
Citation: Jongjaraunsuk, R.;

Taparhudee, W.; Sirisuay, S.;

Kaewnern, M.; Dulyapurk, V.;

Janekitkarn, S. Transfer Learning

Model Application for Rastrelliger

brachysoma and R. kanagurta Image

Classification Using Smartphone-

Captured Images. Fishes 2024, 9, 103.

https://doi.org/10.3390/

fishes9030103

Academic Editors: Terushisa Komatsu

and Hideaki Tanoue

Received: 28 January 2024

Revised: 29 February 2024

Accepted: 5 March 2024

Published: 7 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fishes

Article

Transfer Learning Model Application for Rastrelliger brachysoma
and R. kanagurta Image Classification Using Smartphone-
Captured Images
Roongparit Jongjaraunsuk 1, Wara Taparhudee 1,* , Soranuth Sirisuay 1, Methee Kaewnern 2, Varunthat Dulyapurk 2

and Sommai Janekitkarn 3

1 Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
ffisrrj@ku.ac.th (R.J.); ffissns@ku.ac.th (S.S.)

2 Department of Fishery Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
ffismtk@ku.ac.th (M.K.); ffisvtd@ku.ac.th (V.D.)

3 Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
ffissoj@ku.ac.th

* Correspondence: ffiswrt@ku.ac.th

Abstract: Prior aquatic animal image classification research focused on distinguishing external
features in controlled settings, utilizing either digital cameras or webcams. Identifying visually similar
species, like Short mackerel (Rastrelliger brachysoma) and Indian mackerel (Rastrelliger kanagurta),
is challenging without specialized knowledge. However, advancements in computer technology
have paved the way for leveraging machine learning and deep learning systems to address such
challenges. In this study, transfer learning techniques were employed, utilizing established pre-
trained models such as ResNet50, Xception, InceptionV3, VGG19, VGG16, and MobileNetV3Small.
These models were applied to differentiate between the two species using raw images captured by a
smartphone under uncontrolled conditions. The core architecture of the pre-trained models remained
unchanged, except for the removal of the final fully connected layer. Instead, a global average pooling
layer and two dense layers were appended at the end, comprising 1024 units and by a single unit,
respectively. To mitigate overfitting concerns, early stopping was implemented. The results revealed
that, among the models assessed, the Xception model exhibited the most promising predictive
performance. It achieved the highest average accuracy levels of 0.849 and 0.754 during training and
validation, surpassing the other models. Furthermore, fine-tuning the Xception model by extending
the number of epochs yielded more impressive outcomes. After 30 epochs of fine-tuning, the Xception
model demonstrated optimal performance, reaching an accuracy of 0.843 and displaying a 11.508%
improvement in predictions compared to the model without fine-tuning. These findings highlight
the efficacy of transfer learning, particularly with the Xception model, in accurately distinguishing
visually similar aquatic species using smartphone-captured images, even in uncontrolled conditions.

Keywords: image classification; transfer learning; Rastrelliger brachysoma; Rastrelliger kanagurta;
smartphone images

Key Contribution: This study demonstrates the effective use of transfer learning, specifically em-
phasizing the Xception model, to tackle the demanding task of classifying visually similar aquatic
species. The application involves analyzing images captured by smartphones in uncontrolled con-
ditions. The study provides evidence of the success of this approach in producing accurate and
reliable predictions.

1. Introduction

Fish species classification is an important task for biologists and marine ecologists
that is used frequently to estimate the relative abundance of fish species in their natural

Fishes 2024, 9, 103. https://doi.org/10.3390/fishes9030103 https://www.mdpi.com/journal/fishes

https://doi.org/10.3390/fishes9030103
https://doi.org/10.3390/fishes9030103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fishes
https://www.mdpi.com
https://orcid.org/0000-0002-8564-6788
https://doi.org/10.3390/fishes9030103
https://www.mdpi.com/journal/fishes
https://www.mdpi.com/article/10.3390/fishes9030103?type=check_update&version=2

Fishes 2024, 9, 103 2 of 18

habitats and to monitor changes in their populations [1]. The Rastrelliger genus is classified
within the family Scombridae, comprising epipelagic fish species predominantly inhabiting
tropical and subtropical regions. Within the Rastrelliger genus, three distinct species are
identified: R. brachysoma (Short mackerel), R. kanagurta (Indian mackerel), and R. faughni (Is-
land mackerel). Notably, the Short mackerel and Indian mackerel have substantial economic
importance within the Gulf of Thailand. Nevertheless, their populations have experienced
significant declines due to extensive annual harvesting activities [2,3]. Recent data from the
Food and Agriculture Organization of the United Nations (FAO) for 2019 highlighted the
pivotal role of R. brachysoma and R. kanagurta in the global fisheries industry, as they were
among the 70 principal species with capture production exceeding 150,000 t [4]. Nonethe-
less, these fish belong to the same genus and display nearly identical morphologies, with
shared features such as a streamlined body, blue–green coloration, and similar fin struc-
tures. These commonalities present difficulties in differentiating between them. Currently,
distinguishing between these two species relies on manuals or the expertise of individuals.
Traditional methods used for fish species classification are laborious, time-consuming, and
expensive [1]. These limitations pose challenges for consumers and academics unfamiliar
with these fish. Additionally, from a consumer perspective, R. brachysoma is priced higher
than R. kanagurta.

Morphology-based fish species classification is not only an error-prone process but also
time-consuming. Given the vast number of fish species and their often-close resemblance
to each other, relying solely on external characteristics makes classification a challenging
task [5]. Accurate fish classification, however, holds great importance from various aspects,
such as yield forecasting, production management, and ecosystem monitoring [6]. To
address these fish classification challenges, a multitude of machine learning (ML) and
deep learning (DL) approaches have been explored. ML methods, including decision trees,
random forests, and support vector machines, have demonstrated satisfactory performance
in image processing [7,8]. However, conventional ML heavily relies on iterative processes
and human experience [9]. In contrast, DL offers a fundamental advantage through its
automatic hierarchical feature extraction process in image processing. In particular, the use
of DL in machine vision systems for decision-making has gained popularity. Consequently,
DL models are known for their ability to effectively handle raw data without the need
for trial-and-error-based, hand-crafted, feature-extraction processes [8]. DL has become
an increasingly important tool in data analysis, being applied in various models and for
various specific proposes, with the models becoming more and more efficient, especially
in the context of utilizing transfer learning techniques with pre-trained models. Transfer
learning is a machine learning technique where a model trained on one task is reused or
adapted as a starting point for a second, related task. Such techniques can offer several
advantages over traditional methods, potentially making this approach more effective than
other approaches, such as by substantially reducing the need for species-specific training
data. Pre-trained models can already learn low-level features, such as edges and textures,
applicable to various image classification tasks. This “feature extraction” capability can
be transferred to the specific task of differentiating, reducing training time. Moreover,
transfer learning has emerged as a valuable technique for fine-tuning deep neural network
structures, enhancing their ability to discern relevant information effectively. In the realm of
DL models commonly employed in image processing for fish classification, notable options
include the convolutional neural network (CNN), visual geometry group (VGG), residual
neural network (ResNet), krizhevsky neural network (AlexNet), efficient convolutional
neural networks for mobile vision applications (MobileNet), and depthwise separable
convolutions or extreme inception (Xception). These models offer diverse capabilities and
have been instrumental in advancing the field of fish species identification.

