during the integration
behaving as an artefact of the mathematical procedure (see Appendix A). While associated auxiliary
fields are used in order to extend the field space via the BV-BRST method, the final construction of
a discrete internal symmetry (in this case, a Z2 symmetry) does not lead to an additional associated
gauge field. What is important is the process of covering the manifold with overlapping patches,
each equipped with its own set of conventions. It is topologically interesting to know if the local
conventions can be patched together such that they induce a global convention. On simply connected
manifolds, a global convention is always possible. On non-simply connected manifolds, the situation
becomes somehow more complicated [23]. There, one has to make a choice related to what structure to
impose over the manifold such that the induced patching conventions make sense. In general, this
is not possible (see for example [23], but also any textbook on Cech cohomology). For the current
issue however, if we can add a Kahler structure over the field space such that a Z2 time reversal-type
symmetry emerges, the global inconsistency can be taken into account by using the preservation of
(anti-)holomorphic vectors on Kahler manifolds. This can be translated in terms of cohomology with
coefficients in torsion groups, i.e., a non-trivial cohomology with coefficients in Z may translate into a
trivial cohomology when analysed via coefficients in a torsion group (see [14,18]).

This method allows a redefinition of the Dirac operator so that the problem becomes well defined.
The first investigation of the behaviour of the Dirac operator as a function of the metric is due to
Hitchin [28]. The complexification that appears as a part of the construction of the Kahler space is
important mainly because we wish to deal with the global (topological) properties of the SU(2) group,
and we have to model those in an appropriate way.

In fact, one observes that the integral changes to:∫
(dψdψ̄)Weyl−Auxexp[ψ̄(i /D(Aµ−φ+) − AΩhΩΩ̇ ĀΩ̇)ψ]

= det(i /D(Aµ−φ+) − AΩhΩΩ̇ ĀΩ̇)

(57)

and by adding the Kahler term in the partition function, one has:

Z =
∫
(dAµdAΩdĀΩ̇dµ)det(i /D(Aµ−φ+) − AΩhΩΩ̇ ĀΩ̇)

exp[iδδ̄(K(A, Ā)− ihΩΩ̇ AΩ ĀΩ̇)− φ+λ + B
2 φ− + (−1)a A∗a πa]

(58)

but now, the determinant is defined for a Kahler structure. A gauge transformation in the Kahler space
will have the form:

A −→ A + i(Λ−Λ†) (59)

so, while preserving this form, a transformation of this kind will not alter the structure of the theory.
This imposes a specific form of the hΩΩ̇ tensor. Gauge fixing is performed by a suitable choice of the
introduced functions. Of course, all of the fields can be eliminated by integrating out pairs of fields
and anti-fields or by integrating only one member of the pair, but suitably changing the transformation
rules of the remaining fields. It is extremely important to notice that the integration is performed over
both the fields AΩ and AΩ̇ and that they cover both the direct and the dual regions. Because of the
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Kahler structure constructed over the field space, they behave in the desired way, i.e., they prevent the
change in sign. Please note that the geometry of the field space becomes Kahlerian. The direct and
dual field sectors combine, giving in any case a positive determinant.

It may be instructive to repeat here the possible definitions of Kahler manifolds. Indeed, one can
say equivalently that a Kahler manifold is:

• a symplectic manifold (K, ω) with an integrable almost complex structure;
• a Hermitian manifold with the associated Hermitian form closed;
• a manifold where the complex structure, the Riemannian structure and the symplectic structure

are mutually compatible.

Indeed, due to these definitions, on a Riemannian manifold M, it is always possible to choose
Riemannian normal coordinates at any point p ∈ M. In fact, these coordinates are those in which
the metric takes its canonical form gab = δab at the point p, and all of its first derivatives vanish
at that point. If we consider a general Hermitian manifold, the holomorphicity of the coordinates
for which this is true is not always assured. In order to keep the holomorphicity and the canonical
form for the metric at a point, we need to have Kahler manifolds. As a simple situation, consider
the Levi–Civita connection and its Christoffel symbols. A Kahler manifold assures us that if we
define (anti-)holomorphic vectors at a point, their parallel transport is also into (anti-)holomorphic
vectors. Otherwise stated, in terms of the Christoffel symbols, Γi

jk or Γī
j̄k̄ may be non-zero, but all mixed

symbols like Γī
jk must be identical to zero. This also means that n-dimensional Kahler manifolds are

by definition 2n-dimensional Riemannian manifolds with the holonomy group contained in U(n).
From a physical point of view, this special property of the field space assures us that by performing a
“large” gauge transformation, we do not mix holomorphic vectors with anti-holomorphic vectors. This
property is crucial because it is only by this that the integration on each branch of the new field-space
can be performed meaningfully, and it is only by this that the full topological information available
initially only when considering both of the branches now becomes available only on one branch.

Moreover, the whole construction presented until here, i.e., the introduction of a symplectic
structure due to the use of the BV-BRST construction, the complexification and the special choice of the
complex structure, such that integrability is ensured, all combine in order to have the Kahler property
for the field space.

One may ask if this would have been possible using fewer properties. It can naively be argued
that a more parsimonious employment of algebraic structures might suffice. This, unfortunately, is not
the case. Giving up the complex structure would make it impossible to encode the global information
in a suitable way. Giving up the symplectic structure would make the physics meaningless, not to say
that the formal quantization prescription would loose much of its relevance. Finally, keeping only the
three structures, hence a Kahler manifold, assures that all of the information can be mapped in the
branch over which the integration is meaningful.

All of this will have some consequences on the interpretation of the Atiyah–Singer index
theorem [29] and the flux, both essential ingredients in the formulation of the SU(2) anomaly [9].
First, the field structure is “supplemented” by the Kahler condition such that the eigenvalues do not
change sign. The method of extending the field structure plays the role of a “topological regularizer”.
As one homotopically changes the path in the gauge space, the change in sign from one part of the
Kahler sector is compensated by the other part. Moreover, due to the property of the Kahler structure
(i.e., local holomorphicity is preserved while performing a gauge transformation), this compensating
property will be preserved over the entire gauge group. Second, a specific choice of the Kahler potential
in the functional described above will not affect the physical content of the theory, but will modify the
set of symmetries of the problem in the desired way.

