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Abstract: To investigate the age composition, growth pattern, mortality, and exploitation rate of
Triplophysa scleroptera in the upper reaches of the Yellow River, we measured the total length (L)
and body weight (W) of 347 individuals based on three sampling surveys from 2022 to 2023. The
otoliths were used in this investigation to determine age. The total length of the collected samples
ranged from 5.69 cm to 18.40 cm, body weight ranged from 1.65 g to 50.22 g, and the age ranged
from 1 to 7 years old. The relationship of total length and body weight was W= 0.009L2.942 for the
total samples, and the growth pattern observed in the study belongs to the isometric type. The von
Bertalanffy growth equation revealed that the fish had an asymptotic total length L∞ of 37.536 cm,
and the growth coefficient K was 0.064 yr−1. Total instantaneous mortality rate (Z) of total samples
calculated by the age-based catch curve method was 1.092 yr−1. The average instantaneous rate of
the natural mortality (M), estimated by three different methods, for the total samples was 0.237 yr−1.
The instantaneous rate of fishing mortality (F) for the total samples was calculated as 0.855 yr−1,
and the exploitation rate (E) was determined as 0.783. As a whole, compared with other Triplophysa
fishes, the growth rate of T. scleroptera in the upper reaches of the Yellow River is relatively slow,
and the population of T. scleroptera has been overexploited. It is crucial to establish some effective
management strategies to protect this species.

Keywords: Triplophysa scleroptera; age; growth; mortality

Key Contribution: This study estimates the age, growth, and mortality of T. scleroptera and points out
that the population of T. scleroptera has been overexploited in the upper reaches of the Yellow River.

1. Introduction

The Qinghai–Tibet Plateau, also known as “the roof of the world”, is rich in biodiver-
sity and a relatively unique area with many endemic species [1]. The native fish found in
the Qinghai–Tibet region belong to three orders: Cypriniformes, Siluriformes and Salmoni-
formes [1,2]. Fish of the genus Triplophysa are indeed found throughout the Qinghai–Tibet
Plateau and its surrounding regions, and it is the largest and most diversified genus in the
subfamily Noemacheilinae, which belongs to the family Nemacheilidae (Cypriniformes) [3].
These fishes are evolved to exist in high-altitude, cold-water environments and can be
found in a variety of aquatic settings including rivers, streams, and lakes in the area. They
exhibit a wide range of adaptations and have evolved unique characteristics to survive in
the harsh conditions of the plateau, which has important ecological value [1–4]. Among the
122 species of Triplophysa fish published in the “Red List of Vertebrate Animals in China” [5],
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23 species are classified as extinct, critically endangered, endangered, vulnerable, or near-
threatened, accounting for more than 18.85% of the total species. Additionally, 21 species
are identified as “non-endangered”. However, there are still 78 species of Triplophysa fish
for which data are lacking, making evaluation challenging. This highlights the need to
enhance monitoring and investigation efforts for Triplophysa fish germplasm resources,
despite the relatively abundant populations of some species.

Triplophysa scleroptera is one of the unique fish species in the Qinghai–Tibet Plateau,
only distributed in the upper Yellow River and Qinghai Lake in China [6]. T. scleroptera, an
omnivorous fish, primarily consumes zoobenthos, such as chironomid larvae and Gam-
marid, and also consumes a smaller amount of algae and vascular plants, which plays
a crucial role in the water ecosystem [7]. Additionally, it provides food for predatory
fishes, which affects the dynamics of the entire food chain [7]. Currently, there are limited
reports available on T. scleroptera, which primarily concentrate on issues like geographical
distribution, feeding habits, sexual maturity, respiratory physiology, and other related
themes [6–8]. T. scleroptera, adapted to the extreme climate of the plateau, has special
biological characteristics and physiological mechanisms. It has an important role in main-
taining biodiversity and ecosystem stability in the cold and vulnerable plateau ecological
environment. Although T. scleroptera is listed as a “non-endangered” fish species in the
“Red List of Vertebrate Animals in China” [5], there is little information on its age structure,
population growth, mortality, and resource status in the upper reaches of the Yellow River,
which is its primary habitat. Furthermore, its meat is very delectable and well-liked by
consumers, which adds to its high fishery utilization value. Therefore, continued research
and data collection on T. scleroptera are crucial in order to create effective management
strategies and guarantee the populations’ long-term survival.