For example, ref. [10] used ResNet-50 to classify coral texture images, achieving an
outstanding accuracy rate surpassing 95.87%. However, accurate image classification
remains challenging, especially with limited sample sizes. Rauf et al. [5] introduced the
Fish-Pak dataset with 915 images across six classes and utilized a 32-layer VGG architecture,

Fishes 2024, 9, 103 3 of 18

achieving an impressive 87.33% accuracy in fish species classification. In another study,
Iqbal et al. [11] utilized a variant of AlexNet, comprising four convolutional layers and
two fully connected layers, to classify 468 fish categories, achieving a notable accuracy
rate of 90.48%. Carnagie et al. [12] used the Xception model to classify essential oil plants,
reporting highest accuracy levels of 75% during validation and 81% during testing by the
fourth epoch. Furthermore, Akgül et al. [13] utilized Xception for fish freshness detection
and obtained successful outcomes when combined with Yolo-v5, achieving 88.00% and
94.67% accuracy levels for anchovy (Engraulis encrasicolus) and Horse mackerel (Trachurus
trachurus) datasets, respectively. Chen et al. [14] employed a deep neural system for fish
classification, utilizing two branches: one for detecting, aligning, and classifying fish
based on pose and scale variations; and the other for leveraging contextual information to
infer fish types. Asli et al. [15] introduced a method involving two-dimensional Zernike
polynomials for image classification. Mathur and Goel [16] applied the ResNet-50 network
for underwater fish classification, achieving improved accuracy despite limited datasets,
while Lu and Honarvar Shakibaei Asli [17] utilized Gaussian filter preprocessing, U-net
segmentation, and ResNet-50/Inception-v3 classification for the analysis of specific data.

Applying DL for classifying the species of mackerel, Kurniawan et al. [18] utilized a
CNN to classify images of R. brachysoma and R. kanagurta. Their results revealed a model
accuracy of 100% for training and 92.60% for validation, with 94.70% testing accuracy.
However, they exclusively utilized female R. brachysoma and male R. kanagurta as samples.

Most of the published studies required transporting fish samples to the laboratory
and capturing images in controlled environments, such as using cameras inside light-
controlled boxes, with specific guidelines. In today’s context, where nearly everyone uses
mobile phones for communication and photography, if it were possible to capture images
using mobile phones directly at the sampling site and to subsequently use these images
to differentiate between variations, this would certainly streamline such fisheries work.
This approach might even lead to the development of applications for more accurate fish
species differentiation in the future, especially those within the same genus that display
very similar physical characteristics.

The objective of the current study was to utilize transfer learning models and to
apply pre-trained models (RestNet50, Xception, InceptionV3, VGG19, VGG16, and Mo-
bileNetV3Small). These models were used to classify images of the R. brachysoma and
R. kanagurta fish species, captured using smartphones. Additionally, the best-performing
model was fine-tuned by increasing the number of epochs to achieve optimal
predictive performance.

2. Materials and Methods
2.1. Data Collection

Samples of fresh adult-sized mackerel, with lengths of 15–20 cm, were obtained from
five fishing zones: Zone 1, Eastern Gulf of Thailand; Zone 2, Inner Gulf of Thailand; Zone
3, Western Gulf of Thailand (Upper); Zone 4, Western Gulf of Thailand (Lower); and Zone
6, Andaman Sea (Upper). Collections were conducted six times within a year in December
2021 and in January, March, May, July, and September 2022. In total, 517 samples were
collected, comprising 267 samples of R. brachysoma and 250 samples of R. kanagurta. The
samples were transported under cold conditions using ice and an insulated container to the
Faculty of Fisheries, Kasetsart University, Bangkok, Thailand, where image processing was
conducted. The implementation of all programming codes was carried out using Python
within Google Colab.

2.2. Image Acquisition

Each fish was manually identified to the species level by an expert and then smart-
phones (Xiaomi Mi 9, Xiaomi technology (Thailand) limited, Bangkok, Thailand) equipped
with a 48 Mp/8000 × 6000 Mp camera were used to capture images of each fish (see Table 1
for details) and transmitted for the processing process.

Fishes 2024, 9, 103 4 of 18

Table 1. Smartphone specifications.

Setting Specification

Device Xiaomi Mi 9
Dimensions 157.5 × 74.7 × 7.6 mm (6.20 × 2.94× 0.30 in)

Weight 173 g (6.10 oz)
Resolution 1080 × 2340 pixels, 19.5:9 ratio (~403 ppi density)

OS Android 9.0 (Pie), upgradable to Android 10, MIUI 12.5
Chipset Qualcomm SM8150 Snapdragon 855 (7 nm)

CPU Octa-core (1 × 2.84 GHz Kryo 485 & 3 × 2.42 GHz Kryo 485 & 4 × 1.78 GHz
Kryo 485)

RAM 6 GB
Camera 48 Mp/8000 × 6000 pixel

The images of both the R. brachysoma and R. kanagurta were captured by laying the fish
horizontally on a 30 × 30 cm whiteboard placed on top of a table. Photographs were taken
using the smartphone without any zooming function, utilizing default camera settings,
without additional light sources or filters. Post-capture, all fish images were resized to
cover from the tip of the snout to the end of the tail fin, as illustrated in Figure 1.

Fishes 2024, 9, x FOR PEER REVIEW 4 of 18

was conducted. The implementation of all programming codes was carried out using
Python within Google Colab.

2.2. Image Acquisition
Each fish was manually identified to the species level by an expert and then

smartphones (Xiaomi Mi 9, Xiaomi technology (Thailand) limited, Bangkok, Thailand)
equipped with a 48 Mp/8000 × 6000 Mp camera were used to capture images of each fish
(see Table 1 for details) and transmitted for the processing process.

Table 1. Smartphone specifications.

Setting Specification
Device Xiaomi Mi 9

Dimensions 157.5 × 74.7 × 7.6 mm (6.20 × 2.94× 0.30 in)
Weight 173 g (6.10 oz)

Resolution 1080 × 2340 pixels, 19.5:9 ratio (~403 ppi density)
OS Android 9.0 (Pie), upgradable to Android 10, MIUI 12.5

Chipset Qualcomm SM8150 Snapdragon 855 (7 nm)
CPU Octa-core (1 × 2.84 GHz Kryo 485 & 3 × 2.42 GHz Kryo 485 & 4 × 1.78 GHz Kryo 485)
RAM 6 GB

Camera 48 Mp/8000 × 6000 pixel

The images of both the R. brachysoma and R. kanagurta were captured by laying the fish
horizontally on a 30 × 30 cm whiteboard placed on top of a table. Photographs were taken
using the smartphone without any zooming function, utilizing default camera settings,
without additional light sources or filters. Post-capture, all fish images were resized to cover
from the tip of the snout to the end of the tail fin, as illustrated in Figure 1.

Figure 1. Sixty image samples from dataset: (a) R. brachysoma and (b) R. kanagurta.

In total, 517 images (267 of R. brachysoma and 250 of R. kanagurta) were randomly
distributed into separate folders for training, validation, and testing purposes, organized
into two classes: R. brachysoma and R. kanagurta. The training folder contained 183 R.
brachysoma and 179 R. kanagurta images, while the validation set contained 56 R.
brachysoma and 47 R. kanagurta images and the testing folder contained 28 R. brachysoma
and 24 R. kanagurta images.

Figure 1. Sixty image samples from dataset: (a) R. brachysoma and (b) R. kanagurta.

