
Citation: Zhang, T.; Xin, J.; Yu, W.;

Yuan, H.; Song, L.; Yang, Z. Predicting

the Fishery Ground of Jumbo Flying

Squid (Dosidicus gigas) off Peru by

Extracting Features of the Ocean

Environment. Fishes 2024, 9, 81.

https://doi.org/10.3390/fishes

9030081

Academic Editor: Susana Franca

Received: 18 December 2023

Revised: 14 February 2024

Accepted: 19 February 2024

Published: 21 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fishes

Article

Predicting the Fishery Ground of Jumbo Flying Squid
(Dosidicus gigas) off Peru by Extracting Features of the
Ocean Environment
Tianjiao Zhang 1 , Jia Xin 1, Wei Yu 2, Hongchun Yuan 1,*, Liming Song 2,* and Zhuo Yang 1

1 College of Information Technology, Shanghai Ocean University, Shanghai 201306, China;
tjzhang@shou.edu.cn (T.Z.); m210911557@st.shou.edu.cn (J.X.); zhuoyang_shou@163.com (Z.Y.)

2 College of Marine Living Resource Sciences and Management, Shanghai Ocean University,
Shanghai 201306, China; wyu@shou.edu.cn

* Correspondence: hcyuan@shou.edu.cn (H.Y.); lmsong@shou.edu.cn (L.S.)

Abstract: We introduce a novel method that combines satellite data, advanced clustering techniques,
machine learning feature extraction, and statistical models to enhance fishery forecasting accuracy.
Focusing on jumbo flying squid in the southeast Pacific Ocean near Peru, we utilize MODIS-Aqua
and MODIS-Terra satellite data on sea surface temperature (SST) to construct a deep convolutional
embedded clustering (DCEC) model and extract the monthly SST features ( FM) based on an optimized
number of clusters determined by the Davies–Bouldi index (DBI). We use the extracted FM to construct
a series of Generalized Additive Models (GAM) to forecast the catch per unit effort (CPUE) of jumbo
flying squid within a spatial resolution of 0.5◦ × 0.5◦. Our results demonstrate the following findings:
(1) The SST feature clusters obtained through the DCEC model could capture the SST monthly
variations; (2) The GAM models with FM outperform the models with the traditional monthly
average SST in terms of predictive accuracy; (3) Using both FM and average SST together can further
improve model performance. This study demonstrates the effectiveness of the DCEC combined
with DBI in extracting marine environmental features and highlights the ocean environment feature
extraction method to enhance the precision and reliability of fishery forecasting models.

Keywords: deep convolutional embedded clustering; Davies–Bouldi index; machine learning;
fishery forecast

Key Contribution: We demonstrate that extracting marine environment features based on machine
learning methods could enhance the forecast model for jumbo flying squid (Dosidicus gigas) in the
southeast Pacific Ocean off Peru.

1. Introduction

The jumbo flying squid (Dosidicus gigas) is a cephalopod species with a relatively short
life cycle. Due to this short life cycle, the fishing grounds of the jumbo flying squid are
highly sensitive to changes in the marine environment [1–3]. Any alterations in factors such
as water temperature, nutrient availability, and ocean currents can significantly impact the
distribution and abundance of this species in its habitat [4–6]. In Peru, the current status
of the species is relatively stable. Peru is one of the major fishing nations for this species,
and the Peruvian government has implemented various measures to manage the fishery
sustainably. Peru has set fishing quotas, established fishing seasons, and implemented
gear restrictions to prevent overfishing of the jumbo flying squid. These regulations aim
to maintain the population at healthy levels and ensure the long-term sustainability of
the fishery [7]. Given the importance of sustainable fisheries management and marine
conservation, it is essential to understand and monitor the distribution and abundance
of this species and help the fisheries management organizations or government agencies
make sustainable the management of jumbo flying squid fisheries.
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The current fishery forecasting models for jumbo flying squid mainly include the
statistical models and the machine learning models. The statistical models usually involve
regression analysis, time series analysis, and spatial modeling to quantify the impact of
environmental factors on jumbo flying squid abundance and distribution [8–10]. Ma-
chine learning models leverage computational algorithms to automatically learn patterns
and make predictions based on input data. These models can process large and com-
plex datasets, including environmental variables and historical fishery data, to identify
non-linear relationships and forecast future squid distribution and abundance. Machine
learning techniques such as neural networks, random forests, support vector machines and
the maximum entropy model have shown promise in improving fishery forecasts [11–13].
However, most of the current models use the monthly average value of marine environmen-
tal factors in the fishing area [14,15]. These variables cannot reflect the monthly temporal
and spatial dynamics and complexity of the marine environment and thus make it difficult
to accurately analyze the temporal and spatial dynamic habitat of jumbo flying squid.
Studies have shown that machine learning methods could extract sea surface dynamic
feature values from remote sensing image data with high spatiotemporal resolution, which
is beneficial for the model forecasting accuracy. For example, Waluda et al. (2006) studied
the remotely sensed mesoscale oceanography of the central eastern Pacific and recruitment
variability in jumbo flying squid [4,5]. Barth et al. (2020) used an artificial neural network
convolution layer to extract local features of the sea surface temperature (SST) matrix [16].
Zhang et al. (2023) proposed deep convolutional embedded clustering (DCEC) to extract
features from the remote sensing image data, which could encapsulate the multidimen-
sional features of the images and provide valuable insights into long-term SST patterns
and correlations with the growth of neon flying squid (Ommastrephes bartramii) in the north
Pacific Ocean [17].