Age, growth, and mortality are indispensable biological parameters that provide
fundamental data for comprehending the fundamental biological traits and population
dynamics of species [9,10]. Among them, fish age is an important biological variable,
which is essential for calculating the growth parameters and mortality. The von Bertalanffy
equation, which is frequently used and offers useful insights through its asymptotic body
length L∞ and growth coefficient K, presents a year-by-year picture of fish growth dynamics.
By estimating the rates of natural mortality and fishing mortality, we can evaluate the
dynamics of fish populations and gauge their sustainable resource utilization. On the
whole, these parameters play a significant role in fishery management by helping to
determine the health of a population, estimate sustainable harvest levels, and develop
appropriate conservation measures [11,12]. In view of this, we investigated the population
resources of the T. scleroptera in the upper reaches of the Yellow River from 2022 to 2023,
and analyzed individual biological characteristics such as age, growth and mortality. The
primary objectives of this study were: (1) estimating the age and growth parameters of
T. scleroptera through otolith sections and comparing its growth traits with other Triplophysa
fishes; (2) estimating the mortality rates of T. scleroptera and assessing its resource utilization
status; (3) discussing the implications of our findings for the conservation management of
the T. scleroptera population.

2. Materials and Methods
2.1. Study Area and Sample Collection

This study was conducted in the upper reaches of the Yellow River, which spans from
the Guide section in Qinghai Province to the Jingyuan section in Gansu Province (Figure 1).
The survey sections are located in the canyon type terrain of the upper Yellow River, which
is known as a concentrated distribution area of hydropower stations [13]. Recently, the
distribution area of certain fish species in the upper reaches of the Yellow River has been
gradually shrinking due to the reduction in water resources, water pollution, and water
conservancy construction [13,14]. As a result, their populations have experienced a sharp
decline, and some species have even become endangered or extinct.
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anatomy was performed to distinguish between males and females based on the gonadal 
morphology. The sagitta otoliths were removed from the inner ear sac of the croaker using 
tweezers. After the surface connective tissue was removed, otoliths were preserved in 
labeled tubes containing a 95% ethanol solution. During the survey, water temperature 
was measured by portable water quality analyzer (HACH, Loveland, CO, USA). All 
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Figure 1. Sampling locations of T. scleroptera in the upper reaches of the Yellow River, China.

In July–August 2022, February–March 2023 and May 2023, a total of 347 T. scleroptera
specimens (Figure 2) were collected from the upper reaches of the Yellow River using cage
nets (measuring 15 cm in length, 40 cm in width, and 40 cm in height) and gillnets with
mesh sizes ranging from 1 cm to 4 cm. Under fresh sample conditions, routine biological
measurements were performed on the fish body, including accurate recordings of their
total length (L) to 0.01 cm and body weight (W) to 0.01 g. Subsequently, a biological
anatomy was performed to distinguish between males and females based on the gonadal
morphology. The sagitta otoliths were removed from the inner ear sac of the croaker using
tweezers. After the surface connective tissue was removed, otoliths were preserved in
labeled tubes containing a 95% ethanol solution. During the survey, water temperature was
measured by portable water quality analyzer (HACH, Loveland, CO, USA). All samples
were conducted in accordance with the guidelines of Heilongjiang River Fisheries Research
Institute of CAFS Application for Laboratory Animal Welfare and Ethical Review (Issue
No.: 20220413-001).
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2.2. Age Estimation

In this study, the left otoliths were used for age estimation, and the right otoliths were
used as a backup. First, the otoliths were embedded in transparent nail polish and polished
using 1500–2000 grit sandpaper until the growth center became clearly visible. During the
polishing process, the otoliths were observed under an optical microscope. The otolith
sections were then washed with anhydrous ethanol, made transparent with xylene, and
sealed with neutral gum. Finally, the annual rings were observed and counted under an
optical microscope to determine the characteristics of each ring. Additionally, the age of
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each otolith was identified through blind examination, following the method described by
Li et al. [15].

2.3. Length–Weight Relationship

The length–weight relationship was calculated using the power equation: W = aLb,
where W is the body weight (g), L is the total length (cm), a is the condition factor and b is
the allometric growth factor [16,17]. A t-test with a significance level of 0.05 was performed
to determine whether the acquired b value significantly differed from the value “3” used
to evaluate the allometry in growth [18]. The statistical analyses were carried out using
Microsoft Excel 2016 and SPSS Statistics 19.0.

