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Abstract: Fishing sector fuel subsidies are designed to increase profitability by reducing costs.
However, despite the number of liters of fuel subsidized in 2018 in Mexico, there is no information
available on the effectiveness of the subsidies in reducing cost inefficiencies. The purpose of this
study was to estimate the cost efficiency of shrimp fishing companies in Mexico, as well as measure
the impact of fuel subsidies on the cost inefficiency of the sector from 2003 to 2018. The True Fixed
Effects model was used to represent a Cobb–Douglas stochastic production frontier, which included a
shrimp fishing inefficiencies model. The results indicate that shrimp fishing companies could reduce
their costs by 25% without reducing their catch levels. Fishing companies in the Gulf of Mexico were
more efficient than those operating in the Gulf of California and the South Pacific. Fuel subsidies
reduce cost inefficiencies, with a greater effect when the subsidy reaches a level of 20% of the total
liters of subsidized fuel.

Keywords: shrimp fishery; cost inefficiencies; stochastic frontier analysis; fuel subsidies

Key Contribution: The effects of fuel subsidies of shrimp fishing companies were measured through
the marginal effects of the percentage share of liters of subsidized fuel, highlighting that the greatest
effects are reached in the states that concentrate 20% of subsidies. This finding provides elements for
the design of fishery policy programs.

1. Introduction

Shrimp are the species with the highest market value and are the second-most important
species in fish production by volume in Mexico, with a production of 231,899 tons of live
weight, with 74% cultivated and 26% from fisheries [1]. In 2018, the national shrimp catch
was 72,002 tons of live weight, 71% of which were caught along the coasts of the Mexican
Pacific (MP) [1]. According to Aranceta-Garza et al. [2], the main species exploited com-
mercially by the sequential shrimp fishery in the MP are the brown shrimp Farfantepenaeus
californiensis, the blue shrimp Litopenaeus stylirostris, and the white shrimp Litopenaeus
vannamei. Meanwhile, 29% of the national catch is obtained in the Gulf of México (GM),
with the brown shrimp Farfantepenaeus aztecus, the pink shrimp Farfantepenaeus dourarum,
and the Siete Barbas shrimp Xiphopenaeus kroyeri standing out as the most important species
according to the volume of catches.

The sequential shrimp fishery is determined by two heterogeneous fleets exploiting
different components of the population or stock: the small-scale fleet uses cast nets and
canoes to target the juvenile component in estuaries, lagoons, and bays, while the industrial
or offshore fleet uses industrial boats or trawlers with trawling nets to target the adult
component in marine waters. According to [1], the industrial fleet in 2018 was composed
of 1433 industrial trawling vessels, with 78.23% located in the MP and 21.77% in the GM.
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For the same year, the small-scale fleet comprised 91,912 vessels, with 84.20% located in
the MP and 15.80% in the GM [1]. According to CONAPESCA [3–6], fishing in Mexico
received subsidies consisting of 3,327,463,464 L of marine diesel and 1,017,536,722 L of
gasoline during the period from 2010 to 2018. The terms of operation of the fuel subsidy
program indicate that fishing companies received monetary transfers of MXN 2.0 per liter of
gasoline, with limits of ten thousand liters per vessel in the case of support for the purchase
of gasoline and two million liters per fishing company for the acquisition of marine diesel.
Given the economic importance of this fishery in Mexico, this study estimated the technical
cost efficiency using the Stochastic Frontier Analysis (SFA) approach. The objective of this
work was to estimate the cost efficiency of shrimp fishing companies in Mexico, as well as
to evaluate the impact of fuel subsidies (gasoline and diesel) on the cost inefficiencies of the
sector during the period from 2003 to 2018. This study responds to the need to reduce the
information gap regarding the effectiveness of fuel subsidies to reduce cost inefficiencies in
shrimp fishing companies in Mexico.

For this, the following research question was formulated: Did the fuel subsidies
granted to shrimp fishing companies in Mexico during the period 2003–2018 contribute
to reducing cost inefficiencies? To answer this question, we used the True Fixed Effects
(TFE) model developed by Greene [7] and a simple multistep procedure developed by
Kumbhakar et al. [8], by which persistent and transient inefficiencies are estimated.

The suboptimal allocation of inputs in the fisheries sector can lead to the overexploita-
tion of the resource, generating an excess in cost and production inefficiencies. This topic
has motivated several studies at the global level that consider deterministic production
functions with the error composed of a random component and an inefficiency component.
These parametric estimates, called Stochastic Frontier Analysis (SFA), were developed by
Aigner et al. [9] and Meeusen and van Den Broeck [10] and have recently been implemented
in the literature on fisheries economics. Most of these studies have addressed technical
or production efficiency from a product-oriented efficiency approach, i.e., by estimating
distances to the efficient production frontier considering the catch weight or catch value
of one or more species as the product. The first study of technical fishery efficiency was
developed by Kirkley et al. [11], who analyzed the production efficiency of vessels har-
vesting shallow-water scallops on the mid-Atlantic coast of the United States during the
period 1987 to 1990. One of their findings was that vessel owners and captains can partly
compensate for changes in resource conditions through more intense use of labor and
fishing efforts by increasing the number of trips. They also found that the implemented
fisheries regulations contributed to reducing short-term technical inefficiency.

Subsequently, there was a strong interest in analyzing the level of productive efficiency
of various fisheries through the SFA approach [12–30]. Most of these studies analyzed the
productive efficiency of vessels in pelagic and demersal multispecies fisheries. To date, only
three studies have addressed the technical efficiency of specific product-oriented fisheries
(catches). Kirkley et al. [11] estimated the technical efficiency of vessels catching scallops
on the West Coast of the United States. Later, Kompas et al. [17] assessed the technical
efficiency of the shrimp fishing fleet in northern Australia from 1990 to 2000. Cabrera and
González [23] analyzed the technical efficiency of the shrimp fishery in the upper Gulf of
California, Mexico. Other studies have analyzed the technical efficiency in multispecies
fisheries targeting shrimp and various fish species. Herrero and Pascoe [16] carried out
the first study of this type estimating the production efficiency of vessels in a trawling
fishery operating in the mid-Atlantic (southern Spain and northern Morocco), followed by
Chowdhury et al. [24] for the industrial trawl fishery in the Bengal Gulf.