In this study, we extract marine environmental features in the southeast Pacific Ocean
off Peru based on the DCEC model and build an improved statistical Generalized Additive
Model (GAM) to forecast the distribution of the jumbo flying squid of that area. The
integration of statistical model and machine learning model approaches may allow for a
comprehensive understanding of jumbo flying squid dynamics, combining knowledge
from statistical associations and pattern recognition. By leveraging the strengths of ocean
environment feature extraction, we would like to improve the fishery forecasting models for
jumbo flying squid, to make them more accurate and reliable and aid in effective fisheries
management and conservation practices.

2. Materials and Methods
2.1. Jumbo Flying Squid Fisheries Data

We use the commercial fisheries data of jumbo flying squid in 2015 provided by the
National Data Center for Distance-Water Fisheries of China (NDCDF), Shanghai Ocean
University. The fishing locations for jumbo flying squid in the southeast Pacific Ocean off
Peru (8◦~20◦ S, 90◦~75◦ W) are shown in Figure 1.

The fisheries data for jumbo flying squid in the southeast Pacific Ocean off Peru
include information such as catch (tons), fishing date (year and month), fishing locations
(latitude and longitude), and fishing effort (fishing days). These data are organized into
daily databases and grouped based on a spatial resolution of 0.5◦.

All Chinese squid-jigging vessels used for fishing are adaptations of the same type.
They are equipped with identical engine power (120 kW), squid-attracting lamp (112 kW)
with 16 squid-jigging machines, and fishing equipment. These vessels exclusively conduct
fishing operations during nighttime [18]. Given that the Chinese squid-jigging vessels
have similar characteristics and fishing practices, catch per unit effort (CPUE) became a
dependable measure to assess the abundance of squid on the fishing grounds [19]. In this
study, the monthly CPUE within a 0.5◦ × 0.5◦ grid cell is calculated using the equation
provided by Cao et al. (2009) [1].



Fishes 2024, 9, 81 3 of 14

CPUE(ymij) =
ΣC(ymij)

ΣE(ymij)
(1)

where CPUE(ymij), ΣC(ymij), and ΣE(ymij) are the monthly nominal CPUE (tons [t]/day
[d]), the total catch for all fishing vessels operating within a specific fishing grid and the
cumulative fishing effort of all vessels within that same grid at longitude i and latitude j in
month m and year y.
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2.2. Environmental Data

We select Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra
sea surface temperature level 3 inversion image data (in days) from January to Decem-
ber 2015 to determine the environment feature. The website for the SST data is from
NASA GSFC water color data network (https://oceancolor.gsfc.nasa.gov/ (accessed on
3 September 2023)).

The amount of the daily SST image data is, in total, 730 (in NetCDF format), and the
initial spatial resolution of the image is 0.0416◦ × 0.0416◦. We normalize these data based
on Formula (2).