2.4. Estimation of Growth Equation Parameters

The von Bertalanffy growth equation [19] was used to describe the growth character-
istics of T. scleroptera. The length growth equation is Lt = L∞

[
1 − e−K(t−t0)

]
, where Lt is

the total length at t age (cm); L∞ is the asymptotic total length (cm); K is growth coefficient
(yr−1); t is the age of the sample (yr); and t0 is the theoretical initial age at which the total
length is zero (yr). The growth characteristic index (ϕ) was calculated using the formula:
ϕ= lg(K) + 2 × lg(L∞) . Additionally, the residual sum of squares (ARSS) was used to
statistically compare the fitted growth curves between sexes [20]. This measure helps assess
the discrepancy between the observed data and the predicted values based on the growth
curves for each sex, providing insight into potential differences in growth patterns.

2.5. Total Mortality, Fishing Mortality and Exploitation Rate

To estimate the total instantaneous mortality rate (Z), an age-based catch curve analysis
was used [21]. Catch curves were constructed by plotting the natural logarithm of the
number of sampled fishes in each age group against their respective age group. Only age
groups that were fully recruited to the fishing gear were considered for estimating Z. The
estimation of Z involved fitting a linear regression equation of the form “y = mx + n” to
the right limb of the catch curve, and the absolute value of the slope (m) of this regression
equation represents the value of Z [22].

The instantaneous rate of natural mortality (M) can be obtained by three differ-
ent methods: (1) the length-based empirical relationship proposed by Pauly [23] is
ln M = −0.0066 − 0.279ln L∞+0.6543ln K+0.4634ln T , where T represents the annual
habitat temperature (◦C) of the water where the fish stocks reside, and the values of L∞ and
K are the asymptotic length and average curvature of the von Bertalanffy growth equation,
respectively. (2) The age-based method proposed by Zhan [24] is M = −0.0021+ 2.5912/tm,
where tm is the observed maximum age in years. (3) The age-based method proposed by
Ralston [25] is M= 0.0189 + 2.06K, where K represents the growth coefficient from the von
Bertalanffy growth equation.

The instantaneous rate of fishing mortality (F) can be obtained by subtracting the
instantaneous rate of natural mortality coefficient (M) from the total instantaneous mor-
tality coefficient (Z). Mathematically, this is expressed as: F = Z − M. Furthermore, the
population exploitation rate (E) can be calculated by dividing the fishing mortality (F) by
the total instantaneous mortality (Z): E = F/Z. These formulas provide a way to assess
the impact of fishing on the population by comparing the fishing mortality to the overall
mortality rate. The exploitation rate (E) represents the proportion of the total mortality that
is attributed to fishing operations [26].

3. Result
3.1. Population Structure

During the survey, a total of 347 T. scleroptera specimens were collected. Among
them, 173 were identified as females, 167 as males, and 7 had an unknown sex. The
sexual proportion of the population was approximately 1: 0.97 (female: male). The total
length of the collected samples ranged from 5.69 cm to 18.40 cm, with an average length
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of 10.95 ± 2.16 cm (Figure 3). The majority of the samples, accounting for 84.15% of the
total, had a total length between 8.0 cm and 14.0 cm. The body weight distribution of the
population samples ranged from 1.65 g to 50.22 g, with an average weight of 11.71 ± 7.14 g
(Figure 2). The dominant body weight category in the population was below 20 g, which
accounted for 90.78% of the total samples.
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3.2. Age Distribution

Left otoliths were used in this study for age estimation of T. scleroptera. The growth
rings were analyzed through the observation of otolith grinding slices (Figure 4). The results
showed that the age range of T. scleroptera individuals was between 1 and 7 years (Table 1).
Among them, age-2, age-3, and age-4 individuals were the most abundant, accounting for
84.73% of the total. Additionally, the proportion of age-5, age-6, and age-7 individuals was
comparatively low, indicating a simplified age structure within the T. scleroptera population.
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is 4+ years old (age-5).

Table 1. Numbers of samples and total length (L) and weight (W) in different ages of T. scleroptera in
the upper reaches of the Yellow River.

Age N
Proportion

(%)

L (cm) W (g)

Range Mean ± S.D. Range Mean ± S.D.