With regard to inputs used in production functions, the main variables used as capital
factors are engine power (horsepower), vessel size (meters in length), and storage capacity
(metric tons); on the other hand, Kompas et al. [17] used capital costs. Most studies have
used crew size to account for the labor factor, except for the study by Nguyen-Anh et al. [29],
who used crew labor costs adjusted for fishing days. Regarding the representation and
econometric specification of other inputs, Chowdhury et al. [24] included fuel costs and
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quality control materials such as certifications, phytosanitary costs, and laboratory testing.
A large part of technical efficiency studies in the fishing sector used fishing days and the
number of trips as control variables to represent the intensity of the use of production
factors and the fishing effort [11–13,16–19,22–28,30]. Other control variables used in the
literature to account for the production function are vessel age [12–15,18,19,23] and fishing
gear selectivity, specific to each vessel [13,14,17,22,24,28].

Variables used to explain technical inefficiencies/efficiencies in fisheries include the
experience, years of schooling, and training of captains [12,14,15,19,21,22,25]. The first
study estimated the effect of years of schooling and experience on technical efficiency by
analyzing the productive efficiency of longline vessels in Hawaii. They found an average
technical efficiency of 0.84, with significant differences between vessels according to the
fishing target species, and greater inefficiency in vessels catching sailfish relative to tuna and
mixed catches. As for the effect of experience, they found a positive association between the
experience of fishers and technical efficiency. Afterward, Pascoe and Cogan [14] analyzed
the technical efficiency of 457 demersal trawlers operating in the English Channel. One of
their main findings regarding factors affecting technical efficiency was that the efficiency
was mostly explained by ship age. They also found that variations in technical efficiency
between vessels are explained by the skills of the captain and his crew. Moreover, Fousekis
and Klonaris [15] considered the characteristics and abilities of the captains for a fleet
of trammel netters in Greece as a factor affecting the technical fishing efficiency. They
found an average technical efficiency of 0.70 involving 532 fishing trips, which suggests
that the fishing fleet may increase its catches by 30% in the short term without increasing
fishing effort. They also found that vessel characteristics affect technical efficiency levels. In
another study, Kompas et al. [17] analyzed the effects of vessel characteristics and patterns,
including the shrimp fishery regulations implemented in northern Australia. They found
that regulations controlling vessel engines and size positively affected technical efficiency,
while unregulated fishing gear, such as line length, was associated with lower technical
efficiency. They also found that the captain’s skills can compensate for reductions in fishing
days imposed by regulations. For their part, Tingley et al. [19] also considered the captain’s
abilities as a factor affecting the technical efficiency of vessels in the English Channel in
the United Kingdom. These authors found that technical inefficiency explained 38% of the
residual variation in vessels with mobile fishing gear such as otter trawl, beam trawl, and
scallop dredge; 77% in vessels with fishing gear such as pots for crustaceans; and 3% in
vessels with static gear such as manual nets and lines. The authors found that the captain’s
abilities significantly affected technical inefficiency.

In a separate study, Jeon et al. [21] evaluated the technical efficiency of a purse seine
fishery with 45 vessels in the Java Sea. The authors found that the captain’s experience
and education explained a substantial proportion of the estimated variation in technical
efficiency. For his part, Esmaeili [22], in addition to the experience and education level of the
captain, incorporated the vessel instrumentation to further explain the fishery production
efficiency in 142 vessels that operated in the northern Persian Gulf. This author found that
vessel instrumentation, such as radio and Global Positioning Systems (GPS), as well as
the captain’s education and experience, significantly affect vessel production efficiency.
Another relevant factor in the skill development of captains considered by Jamnia et al. [25]
is participation in training programs. The authors analyzed fishing technical efficiency in
southern Iran using a sample of 300 fishing vessels in the Chabahar region. The authors
found technical efficiencies of 0.66 and 0.56 for vessels operating on the coast and in
the open sea, respectively. This indicates that catches may increase by 34% in inshore
operating vessels and by 44% in offshore operating vessels. In this sense, the authors found
that technical inefficiency significantly affects catch levels and variability. Their findings
highlight the importance of the participation of captains in training programs to reduce
technical inefficiencies in the fishing sector.

Another relevant finding in the literature is the effect of the owner’s participation
in vessel operation. In this respect, Sharma and Leung [12] and Esmaeili [22] reported
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that vessels operated by their owners are more efficient than those operated by hired
captains. Fishing effort, measured as the number of trips or fishing days, has also been
included in studies analyzing the technical efficiency of fisheries with contrasting findings.
Kirkley et al. [11], Kompas et al. [17], and Quijano et al. [26] found that fishing effort
positively affects technical efficiency, while Eggert [13] found that efficiency is reduced by
increasing the hours of lobster fishing in Norway.

The effects of subsidies on the technical efficiency of fisheries that use both trawl
and artisanal fleets have recently been discussed in the literature. Dağtekin et al. [31]
analyzed the technical efficiency of the Turkish pelagic fishing fleet during the period
2001–2015. The authors used an output-oriented Stochastic Frontier Analysis approach
with cross-section data from 19 vessels. Among their findings, they found that trawler
fuel subsidies reduced inefficiencies. However, they also pointed out that this increase
in efficiency encourages overfishing and reduces fish populations. N’Souvi et al. [32]
analyzed the technical efficiency of the artisanal fishery in Togo during the year 2021, using
the output-oriented Stochastic Frontier Analysis approach. The authors used data from
82 fishermen and found that subsidies positively influenced technical efficiency.

2. Materials and Methods
2.1. Study Area

Figure 1 shows the spatial distribution of the main shrimp species in Mexico, according
to catch volume and commercial value.
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The shrimp fishery is temporarily closed between March and September of each year
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Figure 2 shows the trend of the main species captured during the 2006–2018 period,
highlighting the blue shrimp Litopenaeus stylirostris and the brown shrimp Farfantepenaeus
californiensis in the Mexican Pacific, as well as the brown shrimp Farfantepenaeus aztecus in
the Gulf of Mexico.
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This study used information on the volume of shrimp catches, the value of production,
and the costs of fishing companies in Mexico for the period from 2004 to 2019. The data
on catch volume were obtained from CONAPESCA [3–6], and the data on production
costs were obtained from the 2004, 2009, 2014, and 2019 economic censuses generated
and published by INEGI [34–37]. Table 1 shows the number of fishing companies and the
percentage share of shrimp catches by state.