In total, 517 images (267 of R. brachysoma and 250 of R. kanagurta) were randomly dis-
tributed into separate folders for training, validation, and testing purposes, organized into
two classes: R. brachysoma and R. kanagurta. The training folder contained 183 R. brachysoma
and 179 R. kanagurta images, while the validation set contained 56 R. brachysoma and
47 R. kanagurta images and the testing folder contained 28 R. brachysoma and
24 R. kanagurta images.

2.3. Image Processing

Due to the limited availability of 362 images for training, augmentation techniques
were implemented to expand the dataset. This augmentation process assists in modelling
by enhancing the capacity for better generalization and fortifying the model’s capability
to handle novel, unseen data effectively throughout the training phase. The ImageData-
Generator class from Python’s Keras library was used for this purpose. The augmentation
included rescaling (1/255), rotation up to 30 degrees, shifting width by 20%, shifting height
by 20%, applying shear within 20%, zooming within 20%, enabling horizontal flipping,
and using the ‘nearest’ fill mode. Finally, 11,584 images were acquired specifically for
training purposes.

Fishes 2024, 9, 103 5 of 18

2.4. Deep Learning Algorithm Scheme

In this research, we utilized pre-trained deep learning models: ResNet-50, Xception,
VGG16, VGG19, Inception V3, and MobileNetV3Small.

2.4.1. ResNet 50

The ResNet-50 architecture consists of five stages, each featuring a convolutional
block, an identity block, an average pooling layer, and a fully connected layer with
1000 neurons [19]. In each convolution block, there were three convolution layers, and the
same was applied to each identity block. The input size for ResNet-50 was 224 × 224 × 3.
Following each convolutional layer, there was a batch normalization layer and a non-linear
rectified linear unit (ReLU) function. Batch normalization layers standardized the acti-
vations of an input volume before passing it to the next layer, calculating the mean and
standard deviation for each convolutional filter response across each mini-batch at each
iteration to normalize the current layer activation. ResNet-50 comprised over 23 million
trainable parameters. The original residual unit was adapted with a bottleneck design, as
illustrated in Figure 2a. Instead of the original 2-layered structure, a stack of three layers
was used for each residual function F [20].

2.4.2. Xception

This represents a CNN model and was developed by Google for object detection
and image analysis, characterized as an advanced iteration of the Inception model. The
architecture relies on layers of depth-wise separable convolution that outperform the
Inception model. Notably, it introduces the idea that spatial correlations and cross-channel
correlations in CNN feature maps can be entirely decoupled, presenting a more robust
hypothesis compared to Inception.

The Xception architecture consists of 36 convolution layers, forming a foundation for
efficient feature extraction. These layers are organized into 14 modules with linear residual
connections enveloping them, except for the initial and final modules. It uses depth-wise
separable convolution layers with linear residual connections in a linear stack, making it
an easily definable and modifiable model. Its adaptability is facilitated by the use of a few
lines of code and high-level libraries, such as Keras or TensorFlow [21].

The inclusion of residual connections contributes to more rapid convergence, making
it a superior performer in terms of both classification accuracy and processing speed. Each
image undergoes entry flow, followed by middle flow, where the same process is iterated
eight times, until finally proceeds through exit flow. Batch normalization follows all depth-
wise separable convolution layers and convolution layers. With a depth multiplier set
to one, ensuring no expansion of depth, Xception models have demonstrated excellent
performance in convolutional neural networks, as illustrated in Figure 2b, according to
Chollet [22].

2.4.3. InceptionV3

The Inception V3 model, depicted in Figure 2c, is a pre-trained model by Google, hav-
ing undergone training on more than 1000 classes and over 1.4 million images. This model
serves as an image recognition tool for feature extraction, leveraging CNN. Subsequent
classification is carried out through fully connected and softmax layers. Following this, a
data sampler is applied to partition the data into training and testing sets [22].

2.4.4. VGG19

VGG19 is a variation of the VGG model, comprising 19 layers. It consists of
16 convolution layers, three fully connected layers, five max-pooling layers, and a softmax
layer. While conceptually similar to VGG16, the distinction lies in the number of layers,
with nineteen denoting the count in this model. Trained on millions of images from the Im-
ageNet database, VGG19 can categorize images into 1000 object categories, encompassing
items such as pencils, keyboards, cars, and various animals [21].

Fishes 2024, 9, 103 6 of 18Fishes 2024, 9, x FOR PEER REVIEW 6 of 18

Figure 2. Standard ResNet-50 (a), Xception (b), InceptionV3 (c), VGG19 (d), VGG16 (e), and MobileNetV3Small (f). Distinct colors are used to differentiate between
pathways in the filter concat layer and among various convolutional layers within each pathway. In the image of a ResNet-50 (a) architecture, the dotted lines
represent the residual blocks. When it changes to another convolutional layer, in the image of the InceptionV3 (c) architecture, a red box indicates different netwrok
modules or building blocks with the solid once.

Figure 2. Standard ResNet-50 (a), Xception (b), InceptionV3 (c), VGG19 (d), VGG16 (e), and MobileNetV3Small (f). Distinct colors are used to differentiate between
pathways in the filter concat layer and among various convolutional layers within each pathway. In the image of a ResNet-50 (a) architecture, the dotted lines
represent the residual blocks. When it changes to another convolutional layer, in the image of the InceptionV3 (c) architecture, a red box indicates different network
modules or building blocks with the solid once.

Fishes 2024, 9, 103 7 of 18

The input RGB image is presented in a fixed matrix dimension (224, 224, 3) and un-
dergoes preprocessing by subtracting the RGB mean value from each pixel. Convolutional
kernels of size (3, 3) with a one-pixel stride cover the entire image, preserving spatial
resolution through the use of spatial padding. Max pooling of size (2, 2) is performed
with a two-pixel stride, followed by ReLU activation to introduce non-linearity, enhancing
the model’s classification performance and reducing computational time. This model has
proven superior to previously used functions, such as tanh or sigmoid. It features three
fully connected layers, with the first two having a size of 4096. Additionally, a layer with
1000 channels for the 1000 object categories of the ILSVRC classification is present, followed
by a final softmax function, as illustrated in Figure 2d, according to Humayun et al. [21].

2.4.5. VGG16

VGG16, a CNN model designed for visual recognition, was introduced by Karen
Simonyan and Andrew Zisserman from the Visual Geometry Group Laboratory at Oxford
University in 2014. In the 2014 ImageNet Large Scale Visual Recognition Challenge, VGG16
secured first place in object detection within 200 classes and second place in classifying
images labeled among 1000 categories. When applied to the ImageNet dataset containing
1000 classes with 14 million images, the model achieved an impressive 92.7% top-five test
accuracy [21].

The model accepts image inputs (dimensions 224, 224, 3) and comprises a total of
sixteen layers. The initial two layers feature a 3 × 3 filter size and 64 channels with the
same padding. Subsequently, a (2, 2) stride max-pool layer is followed by two 256-filter
layers with a (3, 3) filter size, and another (2, 2) stride max-pool layer. Following this are
two layers with a (3, 3) size and 256 filters, succeeded by two sets of three layers with
512 filters and a (3, 3) size convolution layer, along with a max-pool layer, all with the same
padding. Then, the image undergoes processing through a stack of two convolution layers,
applying 1-pixel padding after each convolution layer [21].

Upon traversing all layers of VGG16, a (7, 7512) feature map is generated, which is
subsequently flattened to obtain a (1, 25,088) feature vector. The model contains three
fully connected layers; the first takes input from the last feature vector and produces
a (1, 4096) vector, while the second yields the same output as the first and the third
outputs 1000 channels corresponding to the 1000 classes. Then, the classification vector is
normalized, passing from the third layer to the softmax layer [23,24]. The architecture is
depicted in Figure 2e.

