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Abstract: The effects of diets fermented with compound probiotics, namely Lactobacillus acidophilus,
Limosilactobacillus reuteri and Lactiplantibacillus plantarum, on the growth performance, physiological
and biochemical indexes, fatty acid composition and intestinal health of juvenile largemouth bass
(Micropterus salmoides) were investigated. Three hundred healthy juvenile M. salmoides (5.29 ± 0.02 g)
were selected and randomly divided into two groups with triplicates for each. The basic diet was
set as the control group (CON), and fermentation of the basic diet with a mixed bacterial solution
(1.8 × 109 cfu/mL, L. acidophilus:L. reuteri:L. plantarum = 1:1:1) was set as the fermentation group (FER).
Fish were hand fed to satiation for 56 days and two-thirds of the culture water was renewed every
3 days. The results showed that feed intake of fish in the FER group was significantly lowered, thereby
increasing feed efficiency (FE) and protein efficiency (PER) (p < 0.05). Serum alanine aminotransferase
(ALT) activity was significantly decreased, and catalase (CAT) activity was significantly increased in
the FER group (p < 0.05). The liver superoxide dismutase activity (SOD) was significantly enhanced,
and intestinal trypsin was significantly increased in the FER group (p < 0.05). Being fed with the
fermentation diet significantly increased the content of n-3 polyunsaturated fatty acids (PUFA),
docosahexaenoic acid (DHA) and the n-3/n-6 PUFAs ratios in the liver (p < 0.05). Intestinal histology
showed that villus height and width of the intestine and the number of goblet cells were significantly
increased in the FER group (p < 0.05). Those fed with fermentation diets had limited diversity
of gut microbiota. Compared to the CON group, the relative abundance of Aeromonas decreased
significantly (p < 0.05), while the relative abundance of Fusobacteria, Cetobacteria and Lactobacillusis in
FER increased greatly in the gut microbiota of the FER group. In conclusion, fermented feed with
the three probiotics effectively improved the feed utilization and antioxidant capacity, promoted
digestion and absorption of dietary protein, improved the ability of synthesize DHA and n-3 PUFAs
in the liver and reduced the abundance of pathogenic bacteria in the gut. Therefore, the present
research provided a new way of co-fermented feed with three probiotics for the aquaculture of
M. salmoides.

Keywords: probiotics; fermented feed; antioxidant activity; fatty acids; gut microbiota; Micropterus
salmoides

Key Contribution: Compound probiotic fermented feed improves growth performance and promotes
the intestinal health of fish.
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1. Introduction

Largemouth bass, Micropterus salmoides, originally from the United States, is a freshwa-
ter carnivorous fish characterized by rapid growth, high adaptability and a short reproduc-
tive cycle [1,2]. As M. salmoides is popular among consumers, it is gradually occupying a
higher position in China’s aquaculture market. However, the development of M. salmoides
was more and more limited by deterioration of the water quality that resulted from inten-
sive aquaculture, low feed utilization, more and more expensive fish feed and antibiotic
abuse [3]. Current research on M. salmoides mainly focuses on macronutrient requirements
and alternative protein and lipid sources [4]. There was a great need for research on the
development of unconventional feeds that can decrease food waste to improve feed uti-
lization and decrease the use of the antibiotics to promote the healthy aquaculture of the
fish.

Probiotics show promise in aquaculture for disease prevention and supervision [5].
Studies on M. salmoides have shown that probiotics, such as Lactobacillus casei and Bacillus
subtilis, can improve lipid metabolism, antioxidant and immune capabilities, intestinal
digestion and absorption capabilities, and reduce the abundance of pathogenic bacte-
ria in the intestine [6,7]. Feed ingredients can be decomposed into microbial bacterial
proteins, small bioactive peptides and amino acids by probiotic fermentation [8]. Fermen-
tation destroys anti-nutrients and increases nutrient levels in feed ingredients, which
improves feed utilization in fish. Furthermore, fermented feed can promote the balance
of intestinal flora and the organism’s intestinal health [9]. Existing studies frequently
combine different probiotics in order to sum up the fermentation advantages of multiple
strains and fully utilize the probiotic effects of the strains [10,11]. Lactobacillus acidophilus,
Limosilactobacillus reuteri and Lactiplantibacillus plantarum are common lactic acid bac-
teria that can maintain intestinal microbial balance and inhibit pathogenicity [12–14].
L. acidophilus improves intestinal morphology and boosts serum antioxidant enzyme
activity in the organism, whereas L. reuteri and L. plantarum can increase the diversity of
intestinal microbiota [15–19]. Although the effects of the three microbial species were
widely used and researched in aquaculture, the effects of the three species applied in
combination were not evaluated.

Therefore, in this study, a multistrain probiotic (L. acidophilus, L. reuteri and L. plan-
tarum) was selected for fermentation in the basal diet to investigate its role in the growth,
antioxidants, digestion, fatty acid composition and intestinal flora composition of M.
salmoides.

