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Pigmented planktonic microalgae (phytoplankton) are primary producers that form
the basis of marine trophic webs. Phytoplankton blooms are natural phenomena, which
sustain bivalves and small pelagic fish production. Over fifty years ago, Reuben Lasker
observed that the formation of dense layers of phytoplankton (thin layers) under certain cli-
matic conditions, i.e., 4 days with wind velocities not exceeding 5 m/s, now called a “Lasker
event”, ensured the success of anchovy (Engraulis mordax) recruitment in the Californian
upwelling system. However, the same beneficial bloom, under certain circumstances (e.g.,
an imbalance between growth and grazing), may lead to eutrophication, environmental
distress, or even anoxia and mass mortalities of marine fauna, becoming what we know as
a high biomass harmful algal blooms (HBHABs). Furthermore, some microalgae produce
potent toxins that are transferred through the food web, mainly through filter-feeding
bivalves, and cause illnesses such as paralytic (PSP), diarrheic (DSP), amnesic (ASP) and
neurotoxic (NSP) shellfish poisoning. These toxin producers, even at low cell concentra-
tions, are filtered and their toxins accumulate in bivalve mollusks, posing a serious threat to
public health and shellfish exploitations. More recently, a new toxic syndrome, azaspiracid
shellfish poisoning (AZP), has been added to the toxic syndromes list.

In recent decades, the number of HAB reports and their geographic extension have
increased dramatically, a fact partly explained by a parallel increment in the exploitation of
coastal resources, such as from aquaculture and the tourism industry, and by an exponential
growth in the observations carried out in monitoring programs [1,2]. The irrefutable
contribution of anthropogenic factors (e.g., agricultural runoff, industrial and domestic
waste, and tourism) added to the existing problems for the fisheries and aquaculture
sectors [3–6].

Aquaculture and fisheries products are the staple food in the diet and the main source
of employment and/or subsistence in coastal populations worldwide. In particular, in
developing areas with no alternative sources income, their economic sustainability is of
critical importance. The most recent report on the state of word fisheries and aquaculture
showed that the global production of aquatic animals had risen to 178 million tons in
2020. In addition to aquatic animals, 36 million tons (wet weight) of algae were produced
the same year (Figure 1A). Of the overall production of aquatic animals, 157 million tons
(89%), mainly of bivalve mollusks, were used for human consumption [7]. However, these
production activities are increasingly affected by the occurrence of a large variety of HAB
species and their impacts (Figure 1B). Analyses of the IOC database of HAB events (IOC-
HAEDAT) between 1972 and 2022 showed a significant increase in the total number of
reports, mainly of paralytic (PSP) and diarrhetic syndromes (DSP), associated with blooms
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of the genera Alexandrium and Dinophysis, respectively [8]. Thus, in 2020, a historical
maximum number of events were reported worldwide, i.e., 417 reports, 364 (87.3%) of
which corresponded to PSP (Figure 1A).
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Figure 1. (A) World fisheries’ catches and aquaculture production, and (B) number of global records
of the five most common toxic HAB syndromes (PSP, DSP, ASP, NSP and AZP). Data are from FAO
(https://www.fao.org) and the IOC HAEDAT (http://haedat.iode.org/).

Understanding the complexity of HAB events requires a multidisciplinary approach. A
good example was the international SCOR-IOC GEOHAB (Global Ecology and Oceanogra-
phy of Harmful Algal Blooms) program. This program, initiated in 2001, was the umbrella
of a long list of projects, working groups and workshops, which led to considerable progress
in understanding the mechanisms underlying population dynamics of HABs within an
ecological and oceanographic context [9]. Its continuation, the IOC-SCOR GlobalHAB
program (www.globalhab.org) initiated in 2016, widened the scope of GEOHAB by incor-
porating a socioeconomic perspective, including epidemiology, toxicology and evaluation
of economic impacts to the aquaculture and tourism industries.