2.4.6. MobileNetV3Small

MobileNetV1 [25] was inspired from the traditional VGG architecture, while incorpo-
rating depth wise separable convolutions. Building upon this, MobileNetV2 [26,27] was
introduced a year later, featuring a linear bottleneck and inverted residual. Subsequently,
MobileNetV3 was developed with the assistance of neural architecture search (NAS) and
NetAdapt networks for architecture optimization. This version drops expensive layers and
adopts the h-swish non-linearity function instead of ReLU, aiming to enhance efficiency
and maintain relative accuracy simultaneously, as of mid-2019.

MobileNetV3 is categorized into two models (MobileNetV3-Small and MobileNetV3-
Large), with each tailored to low or high resource use cases, respectively, with their distinc-
tive architectural complexity illustrated in Figure 2f, according to Qian et al. [25].

2.5. Model Creation

All the pre-trained models applied in this study were loaded and used as the base
model. In addition, all model layers were frozen, preventing their weights from being
adjusted during the training process. This allows the model to utilize the pre-trained
weights from the ImageNet dataset. However, the final fully connected layer was removed,
adding a global average pooling layer and two dense layers at the end, consisting of
1024 units followed by one unit, respectively. The activation function used in the final layer

Fishes 2024, 9, 103 8 of 18

was Sigmoid, allowing the model to predict whether an image belonged to the specified
class or not. The model was compiled by configuring the optimizer as Adam with a learning
rate of 0.001. Binary cross-entropy served as the chosen loss function, while accuracy was
applied as the evaluation metric.

Augmenting data can impact predictions both positively and negatively. On the posi-
tive side, it improves generalization and robustness by exposing the model to a wider range
of data variations. However, this comes with drawbacks, such as increased computational
cost and the risk of the model memorizing augmented samples, potentially worsening
overfitting. To address this, we implemented an early stopping method to prevent overfit-
ting. Additionally, the code utilizes the Model Checkpoint callback to save the best model
weights during training, monitoring validation accuracy and storing only the optimal
weights. The resulting file, ‘model_checkpoint.h5’, is stored in a Google Drive directory.

The flowchart of the deep learning algorithm constructed in this study is shown in
Figure 3 and Table 2.

Fishes 2024, 9, x FOR PEER REVIEW 8 of 18

2.4.6. MobileNetV3Small
MobileNetV1 [25] was inspired from the traditional VGG architecture, while

incorporating depth wise separable convolutions. Building upon this, MobileNetV2
[26,27] was introduced a year later, featuring a linear bottleneck and inverted residual.
Subsequently, MobileNetV3 was developed with the assistance of Neural Architecture
Search (NAS) and NetAdapt networks for architecture optimization. This version drops
expensive layers and adopts the h-swish non-linearity function instead of ReLU, aiming
to enhance efficiency and maintain relative accuracy simultaneously, as of mid-2019.

MobileNetV3 is categorized into two models (MobileNetV3-Small and MobileNetV3-
Large), with each tailored to low or high resource use cases, respectively, with their
distinctive architectural complexity illustrated in Figure 2f, according to Qian et al. [25].

2.5. Model Creation
All the pre-trained models applied in this study were loaded and used as the base

model. In addition, all model layers were frozen, preventing their weights from being
adjusted during the training process. This allows the model to utilize the pre-trained
weights from the ImageNet dataset. However, the final fully connected layer was
removed, adding a global average pooling layer and two dense layers at the end,
consisting of 1024 units followed by one unit, respectively. The activation function used
in the final layer was Sigmoid, allowing the model to predict whether an image belonged
to the specified class or not. The model was compiled by configuring the optimizer as
Adam with a learning rate of 0.001. Binary cross-entropy served as the chosen loss
function, while accuracy was applied as the evaluation metric.

Augmenting data can impact predictions both positively and negatively. On the positive
side, it improves generalization and robustness by exposing the model to a wider range of
data variations. However, this comes with drawbacks, such as increased computational cost
and the risk of the model memorizing augmented samples, potentially worsening overfitting.
To address this, we implemented an early stopping method to prevent overfitting.
Additionally, the code utilizes the Model Checkpoint callback to save the best model weights
during training, monitoring validation accuracy and storing only the optimal weights. The
resulting file, ‘model_checkpoint.h5’, is stored in a Google Drive directory.

The flowchart of the deep learning algorithm constructed in this study is shown in
Figure 3 and Table 2.

Figure 3. Flow chart of deep learning algorithm constructed in this study.

Table 2. The structure of the applied models.

Detail Structure

Constants Img_width, Img_height = 224, 224
Batch_size = 32, Epochs = 10, Num_classes = 2

Data directories
Train_data_dir = ‘/content/drive/mydrive/mac/training’

Validation_data_dir = ‘/content/drive/mydrive/mac/validation’
Test_data_dir = ‘/content/drive/mydrive/mac/testing’

Data augmentation

Train_datagen = imagedatagenerator
(Rescale = 1.0/255.0, Rotation_range = 30, Width_shift_range = 0.2,

Shear_range = 0.2, Zoom_range = 0.2, Horizontal_flip = True,
Fill_mode = ‘nearest’)

Validation and testing
data generators

Validation_datagen = imagedatagenerator (rescale = 1.0/255.0)
Test_datagen = imagedatagenerator (rescale = 1.0/255.0)

Fishes 2024, 9, 103 9 of 18

Table 2. Cont.

Detail Structure

Load data and apply
data augmentation

Train/Validate/Test_generator = train/validate/test_datagen.flow_from_directory
(Train/Validate/Test_data_dir,

Target_size = (img_width, img_height),
Batch_size = batch_size,
Class_mode = ‘binary’,

Shuffle of Train/Validate/Test = True/False/False)

Deep learning
model

Create models = ResNet50, Xception, InceptionV3, VGG19, VGG16, MobileNetV3Small
Base_model = model (weights = ‘imagenet’, include_top = false)

X = base_model.output
X = globalaveragepooling2D () (x)

X = dense (1024, activation = ‘relu’) (x)
Predictions = dense (1, activation = ‘sigmoid’) (x)

Model = model (input = base_model.input, outputs = predictions)

Freeze pretrained
layers

For layer in base_model.layers:
layer. trainable = false

Compile the model
Optimizer = adam (learning_rate = 0.001)

Model.compile (optimizer = optimizer, loss = ‘binary_crossentropy’,
Metrics = [‘accuracy’])

Define early stopping
criteria and

model checkpoint

Early_stopping = EarlyStopping(monitor = ‘val_loss’, patience = 3, restore_best_weights = true)
Checkpoint_filepath = ‘/content/drive/MyDrive/model_checkpoint.h5’

Model_checkpoint = modelcheckpoint (checkpoint_filepath,
Monitor = ‘val_accuracy’,

Save_best_only = True,
Mode = ‘max’, # use ‘max’ if monitoring accuracy, ‘min’ for loss

verbose = 1)

Train the model

History = model.fit (train_generator,
Steps_per_epoch = train_generator.samples // batch_size,

Epochs = epochs,
Validation_data = validation_generator,

Validation_steps = validation_generator.samples // batch_size)

Evaluate the model on
the test dataset

Test_generator.reset ()
Test_loss, test_accuracy = model.evaluate (test_generator,

Steps = test_generator.samples // batch_size + 1, verbose = 1)

Generate predictions
and calculate the
confusion matrix

Test_generator.reset ()
Y_pred = model.predict (test_generator, steps = test_generator.samples // batch_size + 1, verbose = 1)

Y_pred = (y_pred > 0.5). astype (int)
Y_true = test_generator.classes

Class_names = [‘IndianMackeral’, ‘ShortMackeral’]
Conf_matrix = confusion_matrix(y_true, y_pred)

The best model from the previous outcomes was fine-tuned by increasing the number
of epochs and further studying its performance.