P(i,j) =
MAX − SST(i,j)

MAX − MIN
, (2)

where P(i,j) represents the normalized SST value at longitude i and latitude j, and SST(i,j)
represents the original SST value at the same coordinates; MAX denotes the maximum
daily SST value recorded in 2015, while MIN represents the minimum daily SST value
observed in the same year.

After normalizing daily SST images, we divide them into sub-images measuring
0.5◦ × 0.5◦, which correspond to each CPUE grid. Each sub-image is then represented by
12 × 12 pixels. In total, we obtain 267,180 sub-images for the study area. However, since
some of these sub-images do not fully cover a 0.5◦ × 0.5◦ fishing area, we perform image
fusion using the following formula:

https://oceancolor.gsfc.nasa.gov/
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P(i,j) =



PT(i,j),PA(i,j) = 0, PT(i,j) ̸= 0

PA(i,j) ,PA(i,j) ̸= 0, PT(i,j) = 0

0,PA(i,j), PT(i,j) = 0

PT(i,j) + PA(i,j)

2
,PA(i,j), PT(i,j) ̸= 0

, (3)

where P(i,j) represents the daily SST value at coordinates (i, j) after fusion; PA(i,j) represents
the MODIS-Aqua SST value; and PT(i,j) represents the MODIS-Terra SST value. After
fusion, we receive a total of 56,468 sub-images. We also drop the sub-images with more
than 50% pixels of zero values (P(i,j) = 0). Finally, only 46,524 sub-images are left. The
above preprocessing was based on MATLAB (2021 version) software.

2.3. SST Feature Extraction Based on the DCEC Model

The deep convolutional embedded clustering (DCEC) model is a deep learning-based
clustering algorithm proposed in the field of machine learning. It combines the features of
convolutional neural networks (CNNs) and autoencoders to perform both dimensionality
reduction and clustering in an unsupervised manner. The structure of the DCEC model
incorporates a deep embedded clustering framework, and could be found in the published
paper of Guo (2017) [20].

The DCEC model autoencoders consist of two main parts: the encoder and the de-
coder. The encoder’s purpose is to transform the input data into a lower-dimensional
representation, while the decoder is responsible for reconstructing the output data from
this lower-dimensional representation. Both the encoder and decoder layers consist of
3 convolutional layers, and the stride is set to 2. The input data x is passed through the en-
coder, after which it is flattened into a one-dimensional feature representation following the
3 convolutional layers. The output feature from the encoder is then received by the decoder
and the clustering layer. The decoder then reconstructs images from the compressed latent
space representation by minimizing the reconstruction error. The clustering layer assigns
the images to different clusters based on the selection of the number of clusters. The result,
denoted as x’, is the reconstructed images produced by the decoder. The optimal clustering
results for x are generated by the clustering layer. The reconstructed images x’ are assigned
cluster labels based on the optimal clusters and organized into monthly groups. The final
monthly SST feature for each CPUE grid are determined by identifying the assigned cluster
labels of the images that appear with the highest frequency within a month.

In this paper, the source code for the DCEC model is downloaded from the GitHub repos-
itory located at https://github.com/XifengGuo/DCEC (accessed on 15 September 2023).

The selection of the number of clusters is crucial during the training of the DCEC
model. A small number of clusters may result in limited diversity in the extracted SST
feature information, while a large number of clusters can lead to redundancy and increased
computational costs. We utilize the Davies–Bouldin index (DBI) to determine the optimal
number of clusters [21]. The DBI is calculated as the average of the maximum ratio of
the within-cluster distance and the between-cluster distance for each cluster. A smaller
DBI value indicates higher similarity among samples within clusters. The formula for
calculating the DBI is as follows:

DBI =
1
N ∑N

i=1,j ̸=i max

(
Si + Sj∥∥Wi − Wj

∥∥
2

)
, (4)

where N is the number of clusters; Si (or Sj) is the average distance of all points in
cluster i (or j) to the centroid of cluster i (or j);

∥∥Wi − Wj
∥∥

2 is the distance between the
centroids of clusters i and j.