1 3 0.86 5.69–5.91 5.83 ± 0.12 1.65–1.92 1.81 ± 0.14
2 61 17.58 6.30–9.70 8.19 ± 1.03 1.88–8.37 4.58 ± 1.76
3 97 27.96 7.85–13.29 10.25 ± 0.94 4.24–17.13 8.23 ± 2.74
4 136 39.19 9.20–14.80 11.62 ± 1.11 5.04–35.29 13.20 ± 4.19
5 33 9.51 11.43–16.8 13.59 ± 1.27 11.37–44.11 20.14 ± 6.58
6 12 3.46 13.40–17.81 14.92 ± 1.55 13.68–47.2 25.72 ± 10.46
7 5 1.44 14.10–18.40 16.32 ± 1.66 21.07–50.22 32.75 ± 11.47

3.3. Length–Weight Relationship

Based on the regression analysis conducted on the relationship between the total length
(L) and body weight (W) of T. scleroptera in the upper Yellow River, the fitting formula was
W= 0.009L2.942 (R2 = 0.951) (Figure 5). Further analysis involved conducting a t-test to
assess the significance of the regression coefficient (b value). The results showed that there
was no significant difference (t-test, t = 1.155, p = 0.124) between the obtained b value (2.942)
and the theoretical value of isometric growth (3.00). This implies that the length–weight
relationship of T. scleroptera in the upper reaches of the Yellow River follows an isometric
growth pattern, in which the total length and body weight increase in proportion to each
other.
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3.4. Growth Equation

The von Bertalanffy growth equations were used to model the growth of female and
male T. scleroptera. For females, the equation was Lt= 42.716

[
1 − e−0.055(t+1.820)

]
, and for

males, the equation was Lt= 31.012
[
1 − e−0.084(t+1.727)

]
. The ARSS test was conducted to

evaluate the significance of growth differences between the sexes, and the results showed
that there was no significant difference (ARSS test, F = 0.029, p = 1.029) in growth between
female and male T. scleroptera. Therefore, the length growth equation of total samples was:
Lt= 37.536

[
1 − e−0.064(t+1.849)

]
(Figure 6). Additionally, the growth characteristic index

(ϕ) for T. scleroptera was determined to be 1.955, and Table 2 lists the age range, growth
parameters and other indicators of several Triplophysa fishes [15,17,27–33].
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Table 2. Comparison of growth characters of several Triplophysa fishes in different studies.

Species Investigation
Area

Age Determination
Materials Sex Age (yr) N

Growth Parameters
Sources

L∞ (cm) K (yr−1) t0 (yr) ϕ

T. orientalis Yarlung
Tsangpo River Otolith

♀ 3–9 101 15.165 0.133 −0.018 1.486 Li et al. [15]♂ 3–9 82 12.519 0.177 −0.069 1.443
T. stewarti Chugutso Lake Otolith ♀and ♂ 1–6 695 13.891 0.168 −2.895 1.510 Tian et al. [17]

T. markehenensis Dadu River Otolith ♀and ♂ 2–8 103 17.312 0.159 −0.533 1.404 Zhang et al. [27]
T. stenura Nujiang River Otolith and Vertebra ♀and ♂ 3–14 172 24.694 0.059 −0.169 1.556 Deng et al. [28]

T. anterodorsalis Heishui River Vertebra ♀and ♂ 1–5 247 9.880 0.260 −0.209 1.404 Wang et al. [29]
T. bombifrons Tarim River Otolith and Vertebra ♀and ♂ 1–6 52 63.310 0.050 −1.437 2.302 Yao et al. [30]
T. siluroides Beichuan River Otolith and Scale ♀and ♂ 2–6 53 10.320 0.334 −0.835 1.551 Yao et al. [31]

T. tenuis Kaidu River Otolith and Vertebra
♀ 2–5 83 23.750 0.640 −0.700 2.558 Jin et al. [32]♂ 1–6 56

T. yarkandensis Qarqan River Otolith and
Opercular bone

♀ 1–10 157 40.726 0.112 −0.930 2.269 Zhao et al. [33]♂ 1–11 148 32.791 0.157 −0.715 2.227
T. scleroptera Yellow River Otolith ♀and ♂ 1–7 347 37.536 0.064 −1.849 1.955 This study

3.5. Mortality and Exploitation Rate

Based on the results of age identification, it seems that the age-1, age-2 and age-3
groups were not fully recruited due to the poor effect of the survey net mesh. As a result,
when evaluating the total instantaneous mortality rate (Z), the data of the age-1, age-2 and
age-3 groups were excluded, following the methodology of Beverton and Holt [22]. Using
age-based catch curve analysis, the Z value for the total samples was determined to be
1.092 yr−1 (Figure 7). Additionally, the average water temperature (T) in the investigation
area of the upper Yellow River was recorded as 12.5 ◦C. Based on Pauly’s method [23], the
instantaneous rate of natural mortality (M) for the total samples was estimated as 0.192 yr−1.
However, when applying the other two methods, the M values for the total samples were
reported as 0.368 yr−1 [24] and 0.151 yr−1 [25], respectively. Taking the average of these
three M values, the estimated M for the total samples was 0.237 yr−1. Consequently, the
instantaneous rate of fishing mortality (F) for the total samples was calculated as 0.855 yr−1,
and the exploitation rate (E) was determined as 0.783.
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4. Discussion