Table 1. Fishing representative units and catches by state during 2003–2018.

State
2003 2008 2013 2018

Companies Catches (%) Companies Catches (%) Companies Catches (%) Companies Catches (%)

Baja California (MP) 24 1.0 16 1.3 12 1.2 9 0.2
Baja California Sur (MP) 14 1.1 22 1.6 36 1.5 40 2.2
Campeche (GM) 97 3.8 72.5 4.8 48 6.6 40 6.7
Chiapas (MP) 398 0.4 382.5 2.9 367 2.9 314 1.5
Guerrero (MP) 211 0.0 159 0.1 198 0.0 167 0.2
Nayarit (MP) 515 1.4 574 7.8 603 8.0 424 10.9
Oaxaca (MP) 420 1.2 427 2.0 514 3.7 931 2.4
Sinaloa (MP) 1025 37.3 1003 35.0 1147 46.7 933 36.7
Sonora (MP) 437 36.2 383 23.2 338 16.5 418 17.1
Tabasco (GM) 508 0.2 151 0.4 217 0.3 252 0.2
Tamaulipas (GM) 133 17.0 119 17.8 75 9.8 93 18.4
Veracruz (GM) 769 0.5 663 3.0 212 2.9 241 3.4

Total 4551 100% 3972 100% 3767 100% 3862 100%

Since INEGI published the information of the companies in an aggregated way by
the scale of companies (stratified by size), municipality, and state, it was decided to take
advantage of the representativeness of the aggregated data at the state level to generate
variables that reflect the behavior the sector through the generation of information at the
level of representative fisheries unit (FRU) by state. For this, the following variables were
generated: (1) cost per ton of shrimp caught in live weight; (2) cost of labor per ton of
shrimp; (3) spending on fuel per ton of shrimp; (4) capital per ton of shrimp; (5) liters of
subsidized fuel (gasoline and diesel). The information on liters of subsidized fuel was
obtained from CONASPESCA [3–6]. Figure 4 shows the percentage distribution of the
gasoline and diesel subsidies to shrimp fishing companies by state during the period
2008–2018.
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2.2. Theoretical Framework

The Stochastic Frontier Analysis method used for estimating the cost frontier of shrimp
fishing companies in Mexico is based on the assumption that they aim to achieve the
highest catch level at the lowest cost. According to the input-oriented technical inefficiency
approach, a company is technically inefficient if it uses more inputs than those needed to
achieve a certain catch level; thus, costs above the minimum efficient cost are due to input
overuse. The approach used in this work followed the one developed by Meeusen and
van den Broeck [10] and Kuenzle [38] adapted to the fisheries sector. Figure 5 shows the
stochastic frontier of costs for two shrimp fishing companies with different catch levels.
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Figure 5 shows two catch levels for shrimp fishing companies i and j. Company i
has a catch level given by yi with an observed cost level given by Ci. C*(w, y) is the
deterministic cost function, where w corresponds to an input price vector. Since company i
faces an unfavorable environmental condition negatively affecting the shrimp fishery
yield (i.e., catch), the error component, vi, is positive, with higher production costs than
those under favorable fishing environmental conditions, i.e., the value corresponding
to the deterministic cost function. ui represents the deviation of company i from the
minimum cost frontier. A positive ui value means that the company has cost-inefficient
production since it could achieve the same production at a lower cost. However, given
that company i cannot influence the value of vi, measuring the deviation of efficiency costs
relative to the deterministic cost function would be misleading. Company j has a catch level
given by yj with a production cost level given by Cj. Since vj is below the deterministic
cost function, vj is negative. This implies that company j faces favorable environmental
conditions positively affecting the shrimp fishery yield, which reduces the frontier cost
C∗j . Nevertheless, company j operates at a higher cost-inefficiency level u than company i,
ui < uj, as u measures the observed cost deviations relative to the frontier cost. However,
cost inefficiency is a relative measure because company j records catch levels far higher
than company i, resulting from a greater fishing effort and, therefore, higher costs.

According to Kumbhakar et al. [39], the cost function can be expressed as follows:

C∗(w, y) = ∑
j

wjxje−u (1)

where C∗(·) is the frontier cost function that produces the minimum cost, given the input
price vector wj, the quantity of inputs used xj, and the observed production level. The cost
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minimization issue for companies under the input-oriented technical inefficiency approach
can be expressed as follows:

min
{xje−u}w

′xe−u subject to : y = f
(
xe−u) (2)

The minimum cost w′xe−u could be lower than the current cost w′x, and technical
inefficiency u would indicate the percentage of overuse of all inputs needed to achieve the
output level y. Alternatively, it could be interpreted as the percentage of use of all inputs
that could be reduced without lowering the production level y. The observed cost Co of a
company is expressed as follows:

Co = ∑
j

wjxj = C∗exp(u) (3)

Transforming the previous expression to natural logarithms yields the following:

lnCo = lnC∗(w, y) + u (4)

The above equation shows that the natural logarithm of the observed cost lnCo in-
creases along with u because all inputs are overused. Following [8], the efficiency index
specific to each company can be estimated as the ratio between the minimum cost C∗ and
the observed cost Co:

exp(−u) =
C∗

CO (5)

When the restriction u ≥ 0 is imposed, exp(−u) takes values between 0 and 1.

2.3. Data Description

As mentioned above, information from two sources was used: (1) aquaculture and
fisheries statistics yearbooks for the years 2003, 2008, 2013, and 2018 published by the
Comisión Nacional de Acuicultura y Pesca (National Commission of Aquaculture and
Fisheries; CONAPESCA, in Spanish) [3–6] and (2) economic censuses for the years 2003,
2008, 2013, and 2018 published by INEGI [34–37]. CONAPESCA data correspond to records
of arrival notices of shrimp fishing vessels, while INEGI data correspond to census with
coverage of all shrimp fishing economic units in Mexico. The data consist of the arrival
location of the vessels, catches, costs, sales, and characteristics of the vessels.