It is important to explain in what sense the physical content of the theory remains unaffected.
Indeed, in the most general case, when additional fields are introduced, the content of the theory
changes dramatically [30]. In the present case, the additional fields are introduced, such that they
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become relevant in a global, topological sense. They are constructed such that they compensate for
the global anomaly only. One may say that they belong to the same cohomology class as the physical
sector, but this statement is too weak. The best way of explaining this situation is to remark that the
internal, circular spaces introduced in the theory can be described from an algebraic standpoint as
periodic coefficient groups in cohomology. These generate a torsion visible globally that alters the
classes in the cohomology group by merging some of them and separating others. This effect is of no
direct physical relevance due to what is known as the universal coefficient theorem [14,18]. However,
in order to make sure that we can use any coefficient group we want, we must take the now modified
Ext and/or Tor groups correctly into account in the universal coefficient theorem [31]. This will be
the subject of the last section in the context of the Atiyah–Singer index theorem. It is also explained
in more detail in Section 7, Subsection C of [14]. In the most general sense, an anomaly results from
the fact that a certain mathematical description, suitable for a specific context, becomes unsuitable
for a different context. What one has to do is to lift the original mathematical description to the other
context making all of the changes that are necessary. For example, a functional a = a(A, ω) where A is
the gauge potential and ω is a ghost field is called a “true” anomaly if it satisfies the Wess–Zumino
consistency condition, δa = 0, but there is no local functional Λloc(A), such that a redefinition of the
effective action Γ as Γ→ Γ + Λloc would cancel the anomaly itself. However, there exist other changes,
not visible at the level of perturbative calculations, that can eliminate the anomalous situation. These
changes are given by homological algebra, for example by a specific choice of coefficient groups in
cohomology, their effects being undetectable locally. Of course, a change in the original theory must
occur, as the original theory was not well defined in the new context. However, these changes preserve
the topological properties, in this case of the SU(2) group. Universal coefficient theorems will tell us
where precisely the missing information is stored. The advantage of the new constructions is that they
are more suitable for the new case.

4. Internal Spaces and Duality

In the construction of the extended field space, I used an internal space in order to naturally define
duality. To be more explicit, I will follow here [32] to show that the construction of an internal space is
useful in this context and that a discrete Z2 symmetry can appear. I start by following [32] with an
example of even dimensional (2n) electrodynamics. Let A be a general (n− 1) form and Fk1,...,kn its
associated field strength:

Fk1,...,kn = ∂[kn Ak1,...,kn−1]
(60)

∗ Fk1,...,kn =
1
n!

εk1,...,k2n Fkn+1,...,k2n (61)

Given the action, the equation of motion and the Bianchi identity as:

S = −cn

∫
d2nxFk1,...,kn Fk1,...,kn (62)

∂k1 Fk1,...,kn = 0 (63)

∂k1 ∗ Fk1,...,kn = 0 (64)

(cn is a constant, k j is the tensorial index), we can see that at the level of the Bianchi identity and the
equation of motion, the dual operation is a symmetry. Nevertheless, in general, the second power of
the dual operation has a different structure depending on the dimension of the space:

∗ ∗F =

{
F i f D = 4k− 2
−F i f D = 4k

(65)

As one can see, the dual * is not well defined for the two-dimensional (2D) scalar or for the
4k-2-dimensional extensions. Its definition has been enlarged [32] by making an internal structure of
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the potentials in the theory manifest. One should note that this has been achieved by using a canonical
transformation and that the same can be achieved via BRST. I will enlarge the set of fields (alternatively
the Hilbert space) by giving them an internal structure of the form (α, β). The dual operation is now
defined as:

F̃α = εαβ ∗ Fβ, D = 4k (66)

F̃α = σ
αβ
1 ∗ Fβ, D = 4k− 2 (67)

˜̃F = F (68)

σ
αβ
1 being the first Pauli matrix. In this case, self- and anti-self-dualities are well defined in any

D = 2k-dimensional space. One can start with the first order form of the theory:

S =
∫

dDx[Π · Ȧ− 1
2

Π ·Π− 1
2

B · B + A0(∂ ·Π)] (69)

Maxwell’s Gauss constraint can be generalized to be precisely the extended curl (ε∂) = εk1k2...kD−1 ∂kD−1 .
Then:

Π = (ε∂) · φ (70)

B = (ε∂) · A (71)

where φ is a ( d
2 − 1)-form potential, A is a generalization of the vector potential and A0 is the general

multiplier that enforces the Gauss constraint; the antisymmetrization of ∂ is defined as:

(ε∂) = εk1k2...kD−1 ∂kD−1 (72)

and in general, the notation:
Φ ·Ψ = Φ[k1...kD−1]

Ψ[k1...kD−1]
(73)

is used to imply antisymmetrization via the brackets. Now, I construct an internal space of potentials
where duality symmetry is manifest (Φ+ and Φ− represent the new field structure). The dual projection
can be defined now as a canonical transformation of the fields in the following way:

A = (Φ+ + Φ−) (74)

Π = η(ε∂)(Φ(+) −Φ(−)) (75)

η = ±1 (76)

The action can be rewritten in terms of these fields as:

S =
∫

dDx{η[Φ̇(α)σ
αβ
3 B(β) + Φ̇(α)εαβB(β)]− B(β) · B(β)

where B(β) = (ε∂ ·Φ(β)) and σ
(αβ)
3 and σ

(αβ)
2 = iε(αβ) are the Pauli matrices. We see that the symplectic

part factorizes in two parts: one involving the third Pauli matrix and the other one the second Pauli
matrix. For a dimension D = 4k, the first term is the generalization of the 2D chiral bosons. The Z2

symmetry manifests itself in the transformation Φ(±) ←→ Φ(∓). The second term becomes a total
derivative. For D = 2K, the first term becomes a total derivative, and the second term explicitly
shows the symmetry of SO(2). Although the complete diagonalization of the action in 3D cannot be
done in coordinate space, a dual projection is possible in the momentum space [32]. Let me introduce
a two-basis {êa(k, x), a = 1, 2} with (k, x) being conjugate variables and the orthonormalization
condition given as: ∫

dxêa(k, x)êb(k′, x) = δabδ(k, k′) (77)
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The vectors in the basis can be chosen to be eigenvectors of the Laplacian, ∇2 = ∂∂ and:

∇2 êa(k, x) = −ω2(k)êa(k, x) (78)

The action of ∂ over the êa(k, x) basis is:

∂êa(k, x) = ω(k)Mab êb(k, x) (79)

The two previous equations give:
M̃M = −I (80)

where M̃ab = Mba. The canonical scalar and its conjugate momentum have the following expansion:

Φ(x) =
∫

dkqa(k)êa(k, x) (81)

Π(x) =
∫

dkpa(k)êa(k, x) (82)

where qa and pa are the expansion coefficients. The action appears in this representation as a
two-dimensional oscillator. The phase space is now four-dimensional, representing two degrees
of freedom per mode,

S =
∫

dk{pa q̇a −
1
2

pa pa −
ω2

2
qaqa} (83)

now, we can introduce the following canonical transformation:

pa(k) = ω(k)εab(ϕ
(+)
b − ϕ

(−)
b ) (84)

qa(k) = (ϕ
(+)
a + ϕ

(−)
a ) (85)

The action becomes S = S+ + S− where:

S± =
∫

dkω(k)(±q̇aεabqb −ω(k)qaqa) (86)

As expected, this action presents the Z2 symmetry under the transformation ϕα
a → σ

αβ
1 ϕ

β
a .