2. Materials and Methods
2.1. Diet Preparation

The feed formula of the basic diet is presented in Table 1. The raw materials were
ground and mixed with water according to the formula, extruded into strips and pelletized,
then dried and stored in a 4 ◦C refrigerator [20]. Fermented feed was prepared based on a
basic diet.

The probiotics used for the fermentation of the feed were provided by Guangdong Mi-
crobial Culture Collection Center (GDMCC) and prepared by Microbiological Analysis and
Testing Center of Guangdong Institute of Microbiology (Guangzhou, China). Compound
probiotics solution was the 1:1:1 mixture of L. reuteri (GDMCC 1.614), L. plantarum (GDMCC
1.191), L. acidophilus (GDMCC 1.208) with 1.8 × 109 cfu/mL for each bacterium. Briefly,
10 mL probiotics mixture was diluted in 400 mL sterile water in, which was sprayed evenly
into 1 kg basic diets and fermented in a sealed bag with the air discharging at 37 ± 5 ◦C for
3 days. The fermented diets smelled of an obvious sour flavor, and were then fed to the
fish within 3 days. The proximate composition of the fermented diets was evaluated after
drying to constant weight, which is presented in Table 1. The fatty acid composition of the
feed is shown in the Appendix A Table A1.
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Table 1. Feed formulation and proximate composition.

Feed Ingredients Basic Diets (%)

Fish meal 50.0
Soybean meal 13.0

Soybean isolate protein 10.0
Fish oil 7.00

High-gluten flour 15.0
Monocalcium phosphate 1.00

Choline chloride 0.20
Zeolite powder 1.80

Multi-dimensional multi-mineral premixes 1 2.00

Total 100

Nutritional
composition Basic diets (CON) Fermented feed (FER)

Moisture/% 3.80 ± 0.56 3.78 ± 0.34
Crude Protein/% 51.5 ± 0.13 a 54.5 ± 0.52 b

Crude Lipid/% 10.9 ± 1.74 9.58 ± 0.67
Crude Ash/% 13.5 ± 0.57 12.6 ± 0.51

Feed nutrient composition data are the average of three repeated measurements. Values labeled with different
letters indicate significant differences (p < 0.05). 1 Multi-dimensional multi-mineral premixes: consists of a
mixture of vitamins and mineral compounds. Vitamins (per kg diet): vitamin A: ≥350,000 IU; vitamin D:
100,000–250,000 IU; vitamin K: ≥900 mg; vitamin E: ≥3500 mg; vitamin B1: ≥700 mg; vitamin B2: ≥800 mg;
vitamin B6: ≥600 mg; vitamin B12: ≥2.5 mg; vitamin C: ≥6000 mg; nicotinamide: ≥5000 mg; folic acid: ≥400 mg;
pantothenic acid: ≥2000 mg; biotin: ≥10 mg; inositol: ≥3000 mg. Minerals (per kg diet): Mg: 3.0–20 g; Mn:
1.0–7.5 g; Fe: 3.5–20 g; Zn: 1.8–10 g; Cu: 0.8–2.0 g; I: 90–160 mg; Co: 120–200 mg; Se: 30–50 mg. The raw materials
were provided by Guangdong Bi De Bio-Tech Co., Ltd. (Guangzhou, China), and machines procured from Jinan
Dingrun (Bright) Machinery Co., Ltd. (Jinan, China).

2.2. Feeding Trial

Juvenile M. salmoides were purchased from Huaxuan Aquatic Co., Ltd. (Guangzhou,
China). The fish were acclimated in the aquaculture system and fed with basic diets
for 2 weeks. The aquaculture system was the same one used by Wang et al. [21]. After
acclimatization, 300 healthy fish with similar physical size (5.29 ± 0.02 g) were selected
and randomly divided into 2 groups with triplicates of 50 fish per tank. The group fed
with the basic diets was set as control (CON) and the experimental group was fed with the
fermented feed (FER). All fish were fed twice (08:00 a.m. and 17:00 p.m.) daily to satiation
and the daily feed intake was recorded. During the 56-day experimental period, culture
water was continuously aerated and two-thirds was renewed every 3 days to ensure the
water quality.

2.3. Sample Collection and Procession

At the end of the feeding test, all the fish were fasted for 24 h. The total final weight
and number of fish in each tank was recorded, and the individual weight and body length
were measured. Three fish from each tank were randomly selected and frozen at −20 ◦C
for the determination of whole body proximate composition. Eight randomly selected
fish from each tank were anesthetized with 2-phenoxyethanol (Sigma-Aldrich, St. Louis,
MO, USA). Blood samples from the fish were obtained from the tail vein with a 1.5 mL
sterile syringe. Serum was prepared for the determination of serum biochemical indicators
according to the methods described in Liao et al. [20]. After blood collection, the fish
liver and visceral and intraperitoneal fat were dissected to determine fish morphometric
parameters. Livers and intestines were sampled for the determination of liver biochemical
indicators and digestive enzyme activities. The intestines collected for histological analysis
were preserved with 4% paraformaldehyde (PFA, Guangzhou Yunran Biotechnology Co.,
Ltd., Guangzhou, China). The dorsal muscle and liver were collected for the determination
of proximate compositions and fatty acid compositions. Gut contents were squeezed out
and instantly frozen in liquid nitrogen for subsequent 16S rRNA sequence determination.
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2.4. Growth Assessment