In order to prevent the risks of human exposure to potent marine toxins, many coun-
tries have been implementing specific health and safety measures. Mardones et al. [10]
estimated that the cost of microalgae and toxin monitoring on the Chilean coast was USD
6.9 million in 2019. This country, the world’s second largest producer of cultured blue
mussels (Mytilus chilensis) and salmon (mainly Salmo salar and Oncorhynchus kisutch) with
400,000 and 1,000,000 tons per year, respectively, has been severely affected by HABs events
in the last decade [11–13]. In summer 2016, a major HAB event in Southern Chile of the
fish-killer Pseudochattonella verruculosa generated losses of USD 800 million [14]. This event,
the world’s largest-ever recorded farmed-fish mortality, caused a severe economic and
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social crisis in the region. Five years later, a bloom of Heterosigma akashiwo generated a new
massive salmon mortality in Comau Fjord, Chilean Patagonia [15]. During that event, high
cell densities (>2 · 105 cells mL−1) discolored the sea surface waters with intense brown
patches visible to the naked eye (Figure 2).
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The “visible” impacts of HABs, such as massive fish mortalities, extensive shellfish
quarantines and human poisonings, are unquestionable and well documented [16]. How-
ever, there are important gaps in our knowledge of hidden or cryptic impacts of HAB
toxins on marine organisms, which are often attributed without sufficient background
knowledge to climatological (e.g., storms and heat waves) and oceanographic conditions
(e.g., anoxia and hypoxia) [17] or infectious epidemics [18]. It was widely accepted that
shellfish poisoning toxins cause no harm to the vector bivalve mollusks. Nevertheless,
some marine biotoxins have been recently associated with massive mortalities, which
affected wild invertebrate (bivalves, echinoderms and cephalopods) populations [19–22]
and cultivated gastropods [23].

Paralytic shellfish toxins (PST) may cause impairment of adult bivalves by affecting their
response mechanisms to physiological (e.g., filtration rates), immunological (e.g., immunocom-
petence of hemocytes) and behavioral (e.g., burrowing activity) processes [19,24–26]. Similarly,
amnesic shellfish toxins (AST) may cause a slow-down of valvar closure and other physio-
logical disturbances, such as, hemolymph acidosis, hypoxia, increased hemocytokine activity
and DNA damage [27,28]. In the case of lipophilic toxins (LT) produced by Dinophysis species,
okadaic acid (OA) causes a decline in filtration rates associated with a cytotoxic effect [29,30],
while pectenotoxins (PTXs) induce hypersecretion of mucus and pseudo-phaeces, paralysis,
alteration of the digestive gland tissues and reduced escape responses in adult scallops [31].
Other lipophilic toxins, such as YTX and homo-YTX, may cause mass mortalities in the adult
stages of different marine organisms at low concentrations (<1 mg eq. YTX kg−1) [20,22,23].
To date, the specific mechanism of action of YTX is not known; however, some studies
suggested that YTXs affect the digestive and immune systems [32,33] and cytoskeletal cell
components [33,34].

Noxious effects of extracellular toxins on the early life stages of marine organisms have
been described in laboratory studies. PST has been associated with decreased swimming
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activity, larval inactivity, aberrant development, decreased growth, lower settlement rates
and mortality in different species, such as scallops, oysters and mussels [35–42]. Domoic
acid (ASP toxins) may reduce swimming activity, survival and consequently, the settlement
rate in scallops (Pecten maximus) [43]. Regarding LTs produced by Dinophysis, OA can
reduce innate immune responses, hemocyte activity, and larval viability [44–47], while
PTX2 produces larval inactivity and rapid mortality [42,48]. Finally, more research is
needed to determine the negative effects of other LTs, such as YTX and homo-YTX.

According to some climate predictions, several regions with valuable aquaculture
exploitations will be exposed to an increased risk of HAB impacts [12,49]. Current tools for
HAB prediction and mitigation lack accuracy, because the response of each HAB species
to environmental stressors on multiple scales is species- and site-specific. This Special
Issue (SI) seeks to compile contributions with new results aiming to bridge the gaps in our
knowledge regarding the visible and hidden impacts of HABs on aquaculture and fisheries.
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