Based on the DCEC model and the DBI index, the SST feature extraction process is
performed as follows (Figure 2):

https://github.com/XifengGuo/DCEC
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(1) The 46,524 SST sub-images are put into the DCEC model, and the initial cluster
number n is set as 2;

(2) The input images pass through the autoencoders, and the clustering layer assigns the
images to different clusters;

(3) The Davies–Bouldin index (DBI) is calculated to test the similarity among images
within clusters;

(4) The cluster number is set as n + 1, and the above steps (2) and (3) continue until DBI has
reached the minimum value, and then the optimal number of clusters is determined.

(5) The output images are assigned the cluster labels based on the optimal clusters and
organized into monthly groups.

(6) For each CPUE grid, the SST feature FM for the Mth month is determined by identify-
ing the assigned cluster labels of the images that appear with the highest frequency
within a month. This is expressed as follows:

FM = Mode{c1, c2, . . . ck, . . . cn} (5)

where FM represents SST feature for the Mth month. The term “Mode” is a statistical
term that refers to the value that occurs most frequently among the images in the Mth
month; c1, c2, . . . ck, . . . cn are the labels of images in that specific month. The above
feature extraction process is performed based on Python 3.7.

2.4. GAM Construction and Verification

Generalized Additive Model (GAM) is a data-driven model widely used in fishery
research due to its nonparametric nature and high flexibility [22]. It employs smooth
functions to establish the relationship between the expected response variables and each
explanatory variable and allows for the independent analysis of the nonlinear impact of
each explanatory variable on the response variables.

In this study, three types of Generalized Additive Models (GAMs) were developed
using the controlled variable method.
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(1) Basic GAM, which uses the traditional monthly average SST value to predict CPUE.
To address the issue of underfitting in fishery forecasting models caused by rely-
ing solely on a single factor, an additional variable—the monthly average concen-
tration of chlorophyll-a (Chl a)—is included in the model. Chl a has been identi-
fied as an important factor influencing squid fishing grounds. We downloaded the
0.5◦ × 0.5◦ monthly average value of Chl a concentration from the NOAA website
(https://oceanwatch.pifsc.noaa.gov/ (accessed on 3 September 2023)) from January
to December in 2015. The basic GAM was shown in Formula (6):

ln(CPUE) = s(Chl a) + s(SST), (6)

where CPUE represents the monthly catch per unit effort; Chl a represents the
monthly average value of chlorophyll a concentration; SST represents the monthly
average value of sea surface temperature; the s function represents the natural cubic
spline smoothing function. The error distribution of the model is assumed to be
Gaussian distribution.

(2) Improved GAM, which integrates the extracted SST features along with the average
Chl a value. This approach aims to enhance the predictive capability of the model by
incorporating more comprehensive and refining representations of the SST monthly
feature. The improve GAM model expression is shown in Formula (7):

ln(CPUE) = s(Chl a) + s(FM), (7)

where CPUE represents the monthly catch per unit effort; Chl a represents the monthly
average of the concentration of chlorophyll a; FM represents the monthly SST extracted
feature value; s(·) represents the natural cubic spline smoothing function. The error
distribution of the model is assumed to be Gaussian distribution.

(3) Full GAM, which includes both the traditional monthly average SST value and the
extracted SST features, along with the average Chl a value. We tend to test the
improvement of using full variables on the predictive capability of the models. The
full GAM model expression is shown in Formula (8):

ln(CPUE) = s(Chl a) + s(SST) + s(FM) (8)

where CPUE represents the monthly catch per unit effort; Chl a represents the monthly
average of the concentration of chlorophyll a; FM represents the monthly SST extracted
feature value; s(·) represents the natural cubic spline smoothing function. The error
distribution of the model is assumed to be Gaussian distribution.

The three types of models described above are constructed using a ten-fold cross-
validation approach to divide the dataset into a training set (S) and a test set (T). The
training set (S) is used to train and fit the GAM model while simultaneously recording the
evaluation parameters of the explanatory variables. The test set (T) is kept separate and
used solely for calculating the prediction error of the GAM model.