Final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), feed
efficiency (FE), food intake (FI), survival rate (SR), protein efficiency (PER), condition factor
(CF), hepatosomatic index (HSI), viscerasomatic index (VSI) and intraperitoneal fat ratio
(IPF) are calculated through the following equations [20]:

FBW (g) = Wt/Nt

WGR (%) = 100 × (Wt − W0)/W0

SGR (%) = 100 × [(Wt − W0)/t]

FE = Wf/(Wt − W0 + Wd)

FI (%/day) = Wf × 100 × 2/[56 × (W0 + Wt + Wd)]

SR (%) = (Nt/N0) × 100

PER (%) = 100 × (Wt − W0)/(Wf × CP)

CF (g/cm3) = 100 × (Ws/Ls
3)

HSI (%) = 100 × (W1/Ws)

VSI (%) = 100 × (Vl/Ws)

IPF (%) = 100 × (Fl/Ws)

where Wt is the total final fish weight; W0 is the initial total fish weight; Wd is the total
dead fish weight; t is the number of breeding days; Wf is the total feeding dry weight; N0
and Nt are the initial and final fish tail numbers, respectively; CP is crude protein content
in feed; and Ws, Ls, W1, V1 and F1 are the fish weight (g), body length (cm), liver weight
(g), visceral weight (g) and abdominal fat weight (g), respectively.

2.5. Proximate Composition and Fatty Acid Profiles Analysis

Proximate composition of moisture, crude protein (CP), crude lipid (CL), ash and fillet
fatty acid profiles in the diets, whole fish and muscles were determined according to the
methods described by Liao et al. [20] and Perez-Velazquez et al. [22], respectively.

2.6. Biochemical Indices and Enzymatic Activities Analysis

Serum biochemical parameters including alanine aminotransferase (ALT), aspartate
aminotransferase (AST), alkaline phosphatase (AKP), total bile acid (TBA), triglyceride (TG),
total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein
cholesterol (LDL), albumin (ALB) were determined by the Guangzhou Kingmed Center for
Clinical Laboratory (Guangzhou, China). All the measurements were performed by the
same operator to ensure the accuracy of the test data.

Antioxidant indicators, namely superoxide dismutase (SOD), catalase (CAT), malon-
dialdehyde (MDA), total antioxidant capacity (T-AOC) in serum and liver, lipase (LPS),
amylase (AMS) and trypsin (TPS) in intestine were measured through diagnostic reagent
kits according to the instructions (Nanjing Jiancheng Bioengineering Institute, Nanjing,
China).
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2.7. Liver and Intestine Histological Analysis

After fixation with 4% formaldehyde, liver and intestine tissues were sent to Wuhan
Servicebio Technology CO., LTD (Wuhan, Hubei Province, China) for dehydration, paraffin
embedding, sectioning and staining. The morphological structures of the intestinal wall and
liver of M. salmoides were observed with microscope (E200MV, Nikon Optical Instruments
Co., Ltd., Nanjing, China). The length of the villi and the thickness of the muscular layer of
the intestinal tissues were measured, and the diameters of the hepatocytes and nuclei of
the liver tissues were measured. Twenty values were randomly measured in each section,
and the average value was taken as the measurement result.

2.8. Intestinal Microbiota Analysis

The intestinal contents were transported in liquid nitrogen to Shanghai Meiji Biomedi-
cal Technology Co., Ltd. for DNA extraction and PCR amplification. Then, the 16S rRNA
gene V3-V4 was amplified with universal primers 338F and 806R. The amplified region was
about 450 bp in length, and the library construction and Illumina Miseq sequencing were
conducted at Shanghai Meiji Biomedical Technology Co. Before bioinformatics analysis,
the raw data were quality-controlled by Trimmomatic software (V0.32), and then sequence
splicing was performed by FLASH software (1.2.11). Bioinformatics analysis was per-
formed using the bioconfidence cloud platform of Shanghai Meiji Biomedical Technology
Co. Sequences were clustered at 97% similarity using UPARSE software (7.1) for OTU. The
sequences were annotated for species classification using RDP classifier (V2.2), compared
to the reference database of Silva_138 16S rRNA database, and the composition of microbial
taxonomic levels were counted [23].

2.9. Statistical Analysis

All the data presented as means ± SE. The differences in values between 2 groups
were analyzed through t-test using the SPSS software (25.0). A statistical significance level
of p = 0.05 was employed. * indicates p < 0.05 and ** indicates p < 0.01. The α-diversity of
gut microbial communities was assessed using Mothur software (V 1.30.2); the β-diversity
of microbial communities was assessed by non-metric multidimensional scaling analysis
(NMDS).