This is a particular example. However, the field-anti-field prescription used in the main paper has
practically a similar role and is defined in general. It generates a symplectic even dimensional field
space suitable for quantization. It also defines analogues for the Hodge-* operators.

5. Hodge Star as a Discrete Symmetry

For an example of how the Hodge star induces a discrete symmetry, I follow [33–35]. The main
idea there was to represent the Hodge decomposition operators (d, δ, ∆) as some symmetries of a
given BRST invariant Lagrangian of a gauge theory. In general, the Hodge decomposition theorem
(see Appendix B) states that on a compact manifold, any n-form fn(n = 0, 1, 2, ...) can be uniquely
represented as the sum of a harmonic form hn(∆hn = 0, dhn = 0, δhn = 0), an exact form den−1 and a
co-exact form δcn+1 as:

fn = hn + den+1 + δcn+1 (87)

where here, d is the exterior derivative, δ is its dual and ∆ is the Laplacian operator ∆ = dδ + δd.
In order to identify the dual BRST transformation, one has to observe that while the direct BRST
transformations leave the two form F = dA in the construction of a gauge theory invariant and
transform the Dirac fields like a local gauge transformation, the dual-BRST transformations leave
the previous gauge fixing term invariant and transform the Dirac fields like a chiral transformation.
Therefore, as a practical example, I can start like the authors of [35] from a BRST invariant Lagrangian
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for Quantum Electrodynamics (QED) noting that generalizations for non-abelian gauge theories with
interactions exist in the literature, as well.

LB = −1
4

FµνFµν + ψ̄(iγµ∂µ −m)ψ− eψ̄γµ Aµψ + B(∂A) +
1
2

B2 − i∂µC̄∂µC (88)

Fµν being the field strength tensor; B is the Nakanishi–Lautrup auxiliary field; and C, C̄ are the
anticommuting ghosts. The BRST transformations that leave this Lagrangian invariant are:

δB Aµ = η∂µC δBψ = −iηeCψ

δBC = 0 δBC̄ = iηB
δBψ̄ = iηeCψ̄ δBFµν = 0
δB(∂A) = η�C δBB = 0

(89)

where η is an anticommuting space-time independent transformation parameter. Particularizing for
the two-dimensional case, the Lagrangian becomes:

LB = −1
2

E2 + ψ̄(iγµ∂µ −m)ψ− eψ̄γµ Aµψ + B(∂A) +
1
2

B2 − i∂µC̄∂µC (90)

and this can be rewritten after introducing another auxiliary field B as:

LB = BE− 1
2
B2 + ψ̄(iγµ∂µ −m)ψ− eψ̄γµ Aµψ + B(∂A) +

1
2

B2 − i∂µC̄∂µC (91)

The dual BRST symmetry operators to be associated with the theory above in the two-dimensional
case are [35]:

δD Aµ = −ηεµν∂νC̄ δDψ = −iηeC̄γ5ψ

δDC = −iηB δDC̄ = 0
δDψ̄ = iηeC̄γ5ψ̄ δDFµν = η�C̄
δD(∂A) = 0 δDB = 0
δDB = 0

(92)

Moreover, as noted in [35], the interacting Lagrangian in two dimensions is invariant under the
following transformations:

C → ±iγ5C̄ C̄ → ±iγ5C
B → ∓iγ5B A0 → ±iγ5 A1

A1 → ±iγ5 A0 B→ ∓iγ5B
E→ ±iγ5(∂A) (∂A)→ ±iγ5E
e→ ∓ie ψ→ ψ

ψ̄→ ψ̄

(93)

The work in [35] shows that these are the analogues of the Hodge duality (∗) for this particular
example and that they induce a discrete symmetry. One can also verify that:

∗ (∗Φ) = ±Φ (94)

where for (+), the generic field Φ is ψ, ψ̄, and for, (−) Φ represents the rest of the fields. One can also
observe that for the direct and dual BRST symmetries:

δDΦ = ± ∗ δB ∗Φ (95)

is valid. It has been known before that the above statements are valid for any even dimensional
theory [35], and applications for D = 4, (3, 1) and D = 6 dimensional theories have been given.
However, combining the ideas presented in Section 2 with the observations in [33] and some
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theorems of algebraic topology and geometry, one can generalize the applicability of this method
to any dimension. While it is true that in some cases, non-local transformations emerge during the
intermediate steps ([35–38]), the method described in this paper is simply a mathematical trick that
allows the extension of the initial (ill-defined) theories to theories with no sign problems, so the
physical meaning of the artificial transformations that are meant to eliminate the unphysical anomalies
is irrelevant. Nevertheless, the resulting discrete symmetries of the extended (and well-defined) theory
are tied to the discrete symmetries of the fermionic systems such as charge conjugation, parity or time
reversal. These play a major role in the classification of the topological insulators or semiconductors,
and therefore, the anomaly-free theory of a single Weyl doublet may lead to new insights regarding
previously unknown topological phases. This article therefore provides a theoretical background for
potentially new experimental discoveries related to condensed matter systems and their topological
phases.

6. Atiyah–Singer Index Theorem and Cohomology

Up to this point, I employed, as a basic tool for the current construction, auxiliary fields of
various types. These were introduced in order to construct a “theoretical measuring device” more
suitable for theories presenting global anomalies and specifically for theories subject to an SU(2)
anomaly. I showed in the sections above that fictitious internal circular spaces may induce artificial
discrete symmetries. These concepts have a direct analogy in the domain of (co)homology with
torsion coefficient groups. In categorical terms, the connection between the construction using
auxiliary fields and the construction using torsion coefficient groups can be written as the following
commuting diagram:

F
n
S(M) F

2n
S (M′)

Hp(C,Z) Hp(C,G)

h

i j

h∗

(96)

Here, F n
S(M) is the space of physical solutions of the theory containing an initial number n of fields

while F 2n
S (M′) is the space of physical solutions for the theory obtained via the introduction of new

auxiliary fields such that the required internal “circular” space emerges. This space contains the
required topological particularity introduced via the employment of the auxiliary fields. It must be
specified that the morphism in the lower arrow requires the use of the universal coefficient theorem.
The upper arrow morphism is valid when we talk about the physical domain of the theory. G is
a torsion group, e.g., Zp. If Ext and/or Tor are being taken into account in the construction of the
respective spaces, the horizontal arrows become isomorphisms.