2.6. Evaluation Indicator

Accuracy measures the proportion of correctly predicted samples out of the total
number of samples in the dataset and was defined as (1):

Accuracy = number of correct predictions/total number of samples (1)

where number of correct predictions is the total number of samples for which the model’s
prediction matches the true target values in the dataset and total number of samples is the
total number of samples in the dataset.

Fishes 2024, 9, 103 10 of 18

The loss function used was cross-entropy ad was defined as (2):

Cross − Entropy Loss =
1
N ∑N

i=1 ∑C
j=1 yi,j × log

(
pi,j

)
(2)

where N is the number of samples in the dataset, C is the number of classes, yi,j is an
indicator function that is 1 if the sample i belongs to class j and 0 otherwise, and pi,j is the
predicted probability that sample i belongs to class j.

Accuracy and loss values were computed for both the training and validation datasets
across various pre-trained models. Subsequently, graphs were generated to visualize and
display these metrics.

2.7. Classification Performance Metrics

Choosing appropriate indicators is a crucial factor in the scientific evaluation of the
classification performance of deep learning models. Accuracy, precision, recall, and F1-
score are commonly used as proven, effective, evaluation indicators. Accuracy refers to the
percentage of correct results predicted in the total sample. Precision is the probability of an
actual positive in all predicted positive samples. Recall is the probability of being predicted
to be positive in actual positive samples, and the F1-score is the harmonic value of the
precision rate and the recall rate. These indicators were calculated as shown in (3)–(6):

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

Precision = TP/(TP + FP) (4)

Recall = TP/(TP + FN) (5)

F1-score = (2 × Precision × Recall)/(Precision + Recall) (6)

where, in Equations (3)–(5), TP is the number of positive classes predicted as positive
classes, TN is the number of negative classes predicted as negative classes, FP represents
the number of negative classes predicted as positive classes, and FN refers to the number
of positive classes predicted as negative classes.

Confusion matrices were depicted using heat mapping to understand the model’s
behavior in terms of correct and incorrect predictions.

3. Results and Discussion
3.1. Model Evaluation Based on Training, Validation, and Test Datasets

In the training and validation datasets, the Xception model demonstrated the best
predictive performance, with the highest average accuracy levels of 0.849 and 0.754 for
training and validation, respectively. In addition, the Xception model had the lowest
average training loss of 0.505. However, in terms of validation, the Xception model was
not quite as good as InceptionV3, with an average loss of 0.553 compared to 0.544 for
InceptionV3. Overall, considering the comprehensive performance in the training and
validation sets, the Xception model was the most efficient. Following it in descending order
of performance were the InceptionV3, VGG19, VGG16, ResNet-50, and MobileNetV3Small
models, as outlined in Table 3 and illustrated in Figure 4.

In the testing dataset, the Xception model had the highest values for average accuracy,
recall, and F-1 score, with its precision score being slightly lower than for the InceptionV3
model. The average values for overall accuracy and for the precision, recall, and F-1 scores
of the Xception model were at 0.757, 0.770, 0.748, and 0.750, respectively. The other models
(InceptionV3, VGG19, VGG16, ResNet-50, and MobileNetV3Small) had overall accuracy
values in descending order of 0.717, 0.620, 0.603, 0.560, and 0.513, respectively, as presented
in Table 4 and Figure 5. Considering the cumulative results from training, validation,
and testing, it was evident that the most suitable model for utilization was the Xception
model, so it was further subjected to a fine-tuning process to enhance its performance in
subsequent steps.

Fishes 2024, 9, 103 11 of 18

Table 3. Performance of 6 transfer learning models at 10 epochs.

Transfer Learning Model
Training Validation

Accuracy Loss Accuracy Loss

ResNet50 0.529 0.722 0.552 0.722
Xception 0.849 0.505 0.754 0.553

InceptionV3 0.813 0.518 0.753 0.544
VGG19 0.739 0.599 0.698 0.657
VGG16 0.712 0.591 0.677 0.645

MobileNetV3Small 0.499 0.694 0.503 0.694

Fishes 2024, 9, x FOR PEER REVIEW 11 of 18

Table 3. Performance of 6 transfer learning models at 10 epochs.

Transfer Learning Model
Training Validation

Accuracy Loss Accuracy Loss

ResNet50 0.529 0.722 0.552 0.722

Xception 0.849 0.505 0.754 0.553

InceptionV3 0.813 0.518 0.753 0.544

VGG19 0.739 0.599 0.698 0.657

VGG16 0.712 0.591 0.677 0.645

MobileNetV3Small 0.499 0.694 0.503 0.694

Figure 4. Cont.

Fishes 2024, 9, 103 12 of 18Fishes 2024, 9, x FOR PEER REVIEW 12 of 18

Figure 4. Accuracy and loss curves of different deep learning networks on training and validation

datasets: ResNet-50 (a), Xception (b), Inception V3 (c), VGG19 (d), VGG16 (e), and MobilenetV3

small (f).

In the testing dataset, the Xception model had the highest values for average

accuracy, recall, and F-1 score, with its precision score being slightly lower than for the

InceptionV3 model. The average values for overall accuracy and for the precision, recall,

and F-1 scores of the Xception model were at 0.757, 0.770, 0.748, and 0.750, respectively.

The other models (InceptionV3, VGG19, VGG16, ResNet-50, and MobileNetV3Small) had

overall accuracy values in descending order of 0.717, 0.620, 0.603, 0.560, and 0.513,

respectively, as presented in Table 4 and Figure 5. Considering the cumulative results from

training, validation, and testing, it was evident that the most suitable model for utilization

was the Xception model, so it was further subjected to a fine-tuning process to enhance its

performance in subsequent steps.

Table 4. Classification report of test data.

Model Class Precision Recall F1-Score Accuracy

ResNet-50

Short mackerel 0.557 0.953 0.700

0.560 Indian mackerel 0.213 0.097 0.133

Average 0.385 0.525 0.416

Xception

Short mackerel 0.760 0.820 0.783

0.757 Indian mackerel 0.780 0.677 0.717

Average 0.770 0.748 0.750

InceptionV3

Short mackerel 0.740 0.833 0.760

0.717 Indian mackerel 0.823 0.583 0.620

Average 0.781 0.708 0.690

VGG19

Short mackerel 0.610 0.800 0.693

0.620 Indian mackerel 0.627 0.430 0.490

Average 0.618 0.615 0.591

VGG16

Short mackerel 0.633 0.653 0.640

0.603 Indian mackerel 0.573 0.543 0.550

Average 0.603 0.598 0.595

MobileNetV3Small

Short mackerel 0.360 0.667 0.467

0.513 Indian mackerel 0.153 0.333 0.210

Average 0.256 0.500 0.330

Figure 4. Accuracy and loss curves of different deep learning networks on training and val-
idation datasets: ResNet-50 (a), Xception (b), Inception V3 (c), VGG19 (d), VGG16 (e), and
MobilenetV3Small (f).