3. Results
3.1. Growth Performance

There is no significant difference in SR between CON and FER (p > 0.05) (Table 2).
Compared with CON, the FI of fish was significantly decreased (p < 0.05), but the average
FBW, WGR and SGR in FER were increased, though it did not reach significant differences
(p > 0.05). Compared with CON, 33% higher FE and 21% higher PER were found in FER
(p < 0.05). There were no significant differences in whole-body and muscle-proximate
compositions of HIS, VSI, CF and IPF between the two groups (p > 0.05) (Figure 1).

3.2. Biochemical Indices and Enzymatic Activities

The results of the serum biochemical parameters are shown in Figure 2. Compared
with CON, the activity of ALT in FER was significantly lowered (p < 0.05). There are no
significant differences between CON and FER in other indicators, namely AST, AKP, TG,
TC, HDL, LDL, ALB, TP and TBA (p > 0.05).

The results of the serum and liver antioxidant indexes are shown in Figure 3. The
serum CAT and liver SOD activities was significantly enhanced in the FER group (p < 0.05),
and there were no significant differences in liver MDA, CAT and T-AOC activities between
the two groups (p > 0.05).
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Table 2. Effects of co-fermented feed on growth performance and body composition (whole fish and
muscle) of M. salmoides for 56 days.

CON FER

Growth performance
IBW, g 5.25 ± 0.04 5.34 ± 0.03
FBW, g 52.2 ± 1.12 56.0 ± 0.49

WGR, % 892.4 ± 39.6 949.5 ± 10.5
SGR, % 3.95 ± 0.17 4.04 ± 0.08

FI, %/day 2.82 ± 0.02 b 2.14 ± 0.06 a

FE 0.99 ± 0.03 a 1.33 ± 0.04 b

SR, % 92.7 ± 6.36 92.0 ± 4.62
PER, % 1.92 ± 0.06 a 2.46 ± 0.12 b

Whole-body composition (%)
Moisture/% 69.7 ± 1.00 70.0 ± 0.45

Crude protein/% 17.8 ± 0.16 18.0 ± 0.20
Crude lipid/% 3.64 ± 0.29 3.64 ± 0.11
Crude ash/% 6.81 ± 0.20 6.82 ± 0.11

Muscle composition (%)
Moisture/% 77.6 ± 0.38 77.2 ± 0.34

Crude protein/% 20.3 ± 0.09 20.3 ± 0.22
Crude lipid/% 1.33 ± 0.08 1.39 ± 0.19
Crude ash/% 1.14 ± 0.07 1.15 ± 0.02

The results are expressed as mean ± standard error (n = 3). The same letter or no letter in the same row indicates
that the difference is not significant (p > 0.05), and different letters in the superscript indicate that the difference
is significant (p < 0.05). IBW (initial body weigh), FBW (final body weight), WGR (weight-gain rate), SGR
(specific-growth rate), FE (feed efficiency), FI (food intake), SR (survival rate) and PER (protein efficiency).
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Figure 1. Effects of co-fermented feed on morphological indicators of M. salmoides after 56 days. CF
(condition factor); HSI (hepatosomatic index); VSI (viscerasomatic index); IPF (intraperitoneal fat
ratio). No * means no significant difference between the CON and the FER groups (p > 0.05).

The intestinal digestive enzyme activities were shown in Figure 4. Compared with
the CON group, the activity of TPS in the intestine was significantly higher in the FER
group (p < 0.05), while the activities of AMS and LPS showed no significant difference
(p > 0.05).
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(triglyceride); TC (total cholesterol); HDL (high-density lipoprotein cholesterol); LDL (low-density
lipoprotein cholesterol); TP (total protein); ALB (albumin); TBA (total bile acid). No * means no
significant difference between CON and the FER groups (p > 0.05). Marked * indicates the significant
difference between the CON and the FER groups (p < 0.05), and different quantities indicate the
degree of variation.
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Figure 4. Effects of co-fermented feed on digestive indexes of M. salmoides after 56 days. AMS
(amylase), LPS (lipase) and TPS (trypsin). No * means the no significant difference between CON and
the FER groups (p > 0.05). Marked ** indicates the significant difference between the CON and the
FER groups (p < 0.01).
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3.3. Fatty Acids
3.3.1. Muscle Fatty Acids

A total of 16 fatty acids were detected in muscle (Table 3), of which saturated fatty
acids (SFA) accounted for 28.8–30.0%, monounsaturated fatty acids (MUFA) accounted for
22.6–23.1% and polyunsaturated fatty acids (PUFA) accounted for 46.9–48.3%. The content
of C20:3n-3 in FER was significantly lower than that in CON (p < 0.05), and the other fatty
acids did not reach significant levels (p > 0.05).

Table 3. Effects of co-fermented feed on muscle fatty acids of M. salmoides for 56 days.