Information concerning offshore and inshore shrimp catches (tons of live weight), and
the number of offshore industrial vessels in each state was obtained from aquaculture and
fishing statistics yearbooks. Information was obtained from economic censuses on the
number of shrimp fishing companies by state, total costs (in millions of pesos), number
of workers hired, expenditure on staff wages and salaries (in millions of pesos), gross
fixed capital formation (in millions of pesos), and costs for fuel, lubricants, and energy
consumption. Gross fixed capital formation was used as a variable that represents the value
of vessels, refrigeration systems to preserve catches, engine power, navigation equipment,
communication, eco-detection and satellite location, and fishing gear and capture methods.
Variables with values in millions of pesos for each census year were deflated by the Producer
Price Index (INPP), base June 2012 = 100 [40]. The prices of inputs per ton of shrimp catch
(live weight) were calculated with the deflated economic variables, while information on
subsidies was obtained from CONAPESCA [3–6]. Table 2 shows a detailed description of
the variables.

Table 3 shows the descriptive statistics of the variables in tons and Mexican pesos, val-
ues in logarithms, and normalized values by dividing each variable by the price of capital.
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Table 2. Description of variables.

Variable Description Unit

Y Shrimp catch, live weight Tons

C Cost per ton of shrimp $ MXN

LP Labor price per ton of shrimp $ MXN

KP Capital price per ton of shrimp $ MXN

FP Fuel price per ton of shrimp $ MXN

Ln (Y) Natural log of shrimp catch, live weight Log

Ln (C) Natural log of cost per ton of shrimp Log

Ln (LP) Natural log of labor price per ton of shrimp Log

Ln (KP) Natural log of capital price per ton of shrimp Log

Ln (FP) Natural log of fuel price per ton of shrimp
Ln (C)

Ln (KP) Normalized cost per ton of shrimp (cost/capital price) Log

Ln (LP)
Ln (KP) Normalized labor price (labor price/capital price) Log

Ln (FP)
Ln (KP) Normalized fuel price (fuel price/capital price) Log

Subsidies Liters of fuel subsidized to shrimp fishing companies by state Percentage share

Table 3. Descriptive statistics.

Variable Mean Std. Dev. Min. Max. Obs.

Y 5841.83 8460.44 0 31,314.12 48
C 106,854.6 547,000.5 6.80 3,562,052 42
LP 73,996.66 386,858.1 759.88 2,518,768.0 42
KP 10,876.15 66,465.12 0.00 431,301.0 42
FP 27,056.89 108,369.6 2.38 704,702.2 42
Ln (Y) 7.48 1.94 0.43 10.35 42
Ln (C) 7.43 3.69 1.92 15.08 42
Ln (LP) 9.06 1.46 6.63 14.74 42
Ln (KP) 3.64 3.85 −6.488 12.97 42
Ln (FP) 6.65 3.60 0.87 13.46 42
Ln (C)

Ln (KP) −0.28 18.44 −95.31 53.71 42
Ln (LP)
Ln (KP) −2.90 45.99 −234.81 123.91 42
Ln (FP)
Ln (KP) −0.08 16.04 −81.86 48.80 42
Subsidies 8.33 12.18 2 50 48

2.4. Model Specification

Cost inefficiencies were estimated using three models. The first was the method
proposed by Aigner et al. [9], which consists of a pooled frontier model estimated by
maximum likelihood according to the following expression:

ln(Cit)

ln(KPit)
= α + βYln Yit+βPL

ln(LPit)

ln(KPit)
+ βPF

ln(FPit)

ln(KPit)
+ vit − uit

where index i = 1, 2, . . . , n indicates n fishing representative units (FRUs), one per state,
resulting in twelve, and t = 1, 2, . . . , T denotes the periods at which each FRU is observed,
with four periods: 2003, 2008, 2003, and 2019. The dependent variable ln(Cit)

ln(KPit)
is the nat-

ural logarithm of the total cost per ton divided by the price of capital input, the same
applied to the prices of labor and fuel input, thereby imposing the condition of homo-
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geneity in prices. ln(LPit)
ln(KPit)

and ln(FPit)
ln(KPit)

are the natural logarithms of the normalized prices
of labor and fuel inputs. εit is the term error composed of two parts: a stochastic error
vit ∼ iidN

(
0, σ2

v
)

and a non-negative one-sided disturbance that captures the effect of
inefficiency uit ∼ iidN+

(
µ, σ2

u
)

and εit = vit + uit.
The main limitation of the Pooled frontier model is that it does not allow capturing

any specific effect of the FRU, so it does not distinguish between cost inefficiency and un-
observed heterogeneity. To overcome this limitation, a True Fixed Effects (TFE) model was
estimated, proposed by Greene [7,41]. This model treats time-invariant fixed effects specific
for αi and time-variable inefficiency uit separately, allowing for distinguishing between
unobserved heterogeneity and inefficiency. The estimate with the TFE model allows for
obtaining information on the transient component of efficiency. The first estimated model is

ln(Cit)

ln(KPit)
= αi + βYln Yit+βPL

ln(LPit)

ln(KPit)
+ βPF

ln(FPit)

ln(KPit)
+ vit − uit (6)

where index i = 1, 2, . . . , n indicates n fishing representative units (FRUs), and t = 1, 2, . . . , T
denotes the periods at which each FRU is observed. ln(Cit)

ln(KPit)
is the natural logarithm of

the total cost per ton normalized. αi represents the FRU-specific fixed effects. ln(LPit)
ln(KPit)

and
ln(FPit)
ln(KPit)

are the natural logarithms of the normalized prices of labor and fuel inputs. εit

is the term error composed of two parts: a stochastic error vit ∼ iidN
(
0, σ2

v
)

and a non-
negative one-sided disturbance that captures the effect of inefficiency uit ∼ iidN+

(
µ, σ2

u
)

and εit = vit + uit. The estimation of this model implies assuming the assumption of
persistent inefficiency close to zero or null. If there is persistent inefficiency, it will be
completely absorbed in the individual-specific constant term. Another characteristic of the
TFE model is that it allows a correlation between heterogeneity and explicatory variables
and therefore provides unbiased estimates of the parameters β. However, in the presence
of factors that generate persistent inefficiency, such as predetermined environmental con-
ditions of production that affect the availability and quality of resources, it would not be
possible to include time-invariant variables, due to the perfect multicollinearity (Addo and
Salhofer [42]).