Accurate determination of fish age is essential for researchers examining growth
characteristics, life history, and population dynamics. However, inaccurate age estimations
can significantly impede the development and utilization of fishery resources [29,34]. With
the growth of fish, growth marks are laid down on their calcified structures such as scales,
vertebrae, opercula and otoliths, and the age of the fish can be estimated according to
these marks [35]. Campana and Thorrold [36] and Duan et al. [37] pointed out that the



Fishes 2023, 8, 457 9 of 13

otoliths possess distinct characteristics compared to other age identification materials such
as scales, vertebrae, and opercula. Even in the later stages of a fish’s life, it is recognized that
otoliths have a resistance to reabsorption and an ability to continuously grow. Consequently,
otoliths are considered an ideal material for recording the life history of fish as well as
monitoring changes in the surrounding environment. Chen et al. [38] indicated that otoliths
were found to be more accurate than scales and fins in age estimation of Gymnocypris
selincuoensis, especially in estimating the age of slow-growing and relatively long-lived
populations. Zeng and Tang [39] conducted a comparative study on the age estimation
materials of two esquamate Triplophysa fishes, and the results showed that there were no
obvious annual ring markers in fin rays and operculum, and the age discrimination ability
and estimation rate of vertebrae were not as good as those of otoliths. So, otoliths are a
suitable material for identifying Triplophysa fishes and have been used widely by numerous
researchers [15,17,27–33]. Based on the aforementioned studies, otoliths were the chosen
material in this study for age estimation. Specifically, for T. scleroptera, the otolith ring
pattern consists of alternating clear dark and bright areas, making it suitable for precise
age estimation. In the investigated area, the age distribution of T. scleroptera varied from 1
to 7 years old, and the proportion of individuals belonging to age-5, age-6, and age-7 was
relatively low. In comparison to other species within the same genus, the age structure
of T. scleroptera population was similar to T. stewarti (1–6) [17], T. bombylons (1–6) [30], T.
siluroides (2–6) [31], and T. tenuis (1–6) [32], higher than that of T. anterodorsalis (1–5) [29],
and lower than that of T. orientalis (3–9) [15], T. stenura (3–14) [28], and T. yarkandensis
(1–11) [33]. This shows that the age structure of the T. scleroptera population is simple and
tends to be younger. In addition, the numbers of age-1, age-2 and age-3 fish were not fully
recruited in the collected samples of T. scleroptera, which may be related to the mesh size of
the fishing net.

The growth characteristics of fish serve as a visual representation of the development
of fish populations. These growth patterns are influenced by both genetic factors inherent
to the species and the intricate natural environment they inhabit [40,41]. Additionally,
populations of the same species residing in different geographical locations or experiencing
varying growth environments may exhibit distinct interpopulation variations [42]. The
slope b of length–weight relationship, growth coefficient K, growth characteristic index
(ϕ) are the key parameters to evaluate the growth potential of fish population [43,44].
According to Onikura and Nakajima [45], the b value reflects the growth pattern of fish, and
when b is close to “3”, it is isometric growth, otherwise, it is allometric growth. In this study,
the slope b of length–weight relationship was 2.942, which is obviously lower than Xie’s [46]
reported b value (3.33) for T. scleroptera in the Longyangxia Reservoir of the Yellow River.
This indicates that gonad maturity, age structure, stomach fullness, and food abundance,
can lead to different b values even within the same species [46]. Compared with several
fishes of the same genus, it is similar to T. markehenensis (2.952) [27], T. stenura (2.976) [28],
and T. anterodorsalis (3.012) [29], indicating that these species exhibit an isometric growth
pattern. However, the slope b for T. bombylons (2.240) [30], T. yarkandensis (2.510) [47],
T. tenuis (2.530) [47], T. naziri (2.430) [48], and T. kashmirensis (2.510) [48] were significantly
less than “3”, indicating that these species exhibit a negative allometric growth pattern. On
the contrary, the T. strauchii (3.280) [47] and T. brahui (3.120) [48] were significantly higher
than “3”, indicating that these species exhibit a positive allometric growth pattern. This
demonstrates that the geographical location and environmental conditions also exert an
influence on the variation in growth characteristic parameter b among populations of the
genus Triplophysa.