% CON FER

C:14 3.21 ± 0.12 3.39 ± 0.25
C:15 0.32 ± 0.00 0.34 ± 0.02
C:16 20.4 ± 0.25 20.7 ± 0.27

C:16-1 5.31 ± 0.14 5.51 ± 0.31
C:17 0.62 ± 0.05 0.47 ± 0.03

C:17-1 / /
C:18 4.71 ± 0.09 4.28 ± 0.24

C18:1n-9 (Oleic acid) 16.9 ± 0.25 17.9 ± 0.39
C18:2n-6 (linoleic acid) 13.5 ± 0.24 13.6 ± 0.28

C18:3n-3 (linolenic acid) 0.82 ± 0.03 0.79 ± 0.01
C18:3n-6 1.23 ± 0.07 1.38 ± 0.10
C20:3n-3 1.65 ± 0.12 b 1.23 ± 0.08 a

C20:5n-3 (EPA) 5.17 ± 0.12 4.72 ± 0.17
C20:3n-6 0.45 ± 0.04 0.43 ± 0.00

C22:6n-3 (DHA) 23.8 ± 0.31 23.3 ± 1.11
C24:6n-3 2.57 ± 0.05 2.51 ± 0.07
C24:1n-9 0.57 ± 0.12 0.61 ± 0.03

SFA 28.8 ± 0.19 28.7 ± 0.29
MUFA 22.6 ± 0.27 23.6 ± 0.68
PUFA 48.3 ± 0.22 46.9 ± 1.03

n-3PUFAs 33.5 ± 0.41 31.8 ± 1.12
n-6PUFAs 14.9 ± 0.26 15.2 ± 0.3

n-3/n-6 PUFAs 2.25 ± 0.07 2.11 ± 0.1
EPA (eicosapentaenoic acid), DHA (docosahexaenoic acid), SFA (saturated fatty acids), MUFA (monounsaturated
fatty acids) and PUFA (polyunsaturated fatty acids). The results are expressed as mean ± standard error (n = 6).
No superscript letter in the same row indicates no significant difference between the two groups (p > 0.05), and
different letters in the superscript indicate significant difference (p < 0.05).

3.3.2. Liver Fatty Acid Compositions

The liver fatty acid compositions are shown in Table 4. A total of 17 fatty acids were
detected in the liver, with SFA accounting for 26.7–27.0%, MUFA accounting for 23.5–27.0%,
and PUFA accounting for 37.1–41.2%. The contents of C16, C18:2n-6 (linoleic acid), C18:3n-6
and n-6 PUFAs in the liver of the FER group were significantly lower than those in the CON
group, and the contents of C20:3n-3, C22:6n-3 (docosahexaenoic acid, DHA), n-3 PUFAs
and n-3/n-6 PUFAs were significantly higher than those in CON (p < 0.05).

3.4. Histomorphology of the Intestine

The intestinal morphology and morphologically relevant parameters are shown in
Figures 5 and 6. Fish in FER had significantly higher intestinal villus height, villus width
and number of goblet cells than those in CON (p < 0.05), while there was no significant
difference in myofibrillar thickness between the two groups (p > 0.05).
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Table 4. Effects of co-fermented feed on liver fatty acids composition of M. salmoides for 56 days.

% CON FER

C:14 3.07 ± 0.24 2.94 ± 0.33
C:15 0.31 ± 0.02 0.24 ± 0.04
C:16 18.7 ± 0.35 b 17.4 ± 0.19 a

C:16-1 6.00 ± 0.28 5.56 ± 0.32
C:17 0.58 ± 0.04 0.54 ± 0.04

C:17-1 0.47 ± 0.14 0.34 ± 0.05
C:18 5.6 ± 0.43 5.68 ± 0.16

C18:1n-9 (Oleic acid) 20.2 ± 1.07 19.8 ± 1.43
C18:2n-6 (linoleic acid) 9.25 ± 0.56 b 7.71 ± 0.20 a

C18:3n-3 (linolenic acid) 1.07 ± 0.05 1.10 ± 0.06
C18:3n-6 1.07 ± 0.2 b 0.63 ± 0.06 a

C20:3n-3 1.53 ± 0.19 a 2.60 ± 0.15 b

C20:5n-3 (EPA) 2.67 ± 0.14 2.60 ± 0.18
C20:3n-6 0.55 ± 0.02 0.69 ± 0.07

C22:6n-3 (DHA) 21.4 ± 1.36 a 27.1 ± 1.38 b

C24:6n-3 2.08 ± 0.10 1.85 ± 0.10
C24:1n-9 0.52 ± 0.04 0.58 ± 0.02

SFA 26.7 ± 1.37 26.7 ± 0.51
MUFA 27.0 ± 1.12 26.2 ± 1.69
PUFA 37.1 ± 1.3 40.7 ± 1.46

n-3 PUFAs 29.1 ± 1.53 a 35.2 ± 1.65 b

n-6 PUFAs 11.0 ± 0.37 b 9.04 ± 0.23 a

n-3/n-6 PUFAs 2.49 ± 0.15 a 3.76 ± 0.14 b

EPA (eicosapentaenoic acid), DHA (docosahexaenoic acid), SFA (saturated fatty acids), MUFA (monounsaturated
fatty acids) and PUFA (polyunsaturated fatty acids). The results are expressed as mean ± standard error (n = 6).
No superscript letter in the same row indicates no significant difference between the two groups (p > 0.05), and
different letters in the superscript indicate significant difference (p < 0.05).