Due to the above limitations, Colombi et al. [43] proposed an alternative econometric
specification which they labeled as the “Generalized True Random Effects Model” (GTRE);
subsequently, Colombi et al. [44], Tsionas and Kumbhakar [45], and Kumbhakar et al. [8]
developed models that allow estimating persistent and transient inefficiencies through
a four-way decomposition of the error term into εit = wi − hi + vit − uit, where wi − hi
represents a permanent heterogeneous frontier effect while vit − uit represents a transi-
tory component (Sickles and Zelenyuk [46]). With the purpose of estimating persistent
inefficiencies, we apply the four-error component model using the multi-step technique
proposed by Kumbhakar et al. [8]:

ln(Cit)
ln(KPit)

= α0 + βYln Yit+βPLl ln(LPit)
ln(KPit)

+ βPF
ln(FPit)
ln(KPit)

+ µi − ηi + vit − uit;

vit ∼ iidN
(
0, σ2

v
)
; uit ∼ iidN+

(
µ, σ2

u
)
; εit = vit + uit

where uit ∼ N+
(
0, σ2

u
)

corresponds to the component of persistent inefficiency (long run);

ηi ∼ N+
(

0, σ2
η

)
represents the component of transient inefficiency that varies randomly

between companies (Short-Run). µi is a component that captures the heterogeneity of the
companies, and vit ∼ N

(
0, σ2

v
)

is a random component. Cost inefficiency can be expressed
in terms of the cost inefficiency score:

Cit

CF
it
= E(uit|εit) (7)
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where Cit is the observed cost and CF
it is the frontier cost or minimum cost. The inefficiencies

and efficiencies specific to each FRU i in the period t were obtained following the procedure
by Jondrow et al. [47], calculated from the expected uit value that depends on the compound
error εit of the model, assuming that the density function of (uit|εit) is N+

(
µ∗i, σ2

∗
)
, where

µ∗i =
−σ2

uεi
σ2

v+σ2
u

and σ2
∗ =

σ2
v σ2

u
σ2

v+σ2
u

. This estimates the specific values of inefficiencies E(uit|εit)

and efficiencies E[exp(−uit)|εit] of shrimp fishing companies. The specific cost-efficiency
values lie within 0 ≥ E[exp(−uit)|εit] ≤ 1, where a score of 1 indicates that companies are
on the minimum cost-efficient frontier, while those with a lower score have deviations from
the cost-efficient frontier.

We contrasted the effects of the fuel subsidies on the inefficiencies of companies. To
this end, the parameterization approach was used, assuming that the mean and variance
of the pretruncated distribution of inefficiencies are linear functions of the exogenous
variables uit = Subsidies′itδ; σ2

it = exp
(
Subsidies′itw

)
, where Subsidies is the percentage

share of subsidies by companies of each state, and δ and w represent the coefficients to
compare the relationship following Kumbhakar [48], Reifschneider and Stevenson [49],
Huang and Liu [50], Battese and Coelli [51], Wang [52], and Kumbhakar et al. [8]. In
addition, we estimated the marginal effect of the increase in the share of fuel subsidies on
cost inefficiencies.

[
∂E(uit |εit)

∂Subsidiesit

]
, according to Sun and Kumbhakar [53].

3. Results

Table 4 shows the results of the Pooled and True Fixed Effects stochastic cost frontier
models and the three-step model developed by Kumbhakar et al. [8].

Table 4. Estimation results of the cost frontier function.

Normalized Cost Per Ton
of Shrimp: Ln(C)

Ln(KP)
Pooled TFE~[TN(µ,σ)] 1st Step FE

Kumbhakar et al. [8]
2nd Step

Kumbhakar et al. [8]
3rd Step

Kumbhakar et al. [8]

Shrimp catch:
ln (Y)

−0.04 −0.11 *** −0.05

(0.03) (0.00001) (0.03)

Normalized fuel price:
Ln(FP)
Ln(KP)

0.97 *** 0.75 *** 0.96 ***

(0.03) (0.000004) (0.03)

Normalized labor price:
Ln(LP)
Ln(KP)

0.06 *** 0.13 *** 0.07 ***

(0.01) (0.000001) (0.01)

Year
0.01 0.02 *** 0.02 **

(0.01) (0.00005) (0.01)

Constant
−21.35 −40.82 ** 3.38 × 10−18 *** 0.31 ***

(20.11) (20.41) (7.49 × 10−19) (0.08)

µ(TFE : subsidies)
−1.08 ***

(0.31)

σu(TFE : subsidies)
0.09 *** −80.5 −1.85 ***

(0.01) (0.50)

σv(TFE : subsidies)
−32.85 −81.95 *** −2.82 ***

(228.85) (0.63) (0.40)

σ2
u 0.43 1.9 3.32 × 10−18 0.40

σ2
v 0.22 7.00 × 10−8 1.6 × 10−18 0.24

λ = σu/σv 2.00 2.08 1.621424

γ = σ2/σ2
u 0.79 0.99 0.81 0.74

Log-likelihood −13.42 −5.11 1657.64 −13.99

Waldchi2 3.63 3.84 × 1012 13.64

Prob > chi2 0.03 0.00 0.00

Note: ** p < 0.05; *** p < 0.01.
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Since the variables are expressed in logarithmic terms, the coefficients can be in-
terpreted as elasticities. The coefficients of the shrimp catch variable were negative in
the three estimated models. However, of these, only the estimate using the TFE model
was statistically significant (−0.11) at 99% confidence, indicating that on average, a 10%
increase in the catch reduces the cost by 1.1%, ceteris paribus. Following the develop-
ment of Christensen and Greene [54], who consider the presence of scale economies (ES),
from one unit minus the elasticity of the cost with respect to the catch (for this study),
where a positive value indicates economies of scale and a negative value indicates dis-
economies of scale, it was found that the sector experienced ES during the study period:
ES = 1− ∂lnC/∂lnY = 1− (−0.11) = 1.11.