Simply stated, if we have a module M over a ring R, an element m ∈ M is called a torsion element
of the module if there exists a regular element r ∈ R (not a zero divisor) such that r ◦m = 0. In the
case of a group G, an element g ∈ G is called a torsion element of the group if it has finite order, i.e.,
if there is a positive integer m such that gm = e, e being the Id element of G. A (sub)-group is called
torsion (sub)-group (or circular or periodic) if all of its elements are torsion elements. Examples are
Zp-groups with p-prime.

In this section, I briefly introduce the Atiyah–Singer index theorem in the context of the
Hodge–de-Rham theory. This is being done following mainly [39]. I also construct an analogy
between the method presented above and the cohomology with coefficients in groups with torsion. By
using the isomorphism between the de-Rham cohomology group and the group of harmonic functions
(∆φ = 0, ∆ = dδ + δd) over a closed manifold, I introduce the general form for index theorems, i.e.,
a connection between an index calculated in a topological, respectively an analytical, fashion. The
presence of torsion in the coefficient structure of the cohomology, while preserving the isomorphism
between cohomology and the group of harmonic functions (a result of the second Hodge theorem),
also reflects the effect of an “internal circular space” as presented in the previous section from the
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perspective of index theorems. As I will show in what follows, different choices of coefficient groups
may merge or dissociate classes in the cohomology groups. Due to the isomorphism with the group of
harmonic forms, the same effect will be found on the analytic side of the index theorems. The universal
coefficient theorems assure us that the choice of a rather unusual coefficient group has no physical
effects if the Ext and/or Tor groups are correctly considered in the chain complex. For this, I follow
my previous result regarding the relativity of anomalies [14]. For the sake of completeness, I state here
the following:

Theorem 1 (The universal coefficient theorem [14,18]). If C is a chain complex of free abelian groups, then
there are natural short exact sequences:

0→ Hn(C)⊗ G → Hn(C; G)→ Tor(Hn−1(C), G)→ 0 (97)

∀ n, G, and these sequences split. Here, Tor(Hn−1(C), G) is the torsion group associated with the homology.
In this way, homology with arbitrary coefficients can be described in terms of homology with the “universal”
coefficient group Z. For cohomology, the exact sequence changes into:

0→ Ext(Hn−1(C∗), G)→ Hn(C∗; G)→ Hom(Hn(C∗), G)→ 0 (98)

Here, Ext is the group extension.

Relevant for the situation at hand is the following.

Example 1 (Homotopy and coefficient group [14,18]). Take a Moore space M(Zm, n) obtained from Sn

by attaching a cell en+1 by a map of degree m. The quotient map f : X → X/Sn = Sn+1 induces trivial
homomorphisms on the reduced homology with Z coefficients since the nonzero reduced homology groups of X
and Sn+1 occur in different dimensions. However, with Zm coefficients, the situation changes, as we can see
considering the long exact sequence of the pair (X, Sn), which contains the segment:

0 = H̃n+1(Sn;Zm)→ H̃n+1(X;Zm)
f∗−→ H̃n+1(X/Sn;Zm) (99)

Exactness requires that f∗ is injective, hence non-zero, since H̃n+1(X;Zm) is Zm, the cellular boundary map:

Hn+1(Xn+1, Xn;Zm)→ Hn(Xn, Xn−1;Zm) (100)

being exactly:
Zm

m−→ Zm (101)

One can see that a map f : X → Y can have induced maps f∗ that are trivial for homology with Z coefficients, but
not so for homology with Zm coefficients for suitably chosen m. This means that homology with Zm coefficients
can tell us that f is not homotopic to a constant map, information that would remain invisible if one used only Z
coefficients.

This relatively simple example shows that torsion coefficient groups are in some sense “measuring
devices” that allow us to consistently take into account global properties without inconsistencies.

Following [14], it is precisely the Tor/Ext correction that has an important effect on the presence
of a sign ambiguity (an SU(2) anomaly). It is relevant at this point to remember that because on a
compact Riemannian orientable manifold M, the cohomology group Hp

DR(M) is isomorphic to the
group of harmonic forms on M, Harmp(M), the two groups have the same dimension, hence:

dim(Hp
DR(M)) = dim(Harmp(M)) = bp(M) (102)

where bp(M) is the Betti number of M.
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We can define the exterior derivative d and the co-differential δ as adjoint to each other. On the
ring of differential forms, Λ(M) on M the action of d induces a sequence:

0→ Λ0(M)
d0−→ Λ1(M)

d1−→ ...
dn−1−−→ Λn(M)

dn−→ 0 (103)

The co-differential generates another sequence of arrows oriented this time in the opposite direction:

...← Λi−1(M)
δi−1←−− Λi(M)

δi←− Λi+1(M)
δi+1←−− ... (104)

We now have:
(diα, β) = (α, δiβ), α ∈ Λi(M), β ∈ Λi+1(M) (105)

Neither of these sequences is exact, i.e., Ker(di) 6= Im(di−1) and similarly for δ. However, Im(di−1) ⊂
Ker(di) or equivalently d2 = 0. This means that the first sequence is a de-Rham complex. To this
complex, we can associate the de-Rham cohomology groups, which measure the lack of exactness of
the sequence:

Hi
DR(M, R) = Ker(di)/Im(di−1) (106)

We define α ∈ Λi(M) to be co-closed (resp. co-exact) if α ∈ Ker(δi−1) (resp. α ∈ Im(δi)). We also can
define the homogeneous Hodge–de-Rham operator ∆ = (d + δ)2. We then obtain on α ∈ Λi(M):

∆i = δidi + di−1δi−1 (107)

Lets now assume that the (i + 1)-form β can be expressed as δi+1β′, β′ ∈ Λi+2(M). If this is so, the
product (diα, δi+1β′) is zero. Proceeding as in the previous section where the Hodge decomposition
has been introduced, we conclude that:

Im(di−1)⊥ Im(δi)⊥Ker(∆i) (108)

or, in other words, that Λi(M) has a unique splitting of the form:

Λi(M) = Im(di−1)⊕ Im(δi)⊕ Ker(∆i) (109)

and consequently, since Ker(∆i) = Harmi(M), we have:

αi = di−1αi−1 + δiαi+1 + hi, α ∈ Λi(M) (110)

where hi is a harmonic i-form ∆ih = 0. Every i-th de-Rham cohomology class is represented by one
and only one harmonic form:

Hi
DR(M, R) = Ker(∆i) = Ker(di)/Im(di−1) (111)

If the analytic index of the de-Rham complex is now the integer defined by the alternating sum:

index(Λ(M), d) = ∑
i
(−)idim(Ker(∆i)) (112)

we find:

index(Λ(M), d) =
N

∑
i=0

(−)ibi(M) = χ(M) =
∫

M
e(TM) (113)

Here, e(TM) is the Euler class of the tangent bundle to M. The right-hand side of this expression is of
a topological nature: it is a topological index. If M is odd-dimensional, index(Λ(Modd), d) = 0 since
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χ(Modd) = 0. This remains true for index theorems of other differential operators. We may note that ∆
and d + δ have the same kernel (a harmonic form is closed and co-closed). Let us split:

Λ(M) = Λeven(M)⊕Λodd(M) (114)

into even and odd forms:
Λeven(M) =

⊕
i Λ2i(M)

Λodd(M) =
⊕

i Λ2i+1(M)
(115)

Let D+ and D− be the operators defined by:

D+ = D = ∑i(d2i + δ2i−1)

D− = D† = ∑i(d2i−1 + δ2i)
(116)

Then, D is a mapping:
D : Λeven(M)→ Λodd(M) (117)

defined as:
D(α(0), α(2), α(4), ...) = (d0α(0) + d1α(2), d2α(2) + d3α(4), ...) (118)

Its adjoint D† is a mapping:
D† : Λodd(M)→ Λeven(M) (119)

The associated Laplacians are given by:

∆+ = D†D = ∑i ∆2i
∆− = DD† = ∑i ∆2i−1

(120)

Thus, we can replace the definition of the analytical index of the de-Rham complex by:

index(Λ(M), D) = dim(Ker(∆+))− dim(Ker(∆−)) (121)

or equivalently by:
index(Λ(M), D) = dim(Ker(D))− dim(Ker(D†)) (122)

since:
Ker(∆+) = Ker(D†D) = Ker(D)

Ker(∆−) = Ker(DD†) = Ker(D†)
(123)

In fact, Im(D) (resp. Ker(D)) is the orthogonal complement of Ker(D†) (resp. Im(D†)). We also
have that:

CoKer(D) = Λodd/Im(D) = Ker(D†) (124)

and hence, the analytic index may be given as:

index(Λ(M), D) = dim(Ker(D))− dim(CoKer(D)) (125)

The form of the analytic index for the de-Rham complex is not specific to this case. To see what it
has in common with the index theorem for other complexes, let us look at its general structure. First,
we notice that the de-Rham sequence should have been written:

0→ Γ(M, E0)→ Γ(M, E1)→ ...→ Γ(M, Ei)
Di−→ Γ(M, Ei+1)→ ...→ Γ(M, En)

Dn−→ 0 (126)

where Γ(M, Ei) is the module of cross-sections of the vector bundle Ei = ΛiT∗M since the differential
i-forms of Λi(M) may be regarded as sections of the vector bundle ΛiT∗M. The writing of the above
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sequence requires the existence of a differential operator of degree one acting on a sequence of sections
of vector bundles Ei such that Di+1 ◦ Di = 0. With this, the sequence qualifies as a complex.

Secondly, the fact that the expression:

index(Λ(M), d) = ∑(−)idim(Ker(∆i)) (127)

was a well-defined one was guaranteed by the nature of the Laplacian operator ∆ = (d + δ)2, the
kernel of which is finite dimensional. This is a consequence of the fact that ∆ is an elliptic operator.

An elliptic operator defined on a compact manifold has a finite-dimensional kernel and co-kernel,
and expressions of the type:

index(Λ(M), D) = dim(Ker(D))− dim(CoKer(D)) (128)

are well defined for them.
Looking at the de-Rham complex on the compact boundaryless manifold M, we conclude that it

is an elliptic complex since its associated Laplacians are elliptic. Let E be a vector bundle. An elliptic
complex (E, D) is a finite sequence of differential operators Di : Γ(M, Ei) → Γ(M, Ei+1) acting on
smooth sections, such that Di+1 ◦ Di = 0, and the Laplacians of the complex ∆i = D†

i Di + Di−1D†
i−1,

where D†
i is the adjoint operator with respect to the scalar product on the fibres with a smooth density

on M, are elliptic on Γ(M, Ei).
Since (Di+1 ◦ Di)

† = D†
i ◦ D†

i+1, it follows that if the complex (Γ(M, Ei), Di) is elliptic, so is the
complex (Γ(M, Ei+1), D+

i ) where the arrows point in the opposite direction. To relate this picture to
the form of the index for a de-Rham complex, we have to reduce the elliptic complex to a two-term
elliptic complex (to roll up the complex) and see that the new complex has the same index as the
original one (Γ(M, E), D). This is where the comparison with the previous equations for the index
comes in. Defining the even and odd bundles Eeven =

⊕
i E2i, Eodd =

⊕
i E2i+1:

Γ(M, Eeven) =
⊕

i Γ(M, E2i), Γ(M, Eodd) =
⊕

i Γ(M, E2i+1)

D =
⊕

i(D2i + D†
2i−1), D† =

⊕
i(D2i−1 + D†

2i)
(129)

and the associated Laplacian:
∆i = D†

i Di + Di−1D†
i−1

∆+ = ∑i ∆2i = D†D
∆− = ∑i ∆2i−1 = DD†

(130)

The analytical index of an elliptic complex (Γ(M, E), D) is defined to be the integer:

index(Γ(M, E), D) = ∑
i
(−)idim(Ker(∆i)) = dim(Ker(∆+))− dim(Ker(∆−)) (131)

We note that the differential operator defining a complex, the Riemannian scalar product defining
its adjoint and the ellipticity property, which guarantees that the rhs of the equation above is well
defined (an integer), are the ingredients for the definition of an index of a compact manifold. In order
to have a non-trivial index, the operator D cannot be self-adjoint. The Atiyah–Singer index theorem
states that the analytic index is equal to the topological index of the complex, which is given by the rhs
in the formula of the Atiyah–Singer index theorem. The statement of this theorem is as follows:

Let (Γ(M, E), D) be an elliptic complex over a compact boundaryless manifold M of even
dimension n. Then, the index of the complex is given by:

index(Γ(M, E), D) = (−)n(n+1)/2
∫

M
ch(

n⊕
i=0

(−)iEi)
Td(TMC)

e(TM)
(132)
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Td(TMC) is the Todd class of the complexified tangent bundle TMC and e(TM) is the Euler class. In
the above integrand, only n-forms are retained. If the manifold is odd-dimensional, the index of the
differential operator D is zero. Due to this trivial situation, it makes sense to go to an even-dimensional
field-space as explained in the BRST-dual-BRST construction of the previous sections.