Fishes 2023, 8, x FOR PEER REVIEW 10 of 19 
 

 

and number of goblet cells than those in CON (p < 0.05), while there was no significant 
difference in myofibrillar thickness between the two groups (p > 0.05). 

 
Figure 5. Effects of co-fermented feed on histomorphology of the intestine of M. salmoides after 56 
days. Hematoxylin–eosin staining. (A–D) CON (10×), FER (10×), CON (40×), FER (40×), respectively. 
VH (villi height); VW (villi width); MT (thickness of the muscular layer); GC (goblet cell). 

 
Figure 6. Effects of co-fermented feed on intestinal structure parameters of M. salmoides after 56 days. 
VH (villi height); VW (villi width); MT (thickness of the muscular layer); GC (goblet cell). No * 
means no significant difference between the CON and the FER groups (p > 0.05). Marked ** indicates 
the significant difference between the CON and the FER groups (p < 0.01), marked **** indicates the 
significant difference between the CON and the FER groups (p < 0.0001). 

3.5. Intestinal Flora Analysis 
3.5.1. Sequencing Data and Diversity Analysis 

A total of 231,674 sequences were obtained from Illumina sequencing, with an 
average of 38,612 sequences per sample and an average sequence length of 417 bp; 330 
OTUs were clustered at 97% similarity, belonging to 20 phyla, 38 orders, 92 families, 140 
families and 223 genera. The sequence number and the α-diversity index of the intestinal 
microbiota in two groups are shown in Table 5. There were no significant differences in 

Figure 5. Effects of co-fermented feed on histomorphology of the intestine of M. salmoides after 56 days.
Hematoxylin–eosin staining. (A–D) CON (10×), FER (10×), CON (40×), FER (40×), respectively. VH
(villi height); VW (villi width); MT (thickness of the muscular layer); GC (goblet cell).
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3.5. Intestinal Flora Analysis
3.5.1. Sequencing Data and Diversity Analysis

A total of 231,674 sequences were obtained from Illumina sequencing, with an
average of 38,612 sequences per sample and an average sequence length of 417 bp; 330
OTUs were clustered at 97% similarity, belonging to 20 phyla, 38 orders, 92 families,
140 families and 223 genera. The sequence number and the α-diversity index of the
intestinal microbiota in two groups are shown in Table 5. There were no significant
differences in any of the four indices (p > 0.05), although the FER group had relatively
higher species richness (as shown by Ace and Chao1 index) and lower species evenness
(as shown by Shannon and Simpson index) compared with CON. The β-diversity of
gut microorganisms (Figure 7) showed an overall trend of better clustering, but the
intergroup difference was not significant (p > 0.05).

Table 5. Effects of co-fermented feed on sequence count and colony diversity analysis of M. salmoides
for 56 days.

Diet Read Coverage (%) Ace Index Chao1 Index Shannon Index Simpson Index

CON 38,657 ± 3799 0.999 ± 0.00 110.17 ± 40.17 107.14 ± 40.18 1.17 ± 0.15 0.39 ± 0.04
FER 38,567 ± 5283 0.999 ± 0.00 123.82 ± 23.73 125.11 ± 27.2 0.98 ± 0.09 0.56 ± 0.06

The results are expressed as mean ± standard error (n = 3). No letter in the same line indicates that there is no
significant difference (p > 0.05).

3.5.2. Intestinal Microbial Community Composition

Venn diagrams show that two groups shared 91 OTUs (Figure 8). More intestinal
microflora OTUs were determined in FER than in CON.

Fusobacteria and Proteobacteria were the most dominant phyla (Figure 9A). The rel-
ative abundance of Fusobacteria in CON and FER was 48.85% and 58.24%, respectively,
while the relative abundance of Proteobacteria in CON and FER was 49.77% and 39.9%,
respectively. At the genus level, Cetobacterium, Plesiomonas, Aeromonas, Achromobacter, Cit-
robacter and Acidovorax, were the dominant genus (Figure 9B). The most dominant genera
in CON were Cetobacterium (48.85%), Plesiomonas (29.21%) and Aeromonas (17.76%), while
the most dominant genera in FER were Cetobacterium (58.24%), Plesiomonas (30.73%) and
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Achromobacter (4.66%). The relative abundance of Aeromonas in the FER group decreased sig-
nificantly compared with that in CON (p < 0.05). It was notable that the relative abundance
of Lactobacillus in FER was 0.21%, while it was decreased to 0.01% in CON.
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Figure 9. Effects of co-fermented feed on relative abundance of the phylum (A) and genus (B) of M.
salmoides after 56 days. Species with relative abundance less than 0.1% were considered the same
as the others. Different letters in column of the same color indicate significant difference in relative
abundance between CON and DER (p < 0.05).