In this study, the goodness of the model is measured using AIC (Akaike Information
Criterion). A lower AIC value indicates a higher goodness of fit for the model. It provides
a comparative measurement to assess the relative performance and accuracy of different
models. Furthermore, the Mean Squared Error (MSE) is calculated to evaluate the prediction
accuracy of the model. The MSE measures the average squared difference between the
measured values and the predicted values. On the same test set, a smaller MSE indicates a
better prediction accuracy, as it reflects a smaller average discrepancy between the predicted
values and the actual measured values. The calculation formula of MSE is shown in (9):

MSE =
1
m

m

∑
i=1

( ˆCPUEi − CPUEi
)2, (9)

https://oceanwatch.pifsc.noaa.gov/
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where ˆCPUEi represents the predicted CPUE value of the model; CPUEi represents the
measured CPUE value of the sample; m represents the number of samples in the test set.

To further evaluate the prediction effect of the model, the Pearson correlation coef-
ficient (r) is calculated to quantify the strength and direction of the linear relationship
between the measured values and the predicted values. The calculation formula of r is
shown in (10):

r
( ˆCPUEi, CPUEi

)
=

Cov
( ˆCPUEi, CPUEi

)√
Var

[ ˆCPUEi
]
Var[CPUEi]

, (10)

where r
( ˆCPUEi, CPUEi

)
represents the relationship between the measured values and

the predicted values; Cov
( ˆCPUEi, CPUEi

)
is the covariance of the predicted value and the

measured value; Var[ ˆCPUEi] is the variance of the predicted value; and Var[CPUEi] is the
variance of the measured value.

The influence of the explanatory variables in the GAM model on the response variables
is verified using a joint hypothesis F test. Following the F test, if the p-value associated
with an explanatory variable is less than 0.05, it indicates that the variable has a significant
impact on the response variable. Based on this result, the explanatory rate of each variable
is compared and analyzed. We also draw the response curve for visualizing the relationship
between the explanatory variables and the CPUE of jumbo flying squid.

3. Results
3.1. SST Feature Extraction Results Based on DCEC Model

The DBI value reaches its minimum when the cluster number n is 6, as shown in
Figure 3. Therefore, the optimal cluster number is 6.
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We randomly selected 10 sub-images from each of the six clusters to show the SST
distribution pattern, as shown in Figure 4.

In Figure 4, when FM is 0, there is an intersection of cold and warm currents, resulting
in an intricate intersection pattern. When FM is 1 and 4, a cold current is observed from
south or southeast. On the other hand, an FM of 2 indicates a cold current converging
with a warm current from the southwest. Meanwhile, when the SST spatial distribution
pattern is characterized by FMs of 3 and 5, the temperature distribution appears relatively
uniform. The lowest temperature is observed when the FM value is 3, while a relatively
higher temperature is seen when the FM value is 5.
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3.2. Model Evaluation Results

The AIC and MSE values, as well as the correlation coefficients r between the predicted
CPUE values and the measured values of the basic GAM, the improved GAM, and the full
GAM, are shown in Table 1.

Table 1. AIC, MSE, and correlation coefficients r of the basic, improved, and full GAM.

Model AIC MSE r

Basic GAM 905 0.045 0.21
Improved GAM 817 0.031 0.60
Full GAM 657 0.024 0.67

Based on Table 1, the improved and full GAM models show that the AIC value is
9.72% and 27.4% lower than the basic GAM model. Additionally, the MSE decreases by
31.1% and 46.6%. The correlation coefficient r increases to 0.60 in the improved GAM and
0.67 in the full GAM, indicating a stronger correlation compared to the basic GAM.

3.3. The Influence of the Explanatory Variables

Table 2 presents the p-values for the F test and variable interpretation rate in the basic,
improved, and full GAM.

Table 2. The p-values andvariable interpretation rate in the basic, improved, and full GAM.

Model Model Factor p Interpretation Rate/%

Basic GAM
s(Chl a) 0.000 7.65
s(SST) 0.001 11.82

s(Chl a) + s(SST) 0.004 16.18

Improved GAM
s(Chl a) 0.000 6.84
s(FM) 0.000 15.60

s(Chl a) + s(FM) 0.002 19.76

Full GAM

s(Chl a) 0.000 7.86
s(FM) 0.000 16.37
s(SST) 0.001 13.59

s(Chl a) + s(FM)+ s(SST) 0.002 34.54
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The results reveal that the p values for SST, FM, and Chl a are less than 0.05, indicating
the significant impact of these variables on the response variable. Irrespective of whether
FM is used alone or combined with the Chl a factor in the improved GAM, the factor
interpretation rate of the improved GAM consistently surpasses that of the basic GAM.
This underscores the significant influence of the extracted FM value in this study. In the
full GAM, the factor interpretation rate of the full variables increased to 34.54%, which
demonstrates that using all the features together can further improve model performance.