Table 4. Classification report of test data.

Model Class Precision Recall F1-Score Accuracy

ResNet-50
Short mackerel 0.557 0.953 0.700

0.560Indian mackerel 0.213 0.097 0.133
Average 0.385 0.525 0.416

Xception
Short mackerel 0.760 0.820 0.783

0.757Indian mackerel 0.780 0.677 0.717
Average 0.770 0.748 0.750

InceptionV3
Short mackerel 0.740 0.833 0.760

0.717Indian mackerel 0.823 0.583 0.620
Average 0.781 0.708 0.690

VGG19
Short mackerel 0.610 0.800 0.693

0.620Indian mackerel 0.627 0.430 0.490
Average 0.618 0.615 0.591

VGG16
Short mackerel 0.633 0.653 0.640

0.603Indian mackerel 0.573 0.543 0.550
Average 0.603 0.598 0.595

MobileNetV3Small
Short mackerel 0.360 0.667 0.467

0.513Indian mackerel 0.153 0.333 0.210
Average 0.256 0.500 0.330

Fishes 2024, 9, 103 13 of 18Fishes 2024, 9, x FOR PEER REVIEW 13 of 18

Figure 5. Confusion matrix heat maps for different pre-trained models on test set with accuracy and

loss curves of different deep learning networks on training and validation datasets: ResNet-50 (a),

Xception (b), Inception V3 (c), VGG19 (d), VGG16 (e), and MobilenetV3 small (f).

3.2. Fine-Tuning

After fine-tuning the Xception model by increasing the number of epochs, the

average accuracy increased substantially, reaching its peak at epoch 30 with a value of

0.896, while the average loss decreased substantially, hitting its lowest point at an average

Figure 5. Confusion matrix heat maps for different pre-trained models on test set with accuracy and
loss curves of different deep learning networks on training and validation datasets: ResNet-50 (a),
Xception (b), Inception V3 (c), VGG19 (d), VGG16 (e), and MobilenetV3Small (f).

3.2. Fine-Tuning

After fine-tuning the Xception model by increasing the number of epochs, the average
accuracy increased substantially, reaching its peak at epoch 30 with a value of 0.896, while
the average loss decreased substantially, hitting its lowest point at an average of 0.431 in the
training set. At epoch 30, the model achieved its highest average accuracy of 0.799 and the

Fishes 2024, 9, 103 14 of 18

lowest average loss of 0.427 in the validation set. However, upon extending the epochs to
35, for both the training and validation datasets, there was a decrease in average accuracy
and increase in average loss, as outlined in Table 5 and depicted in Figure 6. Comparing
epoch 30 to epoch 10, there was a clear increase in accuracy and a decrease in loss. However,
extending beyond epoch 30 seemed to lead to a decline in both accuracy and loss.

Table 5. Performance measures for Xception model with training and validation datasets.

Number of Epochs
Training Validation

Accuracy Loss Accuracy Loss

10 0.849 0.505 0.754 0.553
15 0.877 0.461 0.781 0.483
20 0.877 0.464 0.792 0.485
25 0.889 0.464 0.747 0.474
30 0.896 0.431 0.799 0.427
35 0.892 0.510 0.760 0.499

Fishes 2024, 9, x FOR PEER REVIEW 14 of 18

of 0.431 in the training set. At epoch 30, the model achieved its highest average accuracy

of 0.799 and the lowest average loss of 0.427 in the validation set. However, upon

extending the epochs to 35, for both the training and validation datasets, there was a

decrease in both the average accuracy and precision, as outlined in Table 5 and depicted

in Figure 6. Comparing epoch 30 to epoch 10, there was a clear increase in accuracy and a

decrease in loss. However, extending beyond epoch 30 seemed to lead to a decline in both

accuracy and precision.

Table 5. Performance measures for Xception model with training and validation datasets.

Number of Epochs
Training Validation

Accuracy Loss Accuracy Loss

10 0.849 0.505 0.754 0.553

15 0.877 0.461 0.781 0.483

20 0.877 0.464 0.792 0.485

25 0.889 0.464 0.747 0.474

30 0.896 0.431 0.799 0.427

35 0.892 0.510 0.760 0.499

Figure 6. Accuracy and loss curves for different epochs with training and validation datasets: epoch

(a) 10 and epoch 30 (b).

Based on testing over 10 epochs, the model had average values for accuracy,

precision, recall, and F-1 score of 0.757, 0.770, 0.748, and 0.750, respectively. After

enhancing the model performance by adding epochs every 5 epochs, the accuracy,

precision, recall, and F-1 score consistently improved. With increments at 15, 20, 25, and

30 epochs, the values for average accuracy increased to 0.795, 0.808, 0.823, and 0.843,

respectively; for precision to 0.803, 0.810, 0.840, and 0.847, respectively; for recall to 0.787,

0.810, 0.810, and 0.837, respectively; and for the F-1 score to 0.790, 0.810, 0.813, 0.840, and

0.783, respectively.

However, similar to the training and validation datasets, extending epochs to 35

resulted in a decrease in the average performance metrics for the various model

Figure 6. Accuracy and loss curves for different epochs with training and validation datasets:
epoch 10 (a) and epoch 30 (b).

Based on testing over 10 epochs, the model had average values for accuracy, precision,
recall, and F-1 score of 0.756, 0.770, 0.753, and 0.750, respectively. After enhancing the
model performance by adding epochs every 5 epochs, the accuracy, precision, recall, and
F-1 score consistently improved. With increments at 15, 20, 25, and 30 epochs, the values
for average accuracy increased to 0.795, 0.808, 0.823, and 0.843, respectively; for precision
to 0.803, 0.810, 0.840, and 0.847, respectively; for recall to 0.787, 0.810, 0.810, and 0.837,
respectively; and for the F-1 score to 0.790, 0.810, 0.813 and 0.840, respectively.

However, similar to the training and validation datasets, extending epochs to 35 re-
sulted in a decrease in the average performance metrics for the various model architectures.
Therefore, utilizing 30 epochs provided the highest performance values for the model in
terms of accuracy, precision, recall, and F-1 score in this study, as presented in Table 6 and
depicted in Figures 7 and 8.

Fishes 2024, 9, 103 15 of 18

Table 6. Performance measures for Xception model for testing process.

Number of Epochs Accuracy Precision Recall F-1 Score

10 0.756 0.770 0.753 0.750
15 0.795 0.803 0.787 0.790
20 0.808 0.810 0.810 0.810
25 0.823 0.840 0.810 0.813
30 0.843 0.847 0.837 0.840
35 0.802 0.790 0.787 0.783

Fishes 2024, 9, x FOR PEER REVIEW 15 of 18

architectures. Therefore, utilizing 30 epochs provided the highest performance values for

the model in terms of accuracy, precision, recall, and F-1 score in this study, as presented

in Table 6 and depicted in Figures 7 and 8.

Table 6. Performance measures for Xception model for testing process.

Number of Epochs Accuracy Precision Recall F-1 Score

10 0.756 0.770 0.753 0.750

15 0.795 0.803 0.787 0.790

20 0.808 0.810 0.810 0.810

25 0.823 0.840 0.810 0.813

30 0.843 0.847 0.837 0.840

35 0.802 0.790 0.787 0.783

Figure 7. Fine-tuning to enhance accuracy, precision, recall, and F-1 score for Xception model.

Figure 8. Confusion matrix heat maps of different epochs for test set: 10 epochs (a) and 30 epochs (b).