4. Discussion

FBW and WGR in FER were comparable or even better than those of CON during the
56-day feeding experiment, which was consistent with research on Procambarus clarkii [24].
Previous research also found that L. plantarum and L. acidophilus compound-fermented
feed improved the WGR and reduced the feed conversion rate of laying hen chicks [25].
However, it had been reported that fermented feed can reduce appetite [26]. The feeding
rate of M. salmoides in FER in this experiment was significantly lower than that of CON,
which was presumably related to the sour smell and changes in the feed pellet shapes of the
fermented feed, although at a lower feeding rate, the growth of fish in the FER group was
comparable or better than the CON, suggesting a better feed utilization which was reflected
by higher FE and PER in the FER group. It was probably due to increased bioavailability
of the diet nutrients during the fermentation process, such as the degradation of diet
protein into small peptides, thus improving the quality of the feed [27]. Other studies also
suggested dietary supplementation with probiotics such as L. plantarum and L. acidophilus
significantly increase feed utilization [28,29]. It can be concluded that fermentation with
the three probiotics was beneficial to feed utilization, thus decreasing food dilapidation.

Serum ALT and AST were generally used to evaluate liver health status and nutritional
metabolism of the organisms [30]. In general, serum ALT and AST were decreased when
ALT and AST enzymes formed new amino acids in the liver. And only when liver damage
occurs, such as from anti-oxidative stress, would the ALT and AST enter the bloodstream
in large quantities [31,32]. A decrease in ALT activity in the FER group indicate feed
with fermentation diets promoted liver health. It was similar to the results based on
Macrobrachium nipponense that serum ALT and AST activities were significantly lowered
after being fed with Lactobacillus plantarum fermented feed [33]. M. salmoides fed with
fermented feed could alleviate liver damage and improve the liver health.

During growth and development, the organisms will generate reactive oxygen species
(ROS) under stress conditions, which are prone to lipid peroxidation and hence cause
damage [34]. T-AOC can accurately reflect the antioxidant capacity of both enzymatic
and non-enzymatic defense systems, while SOD and CAT represent antioxidant enzyme
systems, which are the first lines of defense against free radical damage and reflect the
antioxidant capability of the organisms [25,35]. MDA is a byproduct of lipid peroxidation,
which represents lipid oxidation and tissue oxidative damage [36]. In the present study,
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M. salmoides fed with fermented feed significantly increased the antioxidant capability,
suggesting that Lactobacillus can efficiently eliminate excess free radicals and improve the
antioxidant capacity of M. salmoides. Similarly, Pichiah et al. and Yadav et al. reported
that L. plantarum fermented feed increased serum T-AOC and SOD activities of Litopenaeus
vannamei, while L. plantarum fermented feed decreased Procambarus clarkii’s serum MDA
content [24,37]. In addition, it was presumable that the fermented diet produced a large
number of metabolites containing probiotic enzymatic components and immune factors,
making the nutrients of the feed more balanced and stimulating the epidemic system of the
organism to improve the antioxidant capacity of the fish.

Digestive enzymes, such as lipase and amylase, play important roles in intestinal
digestion and absorptive capacity [38]. Trypsin is involved in the hydrolytic absorption of
dietary proteins [39]. Sufficiently high digestive enzyme activities along with adequate food
supply contributed to rapid growth of the fish [40]. In this study, intestine TPS activity of
fish in the FER group was significantly higher than that of CON (p < 0.05), suggesting higher
digestion and absorption of dietary protein after fermentation. Pichiah et al. and Yadav et al.
obtained similar results that fermented feeds containing L. plantarum increased the lipase,
amylase and trypsin activity of P. clarkii and L. vannamei, which contributed to improve the
digestive capability of fish [24,37]. The fish in the FER group had better digestive function,
which may be related to the fact that fermented feeds had higher contents of protein, and
the protein was more digestible. It was also reflected by the significant increase in FE and
PER in FER.

The fatty acid composition of muscle depends on the fish species [41]. In this study,
there was no great difference in the fatty acid composition of the muscles of M. salmoides.
Long-chain polyunsaturated fatty acids (LC-PUFAs), including DHA and EPA, are not only
essential nutrients to fish but also to human beings [42–44]. EPA and DHA are important
parts of n-3 PUFAs, while their contents in fish were generally related to the diets [43,45].
The n-3-to-n-6 PUFA ratio was also critical for decreasing inflammation and improving
human mental health [46,47]. Carbonium (C20:3n-3) is one of the intermediates of the
DHA synthesis pathway [41]. In the present experiment, both carbonium and DHA were
significantly increased, which contributed to increase the content of n-3 PUFAs. Similar
results were also found in the tilapia fed diets with added L. plantarum and Pediococcus
acidilactici, with significantly decreased n-3-to-n-6 PUFA ratios in the liver and muscle [48].