Figure 5 displays the response curve illustrating the relationship between the average
SST and the response variable for the basic GAM and the relationship between the FM value
and the response variable for the improved GAM.

Fishes 2024, 9, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 5. The relationship curve between the monthly average SST and CPUE in the basic GAM 
(top); the relationship curve between the SST feature 𝐹  and CPUE in the improved GAM (bot-
tom). 

4. Discussion 
4.1. The Effectiveness of the Model in Extracting SST Features 

The six clusters of the SST sub-images extracted based on DCEC and DBI showed 
unique temperature distribution patterns. They exhibit similarity within each cluster and 
comparability between different clusters. The effectiveness of the model in extracting 
ocean features relies on several factors, such as model performance, data quality and 
quantity, and complexity of the features [23]. Firstly, the DCEC model combines the 
power of deep convolutional autoencoders, which are neural networks used for dimen-
sionality reduction, with clustering algorithms to perform joint feature learning and clus-
tering simultaneously [24,25]. This model has shown promising results in various image-
related tasks, such as object recognition and segmentation, remote sensing image classifi-
cation, data dimensionality reduction, and image noise reduction [12,26–28]. In compari-
son to traditional feature extraction methods, the high-level features extracted by the 
DCEC model provide better amplitude and phase information. In this study, the DCEC 
model automatically learns hierarchical representations from the 46,524 daily SST sub-
images and processes the high-dimensional ocean data and extracts the meaningful low-
dimensional representations. Secondly, MODIS-Aqua and MODIS-Terra SST three-level 
inversion image data have the relatively high resolution of approximately 1 km, and the 
MODIS instruments undergo regular calibration processes to ensure the accuracy and 
consistency of the data [12]. We also make the performed image fusion to ensure that each 
sub-image can cover each CPUE fishing area, so that each type of image classification re-
sult can reflect the monthly dynamics of SST in a small range (0.5° × 0.5°). Lastly, the daily 
SST sub-images from the southeast Pacific Ocean off Peru over the course of a year may 
include complex and diverse features. We use DBI to determine the optimal number of 
clusters, as it produces a single numerical value that indicates the quality of clustering, 
making it easy to understand and compare different clustering solutions [29]. Our results 
show that each type of the clusters determined by DBI reflect distinctive patterns of cold 
and warm currents, showcasing the potential to capture important spatial and temporal 

Figure 5. The relationship curve between the monthly average SST and CPUE in the basic GAM
(top); the relationship curve between the SST feature FM and CPUE in the improved GAM (bottom).

In the basic model, the response curve depicts a distribution of high CPUE values at
relatively low temperatures. The average SST between the upper and lower 95% confidence
interval dashed lines ranges from 19 to 23 ◦C. However, it is not possible to accurately
determine the optimal temperature pattern for jumbo flying squid abundance. In the
improved model, high CPUE values are observed when FM is 0, 1, 2, and 4, while a
relatively low CPUE value is observed when FM is 3 or 5. These results suggest that
the intersection of cold and warm ocean currents could have a substantial effect on the
abundance of jumbo flying squid.