The coefficients of the labor and fuel price variables were positive and statistically
significant in the three models (p < 0.001), suggesting compliance with the monotonicity
condition in the cost function. The fuel price coefficients were of greater magnitude in the
Pooled (0.97) and Random Effects (0.96) models, and in the first step of Kumbhakar et al.’s
model [8], with respect to the coefficient estimated in the TFE model (0.75). Considering
the coefficient obtained in the TFE model, the cost elasticity relative to the fuel input was
inelastic (0.75), indicating that fishing effort has a major effect on the operation costs of
the shrimp fishing fleets. In terms of elasticity, the coefficient of fuel price indicates that
a 1% increase in fuel use, ceteris paribus, translates into a 0.75% increase in operating
costs. This result is in accordance with what was expected, with respect to the fact that
the shrimp fishery is intensive in fuels; that is, the percentage change in the price of
fuel has a greater influence on cost than other inputs. The coefficient of the labor price
variable was higher in the TFE model (0.13) than in the Pooled (0.06) and Random Effects
(0.07) models, revealing that although labor is important in the fishery, the percentage
change in its price has less influence on cost than the fuel input. Considering the results
of the TFE model, a 1% increase in labor, ceteris paribus, increases costs by 0.13%. The
price elasticity of capital was 0.12 [1− (βLP + βFP)], indicating that a 1% increase in this
input, ceteris paribus, increases costs by 0.12%. The coefficients of the year variable were
positive (0.02) and statistically significant in the TFE and random effects models (first step
of Kumbhakar et al. [8]), indicating that costs per ton of shrimp caught increased by 2% in
real terms during the study period.

In the case of the TFE model, the coefficient of the subsidy variable for µ was negative
and statistically significant (p < 0.001). The subsidy coefficients for σu were only statically
significant (p < 0.001) in the TFE and Kumbhakar et al. [8] models of transient inefficiencies.
The coefficients of the variable subsidies for σv were statistically significant (p < 0.001) only
in the model of Kumbhakar et al. [8]. It is important to note that the µ and σu coefficients
obtained from the estimated TFE model, assuming a truncated normal distribution with
the variable subsidies as an exogenous determinant of the inefficiencies of shrimp fishing
companies by state, are not directly interpretable, so it is necessary to estimate the effect
margins on the unconditional expectation of u, E(u), and the unconditional variance of u,
V(u).

The values obtained from γ suggest that between 71% and 99% of the deviations
from the minimum efficient cost frontier are due to inefficient shrimp fishing economic
units and the percentage difference to the stochastic component. To confirm the above,
we assessed the statistical significance of the parameters γ using the likelihood ratio test
−2[L(H0)− L(H1)] ≈ χ2

k−1, where L(H0) is the logarithm of the likelihood function at
the maximum for the estimated Generalized Linear Model (GLM), and L(H1) is the log-
arithm of the likelihood function at the maximum for the estimated models. The values
of −2[L(H0)− L(H1)] were 3.62 (Pooled), 20.24 (TFE), 3345.75 (second step to estimate
persistent inefficiencies using Kumbhakar et al.’s model [8]), and 2.5 (third step to es-
timate transient inefficiencies using Kumbhakar et al.’s model [8]), and the theoretical
value of the distribution χ2

k−1 with an alpha of 0.05 was 2.70. Therefore, the null hy-
pothesis that the stochastic frontier models used (Pooled, TFE, and the second step of
Kumbhakar et al.’s model [8] to estimate persistent inefficiencies) are not appropriate is
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rejected. For the model of time-varying inefficiencies, the null hypothesis is rejected with
a level of significance of 0.10. Cost inefficiencies were estimated following the procedure
developed by Jondrow et al. [47]. Table 5 shows a statistical summary of the estimated
cost-inefficiency scores.

Table 5. Statistical summary of estimated cost-inefficiency scores.

Efficiency Scores
Pooled TFE Kumbhakar et al. [8]

Overall Transient Time-Varying

Mean 0.64 0.75 0.69
Std. Dev. 0.31 0.29 0.19

Min. 0.03 0.05 −0.08
Max. 0.99 0.99 0.92

The mean of the cost efficiencies in the three models was found to be within the range
of 0.64 to 0.75. In the case of the True Fixed Effects model, when estimating transient
inefficiencies, it was found that on average, the shrimp fishing fleet in Mexico registered
an efficiency of 0.75. This indicates that the shrimp fishing fleet could lower costs by 25%
without reducing the current catch levels. That is, on average, the difference between the
minimum possible cost per ton of shrimp captured from the most efficient FRUs and the
cost per ton of the rest of the FRU was 25%. The FRU could reduce their costs through
the optimal use of inputs, given the environmental conditions. Transient cost inefficiency
shows that an FRU, given the price of inputs, uses a certain amount of inputs to catch a ton
of shrimp, but the cost per ton of shrimp is higher than another FRU that uses the same
amount of inputs. The above controls for unobserved heterogeneity attributable to the
specific characteristics of the FRU.

Figure 6 shows technical efficiencies by marine region obtained from the True Fixed
Effects model.

Figure 6. Cost efficiencies by marine region: (a) kernel density by region; (b) boxplot by region.

Companies with shrimp fleets in the Gulf of California and South Pacific presented
higher cost inefficiencies compared to companies that operate in the Gulf of Mexico, with
mean inefficiency values of 0.31 and 0.13, respectively. To analyze the effects of subsidies
for fuels such as gasoline and diesel, the marginal effects of the share of liters of fuel
received on cost inefficiencies were estimated. Table 6 shows the marginal effect of the
natural logarithm of the variable subsidies on the mean E(uit|εit) and variance σ2

E(uit |εit)
of

the inefficiency.



Fishes 2023, 8, 472 14 of 18

Table 6. Descriptive statistics of the marginal effects of subsidies on inefficiency.