Figure 7. Fine-tuning to enhance accuracy, precision, recall, and F-1 score for Xception model.

Fishes 2024, 9, x FOR PEER REVIEW 15 of 18

architectures. Therefore, utilizing 30 epochs provided the highest performance values for

the model in terms of accuracy, precision, recall, and F-1 score in this study, as presented

in Table 6 and depicted in Figures 7 and 8.

Table 6. Performance measures for Xception model for testing process.

Number of Epochs Accuracy Precision Recall F-1 Score

10 0.756 0.770 0.753 0.750

15 0.795 0.803 0.787 0.790

20 0.808 0.810 0.810 0.810

25 0.823 0.840 0.810 0.813

30 0.843 0.847 0.837 0.840

35 0.802 0.790 0.787 0.783

Figure 7. Fine-tuning to enhance accuracy, precision, recall, and F-1 score for Xception model.

Figure 8. Confusion matrix heat maps of different epochs for test set: 10 epochs (a) and 30 epochs (b). Figure 8. Confusion matrix heat maps of different epochs for test set: 10 epochs (a) and 30 epochs (b).

This study showed that images captured using a smartphone camera required pre-
processing or augmentation to improve model performance. Smartphone-based image
capture made the data collection more accessible and allowed for real-time species identifi-
cation in the field, improving research efficiency and conservation efforts. The transfer learn-

Fishes 2024, 9, 103 16 of 18

ing models could be fine-tuned with smaller datasets specific to these diverse environments,
improving their generalizability and real-world performance. Overall, applying transfer
learning techniques to smartphone-captured images for the classification of R. brachysoma
and R. kanagurta was very promising as a way of overcoming the limitations of previous
research and advancing species identification in fisheries and in ecological studies.

The results of this study indicated that the Xception model had the highest perfor-
mance of the test models, aligning with previous research [12,19,28]. Compared to these
findings, a similar study by Kurniawan et al. [18] utilizing CNN had a higher testing accu-
racy of 0.947. However, that study used a camera setup, controlled lighting, and limited
their classification to distinction between male R. kanagurta and female R. brachysoma fish.
In contrast, the current study achieved a lower average testing accuracy of 0.843. The
difference may have occurred since the current study did not prepare a controlled image-
capturing environment, did not separate fish genders, and utilized mobile phones for
image capture. This is the first known publication of using mobile phone for classification
compared to other reported research that only identified different species that had external
characteristic differences [1,29]. The use of a mobile phone is quite rare for identifying
similar species with external characteristics quite similar to the fish species in the current
study. We experimented with the MobileNetV3Small model, designed specifically for
mobile use, to explore its feasibility. Its results from MobileNetV3Small were unsatisfactory,
yielding an average testing accuracy of 0.513 across 10 epochs of processing. This requires
further development moving forward. Contrasting the outcomes of this inquiry with the
research carried out by Lu et al. [17], our study focuses on the classification of species
within aquatic environments using transfer learning. In comparison, Liu et al.’s study
tackles the broader challenge of fine-grained visual categorization (FGVC), highlighting the
significance of integrating detailed information from diverse layers of CNNs. Both studies
highlight advancements in leveraging ML and DL for intricate visual recognition tasks.

The benefits of the current study were in aiding the conservation and management of
species, which is especially critical given the vulnerability of R. brachysoma to overfishing.
This approach should promote sustainable fisheries and help to combat illegal practices
by facilitating traceability within the seafood trade. Leveraging smartphone cameras and
transfer learning enhances accessibility and efficiency compared to traditional methods,
making species identification more feasible. Additionally, it empowers scientists and
fishermen to contribute data, enabling better monitoring of fish populations and supporting
informed management decisions.

For enhanced accuracy in future study, it would be beneficial to gather more image
data and to explore the potential of combined models while conducting further fine-tuning.
For example, Akgül et al. [13] applied the Xception model in a study of fish freshness
detection, achieving successful results when combined with Yolo-v5 for anchovy (Engraulis
encrasicolus) and horse mackerel (Trachurus trachurus). Additionally, comparing specific
external fish body parts, such as color, fins, tail, body length, and width, might enhance
classification performance.

The findings from this study should contribute toward the future development of
a mobile phone application using images for fish species identification. Additionally,
several recent studies have employed DL for fish morphology and behavior analysis.
Petrellis [30] investigated fish morphological features, including species like Dicentrarchus
labrax, Diplodus puntazzo, Merluccius merluccius, and Sparus aurata, using image processing
and DL techniques. Iqbal et al. [11] utilized a CNN for classifying fish behavior. Wang
et al. [31] employed YOLOV5 and SiamRPN++ for real-time detection and tracking of fish
abnormal behavior. The use of DL in classifying aquatic species presents an intriguing
opportunity to investigate the relationship between morphological characteristics and
behaviors in aquatic animals.

Fishes 2024, 9, 103 17 of 18

4. Conclusions

The utilization of transfer learning techniques with pre-trained models—RestNet50,
VGG16, VGG19, InceptionV3, Xception, and MobileNetV3Small—to differentiate between
R. brachysoma and R. kanagurta using smartphone-captured images revealed that Xception
yielded the most favorable outcomes. It displayed superior results in accuracy, precision,
recall, and F1-score. Specifically, using the Xception model at 30 epochs produced the
highest testing performance, with accuracy of 0.843, precision of 0.847, recall of 0.837, and
an F1-score of 0.840.

Author Contributions: Conceptualization, R.J. and W.T.; methodology, R.J., W.T., S.S., M.K., V.D. and
S.J.; software, R.J. and W.T.; validation, R.J., W.T. and S.J.; formal analysis, R.J. and W.T.; investigation,
R.J. and W.T.; resources, M.K.; data curation, R.J., W.T. and V.D.; writing—original draft preparation,
R.J. and W.T.; writing—review and editing, R.J. and W.T.; visualization, R.J. and W.T.; supervision,
W.T.; project administration, W.T.; funding acquisition, M.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was supported by the National Research Council of Thailand (NRCT) under
the Short Mackerel Project: sustainable research and development of aquatic animal resources for
the economic resilience of the country’s value chain (sub-project on the processing and industry of
Short mackerel).

Institutional Review Board Statement: Not applicable. This study uses dead fish samples and
doesn’t involve any experiments on live animals.

Data Availability Statement: The dataset can be requested directly from the author.

Acknowledgments: We are thankful to the staff of the Processing and Industry of Short Mackerel
Project and Aquacultural Engineering Laboratory, Department of Aquaculture, Faculty of Fisheries,
Kasetsart University for their support during the trials.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Pudaruth, S.; Nazurally, N.; Appadoo, C.; Kishnah, S.; Chady, F. Superfish: A mobile application for fish species recognition using

image processing techniques and deep learning. Int. J. Comput. Digit. Syst. 2020, 10, 1157–1165. [CrossRef]
2. Koolkalya, S.; Matchakuea, U.; Jutagate, T. Growth, population dynamics and optimum yield of indian mackerel Rastrelliger

kanagurta (Cuvier, 1816), in the Eastern Gulf of Thailand. Int. J. Agric. Technol. 2017, 13, 1065–1075.
3. Kongseng, S.; Phoonsawat, R.; Wanchana, W.; Swatdipong, A. Genetic mixed-stock analysis of short mackerel, Rastrelliger

brachysoma, catches in the gulf of Thailand: Evidence of transboundary migration of the commercially important fish. Fish. Res.
2021, 235, 105823. [CrossRef]

4. Food and Agriculture Organization of the United Nations. FAO Yearbook. In Fishery and Aquaculture Statistics 2019; Food &
Agriculture Organization: Rome, Italy, 2021.