In this study, the growth coefficient K of T. scleroptera was 0.064 yr−1. Compared with
other Triplophysa fishes, the K value of T. scleroptera is similar to T. stenura (0.059 yr−1) [28]
and T. bombifrons (0.050 yr−1) [30], but significantly lower than T. stewarti (0.168 yr−1) [17], T.
markehenensis (0.159 yr−1) [27], T. anterodorsalis (0.260 yr−1) [29], T. siluroides (0.334 yr−1) [31],
T. tenuis (0.640 yr−1) [32], and T. yarkandensis (♀0.112 yr−1, ♂0.157 yr−1) [33]. In addition to
habitat environmental factors, the difference in the K value in Triplophysa fishes may also
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be attributed to the size of the collected individuals as the maximum and minimum total
length within the samples greatly influence the estimation of growth coefficient K [30–33].
The growth characteristic index (ϕ) combines the values of L∞ and K, which is positively
correlated with the growth rate and can be used to compare the growth performance of fish
belonging to the same genus [49,50]. Currently, reports show that the ϕ value of Triplophysa
fishes had a wide range of 1.404 to 4.268 [15,17,27–33]. The ϕ value in our study was
1.955, higher than T. stewarti (1.510) [17], T. markehenensis (1.404) [27], T. stenura (1.556) [28],
T. anterodorsalis (1.404) [29], and T. siluroides (1.551) [31], lower than T. bombifrons (2.302) [30],
T. tenuis (2.558) [32], T. yarkandensis (♀2.269, ♂2.227) [33], etc. As a whole, the growth rate of
T. scleroptera in the upper reaches of the Yellow River in Triplophysa fishes is slow, which
may be due to the low water temperature, high sediment content of the water body and
the low abundance of food organisms in the investigated area [51,52].

The exploitation rate (E) of fish is an important parameter in fishery management [44].
The reasonable exploitation intensity of fish should be less than 0.5, less than this intensity
is mild development, and higher than this intensity is overexploitation, which will have
a negative impact on the sustainability of fish stocks [53]. In the present study, we used
three methods to derive a relatively certain range for the real value of instantaneous rate of
natural mortality (M) [23–25]. The current exploitation rate (E) of T. scleroptera has been
over 0.5 (E = 0.783), higher than Gymnocypris firmispinatus, a small-size Schizothoracinae
fish, in the Anning River [54], and several prey fish of Hemiculter leucisculus, Acheilognathus
macropterus, Rhodeus sericeus, and Pseudorasbora parva in the lower reaches of the Songhua
River [55], suggesting that the population in the upper reaches of the Yellow River has been
overexploited under the current fishing intensity. Nowadays, with the current increase in
commercial fishing intensity and the reduction in mesh size, the small and middle-sized
fish has gradually become the target of fishing and made into fishmeal for profit [55]. Ma
et al. [54] indicated that the populations of slow-growing fish would be difficult to restore
if their resources were overexploited. Due to the fragile habitat, fewer resources, simple
age structure, and slower growth of T. scleroptera in the upper reaches of the Yellow River,
it will be difficult to recover when its resource is excessively destroyed.

To ensure the protection of T. scleroptera, it is crucial to establish some effective man-
agement strategies. Here are a few possible strategies: (1) Prohibition of illegal nets: it is
important to prohibit the use of illegal fishing gear such as cage nets and smaller mesh
nets. These nets can capture T. scleroptera and other vulnerable species, which causes a drop
in their populations. (2) Spawning season protection: implementing fishing prohibitions
during the spawning season of T. scleroptera can promote sustainable reproduction. This
closed fishing season can prevent excessive exploitation during a critical period of repro-
ductive activity. (3) Regular monitoring: regular monitoring of T. scleroptera populations
and other aquatic biological resources in the area is essential. This monitoring can provide
valuable insights into population dynamics, habitat conditions, and potential dangers. It
will help in identifying any changes or declines and allow for quick conservation measures.
By integrating these strategies, effective protection and conservation of T. scleroptera can be
achieved, ensuring its long-term sustainability.

5. Conclusions

It was concluded that T. scleroptera seem to be a small-size fish with relatively short
longevity, when compared to other Triplophysa fishes. The growth rate of T. scleroptera in
the upper reaches of the Yellow River is relatively slow. Our results also indicated that the
population of T. scleroptera has been overexploited and that it is crucial to establish some
effective management strategies to protect this species.
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