4. Discussion
4.1. The Effectiveness of the Model in Extracting SST Features

The six clusters of the SST sub-images extracted based on DCEC and DBI showed
unique temperature distribution patterns. They exhibit similarity within each cluster and
comparability between different clusters. The effectiveness of the model in extracting
ocean features relies on several factors, such as model performance, data quality and
quantity, and complexity of the features [23]. Firstly, the DCEC model combines the power
of deep convolutional autoencoders, which are neural networks used for dimensionality
reduction, with clustering algorithms to perform joint feature learning and clustering
simultaneously [24,25]. This model has shown promising results in various image-related
tasks, such as object recognition and segmentation, remote sensing image classification,
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data dimensionality reduction, and image noise reduction [12,26–28]. In comparison to
traditional feature extraction methods, the high-level features extracted by the DCEC
model provide better amplitude and phase information. In this study, the DCEC model
automatically learns hierarchical representations from the 46,524 daily SST sub-images and
processes the high-dimensional ocean data and extracts the meaningful low-dimensional
representations. Secondly, MODIS-Aqua and MODIS-Terra SST three-level inversion image
data have the relatively high resolution of approximately 1 km, and the MODIS instruments
undergo regular calibration processes to ensure the accuracy and consistency of the data [12].
We also make the performed image fusion to ensure that each sub-image can cover each
CPUE fishing area, so that each type of image classification result can reflect the monthly
dynamics of SST in a small range (0.5◦ × 0.5◦). Lastly, the daily SST sub-images from the
southeast Pacific Ocean off Peru over the course of a year may include complex and diverse
features. We use DBI to determine the optimal number of clusters, as it produces a single
numerical value that indicates the quality of clustering, making it easy to understand and
compare different clustering solutions [29]. Our results show that each type of the clusters
determined by DBI reflect distinctive patterns of cold and warm currents, showcasing the
potential to capture important spatial and temporal information about the ocean current
dynamics. On the above basis, this study demonstrates the capability of the DCEC model
combined with DBI in extracting ocean SST features.

4.2. The Improvement of GAM Based on the Ocean Feature Extraction Approach

Our study showed that applying an ocean feature extraction approach in the GAM
models led to improved prediction accuracy compared to using basic GAM models. This
improvement can be attributed to two key factors. First, as discussed above, the ocean fea-
ture extraction approach effectively captured the SST distribution pattern. By considering
the fine-grained details and spatial variations of the SST data, the GAM models were able
to better understand and model the underlying relationships between the SST dynamic
and the abundance distribution of jumbo flying squid. Second, the ocean feature extraction
approach mitigated the smoothing effect caused by using monthly average SST values.
Monthly averages tend to smooth out the inherent variability in SST, potentially leading to
an oversimplified representation of the true SST distribution. By extracting ocean features,
which likely include more granular and localized SST information, the GAM models were
able to capture and incorporate these smaller-scale variations into their predictions. As a
result, the improved models were better equipped to account for the true complexity and
heterogeneity of the SST distribution pattern, leading to enhanced prediction accuracy.

Our results also demonstrate that using both FM and average SST together can further
improve model performance, as they provide complementary information that captures
different aspects of the ocean SST environment. FM provides valuable insights into the
complex dynamics of the ocean SST and helps the model better understand the underlying
patterns and relationships in the data. On the other hand, average SST is a simple but
important metric that represents the overall thermal conditions of the ocean surface. By
combining ocean feature extraction features with average SST, the model can leverage both
detailed and high-dimensional information from the extracted features and the holistic view
provided by the average SST. This combination allows the model to make more informed
and accurate predictions by considering a wider range of oceanic characteristics and their
interactions. In essence, the synergy between the detailed features and the overall SST can
lead to a more comprehensive understanding of the ocean system and ultimately improve
the model’s performance.

This study found that the extracted SST features, FM, have a significant impact on
the abundance distribution of jumbo flying squid in the southeast Pacific Ocean off Peru.
The distribution and migration of jumbo flying squid are influenced by various factors,
including the SST and ocean currents. The FM features extracted in this study directly
represent the changes in these factors. Based on the images of each FM cluster, we could
distinguish the regions with high or low temperature and find the intersection of cold and
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warm currents. The relationship curve between the FM and CPUE of jumbo flying squid
showed that the high catch rate was concentrated in the intersection area of warm and
cold currents when FM was 0, 1, 2, and 4, while the low catch rate was concentrated in
the area with uniform high or low temperature distribution when FM was 3 and 5. The
mixing of warm and cold currents creates nutrient-rich waters, attracting an abundance of
prey species, such as small fish and plankton, which are the main food sources for squid.
Additionally, the varying temperatures in this region create favorable conditions for squid
eggs and larvae to develop. The FM feature also indicated that SST and ocean currents play
a crucial role in shaping the movement and distribution of jumbo flying squid. Previous
studies have shown that jumbo flying squid have specific SST preferences and are often
associated with areas where water temperature levels are within their preferred range
(18~22 ◦C) [9]. Suitable hydrological conditions can influence squid behavior, aggregations,
and foraging opportunities. In addition, the squid populations tend to follow oceanic
currents, which provide them with a means of transportation and facilitate their dispersal
over large distances [30,31]. In the southeast Pacific Ocean off Peru, the main oceanic
currents that significantly influence the region’s hydrodynamics and marine ecosystem
include (1) the Humboldt Current, which is a cold, nutrient-rich current that flows north-
ward along the western coast of South America. It is a major upwelling system, bringing
deep, cold, and nutrient-rich waters to the surface, which support a highly productive
ecosystem; (2) the Peru-Chile Current, which is an extension of the Humboldt Current and
flows parallel to the coast of Peru and Chile. It transports the cold, nutrient-rich waters
further north along the coast, allowing for sustained upwelling and supporting a diverse
range of marine life; (3) the South Equatorial Current, which flows eastward in the southern
hemisphere between approximately 5◦ S and 20◦ S latitude. While it does not directly
impact the coast of Peru, it influences the circulation patterns in the wider eastern Pacific
region, including the southeastern Pacific Ocean off Peru [32,33]. These currents drive the
unique hydrological characteristics in the southeast Pacific Ocean off Peru, such as the cold
waters associated with upwelling events. The combination of these currents and upwelling
processes creates a highly productive marine ecosystem that supports the jumbo flying
squid [34–36].