5. Rauf, H.T.; Lali, M.I.U.; Zahoor, S.; Shah, S.Z.H.; Rehman, A.U.; Bukhari, S.A.C. Visual features based automated identifcation of
fsh species using deep convolutional neural networks. Comput. Electron. Agric. 2019, 167, 105075. [CrossRef]

6. Siddiqui, S.A.; Salman, A.; Malik, M.I.; Shafait, F.; Mian, A.; Shortis, M.R.; Harvey, E.S.; Browman, H. Automatic fish species
classification in underwater videos: Exploiting pre-trained deep neural network models to compensate for limited labelled data.
ICES J. Mar. Sci. 2018, 75, 374–389. [CrossRef]

7. Zion, B. The use of computer vision technologies in aquaculture—A review. Comput. Electron. Agric. 2012, 88, 125–132. [CrossRef]
8. Li, D.; Du, L. Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish. Artif.

Intell. Rev. 2022, 55, 4077–4116. [CrossRef]
9. Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep learning for plant stress phenotyping: Trends and future

perspectives. Trends Plant Sci. 2018, 23, 883–898. [CrossRef]
10. Gómez-Ríos, A.; Tabik, S.; Luengo, J.; Shihavuddin, A.S.M.; Krawczyk, B.; Herrera, F. Towards highly accurate coral texture

images classification using deep convolutional neural networks and data augmentation. Expert Syst. Appl. 2019, 18, 315–328.
[CrossRef]

11. Iqbal, M.A.; Wang, Z.; Ali, Z.A.; Riaz, S. Automatic fish species classification using deep convolutional neural networks. Wirel.
Pers. Commun. 2021, 116, 1043–1053. [CrossRef]

https://doi.org/10.12785/ijcds/1001104
https://doi.org/10.1016/j.fishres.2020.105823
https://doi.org/10.1016/j.compag.2019.105075
https://doi.org/10.1093/icesjms/fsx109
https://doi.org/10.1016/j.compag.2012.07.010
https://doi.org/10.1007/s10462-021-10102-3
https://doi.org/10.1016/j.tplants.2018.07.004
https://doi.org/10.1016/j.eswa.2018.10.010
https://doi.org/10.1007/s11277-019-06634-1

Fishes 2024, 9, 103 18 of 18

12. Carnagie, J.O.; Prabowo, A.R.; Budiana, E.P.; Singgih, I.K. Essential oil plants image classification using xception model. Procedia
Comput. Sci. 2022, 204, 395–402. [CrossRef]

13. Akgül, İ.; Kaya, V.; Zencir Tanır, Ö. A novel hybrid system for automatic detection of fish quality from eye and gill color
characteristics using transfer learning technique. PLoS ONE 2023, 18, e0284804. [CrossRef] [PubMed]

14. Chen, G.; Sun, P.; Shang, Y. Automatic fish classification system using deep learning. In Proceedings of the 2017 IEEE Conference
on Tools with Artificial Intelligence (ICTAI), Boston, MA, USA, 6–8 November 2017; pp. 24–29.

15. Asli, B.H.S.; Flusser, J.; Zhao, Y. 2-D Generating function of the zernike polynomials and their application for image classification.
In Proceedings of the 2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA), Istanbul,
Turkey, 6–9 November 2019; pp. 1–6.

16. Mathur, M.; Goel, N. FishResNet: Automatic fish classification approach in underwater scenario. SN Comput. Sci. 2021, 2, 273.
[CrossRef]

17. Lu, A.; Honarvar Shakibaei Asli, B. Seismic image identification and detection based on tchebichef moment invariant. Electronics
2023, 12, 3692. [CrossRef]

18. Kurniawan, K.; Sedayu, B.B.; Hakim, A.R.; Erawan, I.M.S. Classification of Rastrelliger kanagurta and Rastrelliger brachysoma using
convolutional neutral network (CNN). IOP Conf. Ser. Earth Environ. Sci. 2022, 969, 012017. [CrossRef]

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

20. Deka, J.; Laskar, S.; Baklial, B. Automated freshwater fish species classification using deep CNN. J. Inst. Eng. India Ser. B 2023, 104,
603–621. [CrossRef]

21. Humayun, M.; Sujatha, R.; Almuayqil, S.N.; Jhanjhi, N.Z. A transfer learning approach with a convolutional neural network for
the classification of lung carcinoma. Healthcare 2022, 10, 1058. [CrossRef]

22. Joshi, K.; Tripathi, V.; Bose, C.; Bhardwaj, C. Robust sports image classification using inceptionV3 and neural networks. Procedia
Comput. Sci. 2020, 167, 2374–2381. [CrossRef]

23. Tammina, S. Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int. J. Sci. Res. Publ.
2019, 9, 143–150. [CrossRef]

24. Cheng, S.; Zhou, G. Facial expression recognition method based on improved VGG convolutional neural network. Int. J. Pattern
Recognit. Artif. Intell. 2020, 34, 2056003. [CrossRef]

25. Qian, S.; Ning, C.; Hu, Y. MobileNetV3 for Image Classification. In Proceedings of the 2021 IEEE 2nd International Conference on
Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; pp. 490–497.

26. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June
2018; pp. 4510–4520.

27. Gulzar, Y. Fruit image classification model based on mobilenetv2 with deep transfer learning technique. Sustainability 2023, 15,
1906. [CrossRef]

28. Chollet, F. Xception: Deep Learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.

29. Liawatimena, S.; Abdurachman, E.; Trisetyarso, A.; Wibowo, A.; Ario, M.K.; Edbert, I.S. Fish classification system using
YOLOv3-ResNet18 model for mobile phones. CommIT J. 2023, 17, 71–79. [CrossRef]

30. Petrellis, N. Measurement of fish morphological features through image processing and deep learning techniques. Appl. Sci. 2021,
11, 4416. [CrossRef]

31. Wang, H.; Zhang, S.; Zhao, S.; Wang, Q.; Li, D.; Zhao, R. Real-time detection and tracking of fish abnormal behavior based on
improved YOLOV5 and SiamRPN++. Comput. Electron. Agric. 2022, 192, 106512. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.procs.2022.08.048
https://doi.org/10.1371/journal.pone.0284804
https://www.ncbi.nlm.nih.gov/pubmed/37098040
https://doi.org/10.1007/s42979-021-00614-8
https://doi.org/10.3390/electronics12173692
https://doi.org/10.1088/1755-1315/969/1/012017
https://doi.org/10.1007/s40031-023-00883-2
https://doi.org/10.3390/healthcare10061058
https://doi.org/10.1016/j.procs.2020.03.290
https://doi.org/10.29322/IJSRP.9.10.2019.p9420
https://doi.org/10.1142/S0218001420560030
https://doi.org/10.3390/su15031906
https://doi.org/10.21512/commit.v17i1.8107
https://doi.org/10.3390/app11104416
https://doi.org/10.1016/j.compag.2021.106512

	Introduction
	Materials and Methods
	Data Collection
	Image Acquisition
	Image Processing
	Deep Learning Algorithm Scheme
	ResNet 50
	Xception
	InceptionV3
	VGG19
	VGG16
	MobileNetV3Small

	Model Creation
	Evaluation Indicator
	Classification Performance Metrics

	Results and Discussion
	Model Evaluation Based on Training, Validation, and Test Datasets
	Fine-Tuning

	Conclusions
	References