At this moment, we can see how the main construction of this article affects the Atiyah–Singer
theorem. The next splitting due to the Kahler structure introduced over the field space gives:

T(1,0) = {v ∈ TxMC|Jx(v) = iv}; T(0,1) = {v ∈ TxMC|Jx(v) = −iv} (133)

The isomorphism between the cohomology group and the group of harmonic forms is preserved. The
introduction of a Kahler structure over the field space has two effects. First, it allows the construction
of an explicit internal circular space and second; it allows a different splitting, one that dissociates the
two different signs that can arise when a large gauge transformation is performed. We can repeat the
same discussion as above, only this time with a non-trivial coefficient structure in cohomology. In fact,
one can choose the torsion of the coefficient groups in cohomology such that they compensate precisely
the topological properties of the SU(2) group. If, for example, the coefficient group in cohomology is
Z2, the two regions of positive and negative eigenvalues that make the path integral associated with
the SU(2) problem inconsistent become properly separated. The coefficient group in cohomology
now contains different classes. The isomorphism between the cohomology group and the group of
harmonic forms on M was until now understood as:

Hp
DR(M;Z) ∼= Harmp(M;Z) (134)

The universal coefficient theorem assures us that we can use a different coefficient group. One choice
then is:

Hp
DR(M;Z2) ∼= Harmp(M;Z2) (135)

This choice can be used such that the distinction between the two regions of different signs is made
explicit. Let us now take the dimension of the above construction. As the isomorphism is preserved,
the dimensions of the two groups will be the same, albeit different from the case above. Indeed:

dim(Hp
DR(M;Z2)) = dim(Harmp(M;Z2)) = bp(M)Z2 (136)

The introduction of inner space circular integration paths is translated in coefficient groups in
cohomology. This leads to a reorganization of the integration such that, simply stated,

{i1, i2, ..., in}︸ ︷︷ ︸
±1

→ {(i1, ..., iq)︸ ︷︷ ︸
−1

, (iq+1, ..., in)︸ ︷︷ ︸
+1

} (137)

where ip represent points on the non-trivial manifold where the integration is performed in the two
cases (with trivial coefficient group and with Z2 coefficient group). If the first subset on the right is
characterized by a positive sign and the second by a negative sign, then the specific choice of a torsional
(periodic) coefficient group in cohomology makes the two domains clearly separated and well indexed.
I explained in the Introduction of this article the origin of the Bose–Einstein and Fermi–Dirac statistics
as a result of how the topology of the quotient space X/Sn where Sn is the symmetry group changes
with respect to the original space X. While the two spaces remain isomorphic, the global properties
differ according to the number of dimensions considered. It is interesting to see how it is possible
to relate the case with dim(X) = 1, 2 to the case dim(X) ≥ 3. Indeed, in dimensions larger than two,
performing two rotations around a singularity brings us to a curve that can be homotopically deformed
into a point. However, the integration is sensible to homology and cohomology. In principle, the
homology groups Hk(C) of a chain complex C relate to the shape of the manifold. The cohomology
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groups Hk(C) relate to the differential forms defined over a manifold. Hence, if we have a manifold M
characterized by a sequence of homology groups, then one can define the integral:∫

M
ω (138)

as being characterized by the differential form ω and by the manifold M. Integration can be seen as
the pairing:

Hk(M,R)× Hk(M,R)→ R (139)

such that:
([M], [ω])→

∫
M

ω (140)

where this pairing is constructed with real coefficients and this coefficient structure characterizes
also the measure of integration and implicitly the differential form ω. Here, [M] represents a class
in homology, and [ω] represents a class in cohomology. The pairing above is an isomorphism only
when this particular choice of coefficients is made. For other coefficients, this pairing may fail to be an
isomorphism, the correction being controlled by the Ext and Tor groups. The pairing then becomes:

Hk(M,G)× Hk(M,G)→ G (141)

The same principle translates for functional integration in the partition function. Because of this, the
case for dim ≥ 3 is anomalous only if certain unsuitable choices of coefficient groups in (co)homology
are made. Otherwise, the integration (which is seen as a pairing between (co)homology) is itself
defined via a torsion coefficient group, which acts as an “anti-anomaly”. The physical aspects of the
original theory are however preserved, in the Tor group, albeit not in an explicit way.

7. Conclusions

This paper proposes a potential theoretical tool capable to explain why hedgehog structures
may be found experimentally. It also opens new perspectives on quantum computing via deconfined
hedgehogs obeying non-abelian statistics [40]. Although this paper does not solve all problems related
to the practical construction of topological quantum computers, it makes the concept theoretically
plausible. On the theoretical side, the conclusion of this article is that global, topological anomalies
are a reflection of the fact that unsuitable topological “measuring tools” are being used. These “tools”
are analogous to the coefficient groups in (co)homology. The choice of those coefficient groups is
arbitrary in the sense that universal coefficient theorems relate (co)homologies with various coefficient
structures. Some of these choices can make the theories well defined over non-trivial topologies. On the
condensed matter side, the classification of all possible Majorana zero-modes in the disordered systems
of any dimension has been done by means of a K-theoretical analysis in the context of topological
insulators and semiconductors [16]. There it has also been mentioned that adding additional structure
to the system leads to potential lifting of certain global anomalies. In this article, the additional
structure is added in two mathematically different, but physically equivalent ways: by means of the
BRST-dual-BRST extension and by means of a non-trivial coefficient structure in cohomology. Both
methods amount to the same effect: the point-structure is endowed with additional algebraic structure.
Such a structure allows us to investigate the properties of the material relying on theories that would
be ill-defined in its absence. The main example here is a system with an odd number of Weyl doublets.
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Appendix A. Kahler Manifolds and the Field-Anti-Field Formalism

The main ideas of this paper (symmetry out of cohomology and dual gauge fixing) define a new
way in which symmetry can be regarded. Instead of regarding symmetry as given by nature, here,
some discrete symmetries are considered as artificial tools that can be added and removed from the
theory. In order to make this clear, I used the field-anti-field formalism, a mathematical construction
that relies on the Batalin–Vilkovisky quantization prescription.

This is a method that has been widely used in quantum gravity and string (field) theory.
Nevertheless, this work does not rely on any string theory or quantum gravity assumptions and
is completely self-consistent in the context of gauge theories and quantum field theories (although new
applications to string theory are not excluded). Essentially, any theory can be extended by following
the field-anti-field prescription. The resulting theory, equivalent to the previous one (dual), can be
constructed in such a way that a Kahler structure becomes manifest [41].

As has been shown in [42], the field-anti-field and the anti-bracket formalisms have a geometrical
interpretation. The Batalin–Vilkovisky formalism has also been set up for curved supermanifolds of
fields and anti-fields with a fermionic symplectic structure [43]. Once a Kahler structure is introduced,
the symplectic structure is reduced to that given by a fermionic Kahler two-form [41,42].

The specific way in which the new structure is induced is by introducing a set of auxiliary fields
that can be seen as shifts in the field space. After performing two shifts, one obtains a BRST-anti-BRST
structure constructed in a way that enforces the Schwinger–Dyson equations as Ward identities. In
general, the Schwinger–Dyson equations are the quantum equations of motion. They are derived as a
consequence of the generalization to path integrals of the invariance of an integral under a redefinition
of the integration variable from x to x + a. The BRST-anti-BRST symmetry was used in order to enforce
precisely this at the level of Ward identities. The dual symmetry is obtained analogously by using an
internal space. Precisely, this method of finite shifting in the field space ensures that no divergencies in
any of the kernel momenta appear due to this procedure. In fact, the resulting object can be regarded
as being shifted (in some directions defined for some artificial well-behaving internal spaces), and
finite shifts are not expected to alter the momenta of the kernel (variance, etc.).