Variable Mean Std. Dev. Min. Max.
∂E(uit |ε it)

∂Subsidiesit
−0.17 0.04 −0.21 −0.03

∂σ2
E(uit |εit )

∂Subsidiesit
−0.10 0.20 −0.30 0.75

The mean and variance of the marginal effects of the subsidies on technical inefficien-
cies were negative, indicating that increases in the liters of subsidized fuel contribute to
reducing cost inefficiencies. This subsidy also contributed to reducing the variability of
inefficiencies. Figure 7 graphically shows the marginal effects of the participation of fuel
subsidies on cost inefficiencies of shrimp fishing companies in Mexico during the period
from 2003 to 2018.
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Figure 7. Marginal effect of subsidized fuel on inefficiency.

Figure 7 shows that fuel subsidies led to a reduction in cost inefficiencies. The greatest
marginal effects in absolute terms were reached in fishing companies located in states that
received 20% of the total liters of subsidized fuel, while fishing fleets located in states with
a share of subsidized fuel greater than 20% showed a decrease in inefficiencies; however,
this effect decreased as the percentage share of subsidized fuel increased. Compliance with
the monotonicity condition was validated by calculating partial derivatives of input prices
(LP, KP y FP) and catch (Y) relative to the cost.

4. Discussion

The technical efficiency levels reported in previous studies are not directly comparable.
However, the factors affecting catches, costs, and technical efficiency can be analyzed
through the magnitude, sign, and statistical significance of the estimated coefficients in the
production and inefficiency models. In this sense, the signs of the coefficients representing
the elasticity of costs relative to the use of inputs were consistent with economic theory. In
this study, the cost elasticity relative to the labor input (crew size) was 0.13, close to the
0.28 figure reported by Jamnia et al. [25]; lower than 0.40 reported by Quijano et al. [26],
Dian et al. [27], and Agar et al. [30]; and lower than 0.42 reported by Esmaeili [22]. The
fuel price elasticity of 0.75 (cost per ton) of the TFE model was much higher than 0.27
found by Kompas et al. [17] for the shrimp fishing fleet in northern Australia during the
period 1990–1996. These differences indicate that the shrimp fishery in the Mexican Pacific
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was more fuel-intensive than the shrimp fishery in northern Australia. Regarding fishing
inefficiency, in this study, a transitory cost inefficiency of 0.31 was found for the Mexican
Pacific shrimp fishing fleet, greater than that reported by Cabrera and González [23], who
found an average output-oriented technical inefficiency of 0.21 for the fishing fleet of the
upper Gulf of California, Mexico, for the period 1990–1993. This study used the fixed
capital formation value, in contrast with previous studies using gross registered tonnage,
engine horsepower, and vessel length, so that cost elasticity relative to capital is not directly
comparable to other reports in the empirical literature.

Regarding the factors that affect the cost inefficiencies of shrimp fishing companies in
this study, we used the percentage share of subsidized fuel to measure its impact on cost
inefficiencies. The results reported herein indicate that increases in the fuel subsidy favor a
reduction in cost inefficiencies in the shrimp fishing industry. However, this effect is less
for fishing fleets located in states that concentrate more than 20% of the subsidized fuel.
This result is consistent with the findings reported by Dağtekin et al. [31] regarding the
fact that subsidies favor the technical efficiency of artisanal fishing. Likewise, the findings
found in this study are in line with those reported by N’Souvi et al. [32] in the sense that the
subsidies reduce the inefficiencies of the pelagic trawl fishery. A contribution of this study
to the literature was the measurement of the effect of the fuel subsidy of shrimp fishing
companies through the marginal effect of the percentage share of liters of subsidized fuel,
highlighting that the greatest effects are reached in states that concentrate 20% of subsidies.
This result indicates that managers and captains minimized operating costs in terms of fuel
spending and the liters of subsidized gasoline or diesel.

This study has a spatial and temporal scope on the cost efficiency of the shrimp
fishing sector in Mexico from 2003 to 2018. The main limitation of the study was the
number of observations. Nevertheless, it was possible to estimate the three-stage model of
Kumbhakar et al. [8], which allowed obtaining persistent and time-varying inefficiencies.
The True Fixed Effects model was also estimated, through which the transient inefficiencies
were obtained. Regarding the results obtained, it was found that by using the three-stage
model of Kumbhakar et al. [8], the persistent inefficiencies were very small, close to zero.
The score of the time-varying inefficiencies is not robust, because in the likelihood ratio test,
the null hypothesis was not rejected at 95% confidence (it was rejected at 90% confidence).
Due to the above, the TFE model was selected to analyze the transient cost inefficiencies of
the shrimp fishing industry during the period from 2003 to 2018. Another limitation is the
lack of information on the available shrimp biomass at a compatible national level for the
years analyzed in this study.

5. Conclusions

To date, this study is the first to analyze the cost inefficiencies of the shrimp fisheries in
Mexico at the national level using publicly available longitudinal data. From the estimation
of a true fixed effects model, an average transient cost inefficiency of 0.25 was obtained,
indicating that on average, FRUs could reduce the cost per ton of shrimp by 25%.

On overage, fishing companies in the Gulf of California and South Pacific were less
efficient (0.31) than those operating in the Gulf of Mexico (0.13). As for the intensity of
production inputs, we found that the shrimp fishery is intensive in the use of fuels (0.75)
and, to a lesser extent, in the use of labor (0.13) and capital (0.12). From the analysis of
the marginal effects of the fuel subsidy on cost inefficiencies, it was highlighted that the
greatest marginal effect on the reduction in inefficiencies is reached at a level of 20% of the
total subsidized fuel. This has major implications for the design of subsidy policy programs
for the shrimp fishery sector.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fishes8090472/s1, Table S1: Data-set.
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31. Dağtekin, M.; Uysal, O.; Candemir, S.; Genç, Y. Productive efficiency of the pelagic trawl fisheries in the Southern Black Sea. Reg.
Stud. Mar. Sci. 2021, 45, 101853. [CrossRef]

32. N’Souvi, K.; Sun, C.; Rivero, Y.M. Development of marine small-scale fisheries in Togo: An examination of the efficiency of
fishermen at the new fishing port of Lomé and the necessity of fisheries co-management. Aquac. Fish. 2023, in press. [CrossRef]

33. CONABIO. Sistema Nacional de Información sobre Biodiversidad de México. 2022. Available online: https://www.snib.mx/
(accessed on 3 February 2023).