Overall, our study highlighted the importance of considering domain-specific ocean
feature extraction methods in GAM modeling, particularly when dealing with spatially
varying and fine-grained data like SST. These findings have implications for similar model-
ing scenarios, where capturing and incorporating detailed patterns and mitigating potential
smoothing effects can lead to improved prediction performance.

4.3. Prospect

Although the improved GAM model shows better prediction accuracy compared to
the basic GAM model, the extent of improvement is not significant. There are several
main shortcomings and areas that need further improvement. (1) There are two sources
of images, MODIS-Aqua and MODIS-Terra, which are used for fusion in certain areas. In
the data preprocessing stage, image data with invalid pixels exceeding 50% are discarded.
However, this step partially disrupts the time correlation of the SST image data and reduces
the original data space. Consequently, it can lead to a loss of precision in the feature
extraction process of the DCEC model and subsequently impact the fitting and prediction
accuracy of the improved GAM model. To address these issues, we need to explore the
development of a multi-source data fusion method, which could generate more complete
SST image data and minimize experimental errors; (2) The fishing ground is a complex
system influenced by various factors, such as dissolved oxygen, thermocline, and ocean
currents. In this study, the DCEC model was solely employed to extract characteristics from
SST data, resulting in limited improvement in the GAM. For future research, it is crucial to
integrate multiple factors to extract more dynamic temporal and spatial characteristics of
the marine environment; (3) As the new generation of artificial intelligence (AI) continues
to evolve, big data and statistical machine learning (SML) technologies are becoming more
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deeply integrated to significantly improve the processing and forecasting accuracy of
fishery models. Examples include the applications of SML in fishery weather simulation
and forecasting, such as generating synthetic weather data, developing weather forecast
models, and developing extreme weather warning systems [37]. By analyzing historical
data, SML algorithms can learn the patterns and relationships between weather variables
and then use these patterns and relationships to predict future weather conditions. In this
study, we only exacted the SST patterns based on the AI model and used the patterns in the
traditional GAM for forecasting the fishery ground. In the future, we may try to use SML
to directly analyze the patterns and the associations among multiple variables to make
fishery predictions.

5. Conclusions

This study proposed a method for extracting marine environmental features based
on the DCEC model combined with the GAM model to forecast the jumbo flying squid in
the southeast Pacific Ocean off Peru. We used the extracted SST feature FM to construct an
improved GAM model and the monthly average value of SST to construct a basic GAM
model. The comparison results of the two types of models show that (1) The SST feature
clusters obtained through the DCEC model could capture the SST monthly variations within
0.5◦ × 0.5◦; (2) The GAM models with FM outperform the models with the traditional
monthly average SST in terms of predictive accuracy; (3) Using both FM and average SST
together can further improve model performance. The results prove the effectiveness
of DCEC combined with DBI in marine feature extraction and suggest that using the
ocean environment feature extraction based on machine learning could improve the fishery
forecasting models for jumbo flying squid, making them more accurate and reliable.
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