It is also important to ensure that the field transformations provide the required form for the
Jacobian. This is clear from the way in which the field structure is constructed: auxiliary fields are
introduced in the sense of the field-anti-field formalism in pairs such that the overall field space
becomes Kahlerian. As will be shown in the next section of this Supplemental Material, the Kahlerian
structure is by definition one that assures a time-reversal-type symmetry on the field structure and on
the Jacobian, and this structure is encoded in the field-anti-field formalism.

Of course, the discrete symmetry emerges after one performs two transformations with the
ultimate goal of obtaining a BRST-anti-BRST symmetry together with the associated dual symmetry.
One can also ask if it is possible to perform other transformations that change the Jacobian in a different
way. The answer is of course yes, but the final symmetry must be obtained for the entire structure,
i.e., the action and the integration measure. Performing the transformation as specified in Section 2
and compensating every time for the transformations of the measure will produce the same Kahler
structure and the same “time-reversal-type” symmetry, which will result in the same global symmetry
for the resulting determinant [41].

In order to be more specific, let me focus on a general example. Let [dq] be my initial measure,
Ga a transformation of the fields and S[q] be my action. [dq] is assumed not to be invariant under Ga.
By construction, S[q] is considered invariant and so will also be S′[q′, a] where a is the parameter of
the transformation. One assumes the integration over a as being trivial. Performing the change in
variables q→ q′ will affect [dq]. The resulting transformation will be:∫

[dq]→
∫
[dq′]det| ∂qi

∂q′j
| =

∫
[dq′]det(Mij) (A1)
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Here, the measure [dq′] is not invariant under the gauge transformations. The determinant of
the transformation is also not invariant, but the invariance is recovered when one combines the two
transformations. Then, the gauge fixing procedure can be performed, and one obtains the emerging
global (anti-)BRST symmetry. Please note that at this level, the Jacobian has no special discrete
symmetry. On the dual “branch”, one can do the same thing obtaining the dual-(anti-)BRST symmetry.
Only after generating the internal space over which one defines the dual BRST symmetry one can
define the Hodge star operation, which induces a discrete time-reversal-type symmetry over the entire
field space and implicitly over the resulting block-determinant.

In order to improve on clarity, let us think in the terms of the field-anti-field formalism. For the
sake of simplicity, the field space can be regarded as a D-dimensional manifold parametrized by real
coordinates yi = (y1, y2, ..., yD). After performing the field extension in the sense of Batalin–Vilkovisky,
the space is extended to a 2D dimensional manifold of the form yi = (x1, x2, ..., xD, ξ1, ξ2, ..., ξD), where
x are the bosonic and ξ are the fermionic coordinates. Now, the space has a symplectic structure given
by a closed non-degenerate two-form:

ω = dyj ∧ dyiωij (A2)

dω = 0 (A3)

Finally, an anti-bracket structure emerges:

{A, B} = A
←−
∂ iω

ij∂jB (A4)

By introducing the internal space in the way explained in Section 2, one extends the space again. Now,
D = 2d, and a Hodge star operation (and its associated duality) becomes well defined. Having the
Kahler structure defined by the tensor:

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 (A5)

and going to a complex coordinate basis:

za = (zα, ζα) z̄a = (z̄α, ζ̄α), α = 1, 2, ..., d (A6)

zα = xα + ixd+α ζα = ξα + iξd+α (A7)

we obtain a supermanifold with a Kahlerian geometry and an equivalent change in the representation
of the anti-bracket. Following [44] (for the sake of brevity, I will not perform the calculations here
again), the change in the metric, which amounts to the redefinition of the Poisson bracket (generalized
to the anti-bracket in our situation):

{ f , g} = ∑
αβ

Ωα,β ∂ f
∂ηα

∂g
∂ηβ

(A8)

modifies the expression of the integration measure taking the change of the metric in the definition
of the anti-bracket and mapping it onto the structure of the resulting global block-determinant (see
Equations (11)–(15) and (17)–(18) of [44]). This ensures that the discrete symmetry affects the resulting
determinant in the desired way.

Another way of looking at this discrete symmetry is to consider it as induced by the antipode of
a Hopf-algebra (the vector space analogue of the Hodge star). Only after one constructs the global
BRST-anti-BRST and dual-BRST-anti-BRST symmetries will the discrete symmetry emerge, and the
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method of constructing the first two symmetries already implies the inclusion of the Jacobian of the
considered transformations in obtaining the final symmetries involving the action, as well as the
measure of integration (see [21,45]).

As an interlude, one may observe that here, I used the cohomology and Hodge duality in order to
generate a discrete symmetry. Further symmetries could be obtained considering other topological
properties like cobordism or Morse-surgery.

Appendix B. Mathematical Aspects of Kahler Manifolds

This section is a short review of some relevant aspects related to the Kahler manifolds. More
general discussions can be found in [41,46,47]. Having a differential manifold M and a tensor of type
(1, 1) J such that ∀p ∈ M, J2

p = −1, the tensor J will give a structure to M with the property that the
eigenvalues of it will be of the form ±i. This means that Jp is an even dimensional matrix and M is an
even manifold. From the same definition, it follows that Jp can divide the complexified tangent space
at p into two disjoint vector subspaces:

Tp MC = Tp M+ ⊕ Tp M− (A9)

Tp M± = {Z ∈ Tp MC|JpZ = ±iZ} (A10)

One can introduce two projection operators of the form:

P± : Tp MC → Tp M± (A11)

P± =
1
2
(1± i Jp) (A12)

which will decompose Z as Z = Z+ + Z−. This construction will generate a holomorphic and an
antiholomorphic sector: Z± = P±Z ∈ Tp M±, Tp M+ being the holomorphic sector. A complex
manifold appears when demanding that given two intersecting charts (Ui, γi) and (Uj, γj), the
map ψij = γjγ

−1
i from γi(Ui ∩ Uj) to γi(Ui ∩ Uj) is holomorphic. Here, γi and γj are chart

homeomorphisms, and ψij is the transition map. In this case, the complex structure is given
independently from the chart by:

Jp =

(
0 1
−1 0

)
∀p ∈ M (A13)

In the complex case, there is a unique chart-independent decomposition in holomorphic and
antiholomorphic parts. This means we can now choose as a local basis for those subspaces the
vector ( ∂

∂zµ , ∂
∂z̄µ ) where (zµ, z̄µ) are the complex coordinates such that the complex structure becomes:

Jp =

(
i1 0
0 −i1

)
∀p ∈ M (A14)

If we add a Riemannian metric g to the complex manifold and demand that the metric satisfies
gp(JpX, JpY) = gp(X, Y), ∀p ∈ M and X, Y ∈ Tp M, then the metric is called Hermitian and M is called
a Hermitian manifold. A complex manifold always admits a Hermitian metric. Using the base vectors
of the complexified Tp MC, we can always write the metric locally as:

g = gµν̄dzµ ⊗ dz̄ν + gµ̄νdz̄µ ⊗ dzν (A15)
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If we have a Hermitian manifold (M, g) with g Hermitian metric and a fundamental two-tensor Ω
whose action on vectors X and Y ∈ Tp M is:

Ωp(X, Y) = gp(JpX, Y) (A16)

then we call Ωp(X, Y) a Kahler form. With this definition, the Kahler form has some very useful
properties. Firstly, it is antisymmetric:

Ω(X, Y) = g(J2X, JY) = −g(X, JY) = −Ω(Y, X) (A17)

Then, it is invariant under the action of the complex structure:

Ω(JX, JY) = Ω(X, Y) (A18)

and under complexification:
Ωµν = igµν = 0 (A19)

Ωµ̄ν̄ = igµ̄ν̄ = 0 (A20)

Ωµν̄ = −Ων̄µ = igµν̄ (A21)

thus leading to:
Ω = igµν̄dzµ ∧ dz̄ν (A22)

A Kahler manifold is a Hermitian manifold (M, g) whose Kahler form Ω is closed (dΩ = 0). g is called
a Kahler metric. The closing condition defines a differential equation for the metric.

dΩ = (δ + δ̄)igµν̄dzµ ∧ dz̄ν = (A23)

i
2
(δλgµν̄dzλ ∧ dzµ ∧ dz̄ν) +

i
2
(δλ̄gµν̄ − δν̄gµλ̄)dz̄λ ∧ dzµ ∧ dz̄ν = 0 (A24)

This leads to the relations:
δgµν̄

δzλ
=

δgλν̄

δzµ (A25)

δgµν̄

δz̄λ
=

δgµλ̄

δz̄ν
(A26)

The solution of the above equation takes the form gµν̄ = δδ̄Ki on a chart Ui included in the manifold
M. Ki is called Kahler potential.

Ki : Ui → R (A27)

Ki = K∗i (A28)

The Kahler form can be locally expressed in terms of the Kahler potential as:

Ω = iδδ̄Ki (A29)

The definition given above is the most general one. This can of course be extended to the field space of
the problem analysed in Section 2. The procedure explained there generates the (dual) field-anti-field
structure required to make the link with the Kahler structure described above.

I will continue by reviewing some further mathematical concepts:

• Hodge-* operator:

Let (M, g) be a Riemannian four-manifold for which we can define the * operator in the following
way [48]:

α ∧ ∗β = gp(α, β)dvg (A30)
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α, β ∈
2∧

(A31)

We have also that (∗∗) = 1 on
∧2, which means that

∧2 splits into eigenspaces as:

2∧
=

2∧
+

+
2∧
−

(A32)

where the two eigenspaces correspond to eigenvalues +1 and−1 respectively. A two-form that belongs
to
∧2
+ is called self-dual, whereas if it belongs to the other eigenspace, it is called anti-self-dual. An

important remark to be made here is that given a p-vector λ ∈ ∧p V, then ∀θ ∈ ∧n−p V there exists the
wedge product such that λ ∧ θ ∈ ∧n.

• Hodge theorem:

Let me define the following three operators:

d : Ck → Ck+1 (A33)

d∗ = ∗d∗ : Ck → Ck−1 (A34)

∆ = dd∗ + d∗d : Ck → Ck (A35)

as being in order the exterior differential, the co-exterior differential and the Laplace operator. The
exact and co-exact forms are orthogonal. The Hodge theorem allows the identification of a unique
representative for each cohomology class as belonging to the kernel of the Laplacian defined for the
specific complex manifold. If this is put together with the definition of the Kahler manifold, we obtain
extra symmetries in the Hodge structure of the manifold.

As noted in [41,42], the field-anti-field structure is amenable to the construction of a Kahlerian
structure imposed on the system of fields. If one thinks at the antipode in a Hopf algebra, one can
see that there are not few similarities between the Hodge star operator and the antipode. Indeed,
the Hodge star induces a symmetry that can be identified with time-reversal in the case of Kahlerian
structures. All one has to do is to suitably introduce fields and anti-fields via appropriate trivial
symmetries, such that the antipodal structure becomes visible.

Appendix C. BRST-Anti-BRST

The BRST quantization and the gauge fixing procedure can be seen together as a canonical
transformation acting on the field structure of the theory. The method presented in the main article
that allowed the construction of internal spaces and the definition of Hodge-dual operations can be
used to make the time-reversal-type symmetry manifest in any theory.

What one must consider is the full de-Rham cohomology and identify the operators of BRST with
the de-Rham cohomology operators. In order to do this, one observes that the standard BRST-anti-BRST
structure is not sufficient. In fact, there exists another structure called the dual (anti)-BRST.

This structure is the analogue of the co-exterior derivative of differential geometry in the way
in which the anticommuting (anti-)BRST transformations are the analogue of the exterior derivative.
Imposing the BRST-anti-BRST symmetries together with the dual-BRST-dual-anti-BRST symmetries
via a collective field approach results in a theory cohomologically equivalent with the original one that
contains an extra discrete symmetry. This symmetry can be used in order to fix the positive definiteness
of the fermionic determinant and to solve the sign problem of the SU(2) anomaly.

The presence of the new collective fields allows for extensions of the BRST symmetry. These can
be used (while keeping the gauge fixing) in some innovative ways. In practice, any extension of the
field-anti-field structure is allowed. The only condition is that the resulting extended action satisfies
the master equation:

(S, S) = 0 (A36)
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The anti-bracket used above is just a generalization of the Poisson structure for field-anti-field extended
actions. It is defined as:

(F, G) =
δRF
δφA

δLG
δφ∗A
− δRF

δφ∗A

δLG
δφA (A37)

The BRST transformation in the extended case can be seen as given by the anti-bracket where the
generator of the transformation is the generalized action:

δF = (S, F) (A38)

The nilpotency of the BRST transformation is reflected in the condition:

(S, S) = 0 (A39)

which is called the “classical master equation”. “Quantum” corrections to this formula may appear in
some cases mainly when integration is performed over only one (fermionic) field in the field-anti-field
pair. These amount to changes in the BRST transformation rules. A good explanation of the interplay
between “quantum” and “classical” master equations on one side and the transformation rules and
choices of field structures on the other side can be found in [21,45].
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