34. INEGI. Censos Económicos. Mexico. 2004. Available online: https://www.inegi.org.mx/app/saic/default.html (accessed on 6
February 2023).

35. INEGI. Censos Económicos. Mexico. 2009. Available online: https://www.inegi.org.mx/app/saic/default.html (accessed on 6
February 2023).

36. INEGI. Censos Económicos. Mexico. 2014. Available online: https://www.inegi.org.mx/app/saic/default.html (accessed on 6
February 2023).

37. INEGI. Censos Económicos. Mexico. 2020. Available online: https://www.inegi.org.mx/app/saic/default.html (accessed on 6
February 2023).

38. Kuenzle, M. Cost Efficiency in Network Industries. Application of Stochastic Frontier Analysis. Ph.D. Thesis, Swiss Federal
Institute of Technology, Zürich, Switzerland, 2005. Available online: https://www.research-collection.ethz.ch/handle/20.500.118
50/53059 (accessed on 4 March 2023).

39. Kumbhakar, S.C.; Wang, H.; Horncastle, A.P. A Practitioner’s Guide to Stochastic Frontier Analysis Using Stata; Cambridge University
Press: New York, NY, USA, 2015.

40. INEGI. Índice de Nacional de Precios; Instituto Nacional de Estadística y Geografía: Ciudad de México, México, 2019. Available
online: https://www.inegi.org.mx/temas/inpp/ (accessed on 13 February 2023).

41. Greene, W.H. Reconsidering Heterogeneity in Panel Data Estimator of the Stochastic Frontier Model. J. Econom. 2005, 126, 269–303.
[CrossRef]

42. Addo, F.; Salhofer, K. Transient and Persistent technical efficiency and its determinants: The case of crop farms in Austria. Appl.
Econ. 2022, 54, 25. [CrossRef]

43. Colombi, R.; Martini, G.; Vittadini, G. A Stochastic Frontier Model with Short-Run and Long-Run Inefficiency Random Effects; Working
Paper Series; Department of Economics and Technology Management, University of Bergamo: Bergamo, Italy, 2011.

44. Colombi, R.; Kumbhakar, S.C.; Martini, G.; Vittadini, G. Closed-Skew Normality in Stochastic Frontier with individual Effects
and Long/Short-Run Efficiency. J. Product. Anal. 2014, 42, 123–136. [CrossRef]

45. Tsionas, E.G.; Kumbhakar, S.C. Firm Heterogeneity, Persisten and Transient Technical Inefficiency: A Generalized True Random-
Effects Model. J. Appl. Econom. 2014, 29, 110–132. [CrossRef]

46. Sickles, R.C.; Zelenyuk, V. Measurement of Productivity and Efficiency. Theory and Practice; Cambridge University Press: Cambridge,
UK, 2019.

47. Jondrow, J.; Lovell, C.A.K.; Materov, I.S.; Schmidt, P. On the estimation of technical inefficiency in the stochastic frontier production
function model. J. Econom. 1982, 19, 233–238. [CrossRef]

https://doi.org/10.1080/00036840500400525
https://doi.org/10.1016/j.icesjms.2006.06.012
https://doi.org/10.1016/j.jssas.2013.04.005
https://doi.org/10.1016/j.marpol.2018.05.004
https://doi.org/10.25115/eea.v37i3.2775
https://doi.org/10.1016/j.jik.2022.100194
https://doi.org/10.1007/s10640-022-00687-w
https://doi.org/10.1016/j.rsma.2021.101853
https://doi.org/10.1016/j.aaf.2023.07.009
https://www.snib.mx/
https://www.inegi.org.mx/app/saic/default.html
https://www.inegi.org.mx/app/saic/default.html
https://www.inegi.org.mx/app/saic/default.html
https://www.inegi.org.mx/app/saic/default.html
https://www.research-collection.ethz.ch/handle/20.500.11850/53059
https://www.research-collection.ethz.ch/handle/20.500.11850/53059
https://www.inegi.org.mx/temas/inpp/
https://doi.org/10.1016/j.jeconom.2004.05.003
https://doi.org/10.1080/00036846.2021.2000580
https://doi.org/10.1007/s11123-014-0386-y
https://doi.org/10.1002/jae.2300
https://doi.org/10.1016/0304-4076(82)90004-5


Fishes 2023, 8, 472 18 of 18

48. Kumbhakar, S.C. The Measurement and Decomposition of Cost-Inefficiency: The Translog Cost System. Oxf. Econ. Pap. 1991, 43,
667–683. [CrossRef]

49. Reifschneider, D.; Stevenson, R. System Departures from the Frontier: A Framework for the Analysis of Firm Inefficiency. Int.
Econ. Rev. 1991, 32, 715–723. [CrossRef]

50. Huang, C.; Liu, J.T. Estimation of a Non-Neutral Stochastic Frontier Production Function. J. Product. Anal. 1994, 7, 257–282.
[CrossRef]

51. Battese, G.E.; Coelli, T.J. A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data.
Empir. Econ. 1995, 20, 325–332. [CrossRef]

52. Wang, H.J. Heteroscedasticity and Non-Monotobic Efficiency Effects of a Stochastic Frontier Model. J. Product. Anal. 2002, 18,
241–253. [CrossRef]

53. Sun, K.; Kumbhakar, S.C. Semiparametric Smooth-Coefficient Stochastic Frontier Model. Econ. Lett. 2013, 120, 305–309. [CrossRef]
54. Christensen, L.R.; Greene, W.H. Economies of scale in U.S. Electric Power Generation. J. Polit. Econ. 1976, 84, 655–976. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/oxfordjournals.oep.a042023
https://doi.org/10.2307/2527115
https://doi.org/10.1007/BF01073853
https://doi.org/10.1007/BF01205442
https://doi.org/10.1023/A:1020638827640
https://doi.org/10.1016/j.econlet.2013.05.001
https://doi.org/10.1086/260470

	Introduction 
	Materials and Methods 
	Study Area 
	Theoretical Framework 
	Data Description 
	Model Specification 

	Results 
	Discussion 
	Conclusions 
	References