The intestine is not only the main place of digestion and nutrient absorption but also
the innate barrier to prevent bacteria and other pathogens from entering the fish [49]. Stud-
ies have shown that 21% Lactobacillus fermented soybean meal can increase the intestinal
villi height in Oreochromis niloticus [50]. Bacillus subtilis fermentation products showed
excellent protection in Danio rerio fed high-fat diets, with structural integrity of the intestinal
mucosa layer, muscle layer, and plasma membrane layer, and an elevated number of goblet
cells on the villi [51]. In this experiment, the intestinal structure of M. salmoides were intact
without inflammation, and the height and width of intestinal villi and the number of goblet
cells in FER were significantly higher than those in CON. The increase in intestinal villus
height and width indicated an increase in absorption surface area, which could lead to
better nutrient absorption, which was reflected by increased PER and FE.

Probiotics were vital in maintaining gut health through modulation of the microbial
community [52]. It was generally believed that the greater the diversity of the intestinal
microbiota, the more comprehensive physiological functions of the microbiota [53]. Li
et al. found that fermented feed increased the diversity of gut microbiota and the relative
abundance of probiotics in Macrobrachium nipponense [33]. Meanwhile, Zhang et al. found
that appropriate concentration of probiotic fermentation could improve the species richness
and uniformity of Litopenaeus vannamei [37]. In the present experiment, species richness
and uniformity of gut microbiota did not show significant differences between the two
groups. Meanwhile, NMDS analysis showed a good clustering tendency, which indicated
that fermentation had some effects on the gut microbiota of M. salmoides.
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The gut microbiota composition in the experiment showed that Fusobacteria, Pro-
teobacteria and Firmicutes were the predominant phyla, which was similar to the re-
sults reported by other studies on the composition of the dominant microbiota of M.
salmoides [23,53–55]. It suggested that compound fermentation of the feed with probiotics
did not change the dominant phylum of gut microbiota. Proteobacteria are common and
predominant in the aquatic environment and in the intestines of aquatic animals, which
can lead to metabolic disorders in the host and is closely associated with intestinal inflam-
mation [53,55,56]. Cetobacterium, belonging to Fusobacteria, was a B12-vitamin-producing
bacteria [55,57,58], which increased the abundance in the FER group. Plesiomonas and
Aeromonas species were generally identified as potential opportunistic pathogens [59,60].
Compared to CON, the abundance of Aeromonas was greatly decreased in FER. Lactobacillus
have an antibacterial effect and protect against infectious diseases in fish [55,61]. In this
experiment, the relative abundance of Lactobacillus in Con was only 0.01%, while it reached
0.21% in FER. Based on the above analysis, it could be concluded that fermented feeds were
beneficial for reducing the proportion of pathogenic bacteria, increasing the proportion of
probiotics in the gut, and finally improving the intestinal health of M. salmoides.

5. Conclusions

The effects of fermented diets with compound probiotics, namely L. acidophilus, L.
reuteri and L. plantarum, on the growth performance, physiological and biochemical in-
dexes, fatty acid composition and intestinal health of M. salmoides were investigated. Results
showed that fermentation diets with compound probiotics L. acidophilus, L. reuteri and
L. plantarum effectively improved the feed utilization, increased antioxidant capacity, en-
hanced digestion and absorption of dietary protein, improved the ability of the liver to
synthesize DHA and n-3 PUFAs and reduced the proportion of pathogenic bacteria in
the gut. The present research provided a new way to use co-fermented feed with three
probiotics for the aquaculture of M. salmoides.
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Appendix A

Table A1. Fatty acid composition of the feed (dry matter basis).

% CON FER

C:14 5.74 ± 0.12 5.62 ± 0.34
C:15 0.45 ± 0.02 0.67 ± 0.10
C:16 17.2 ± 0.46 17.16 ± 1.06

C:16-1 6.17 ± 0.13 5.97 ± 0.23
C:17 0.67 ± 0.00 0.65 ± 0.05

C:17-1 1.03 ± 0.24 0.95 ± 0.17



Fishes 2023, 8, 433 15 of 18

Table A1. Cont.

% CON FER

C:18 3.99 ± 0.15 3.87 ± 0.25
C18:1n-9 14.6 ± 0.32 14.3 ± 0.95
C18:2n-6 17.4 ± 0.03 16.0 ± 0.82
C18:3n-3 0.79 ± 0.08 0.85 ± 0.06
C18:3n-6 2.55 ± 0.03 2.44 ± 0.03
C20:3n-3 1.49 ± 0.06 1.37 ± 0.04

C20:5n-3(EPA) 9.60 ± 0.26 9.07 ± 0.40
C20:3n-6 1.89 ± 0.10 1.77 ± 0.10

C22:6n-3(DHA) 10.4 ± 0.16 10.7 ± 0.58
C24:1n-9 0.67 ± 0.09 0.39 ± 0.08
C24:6n-3 0.97 ± 0.17 1.02 ± 0.05

SFA 28.1 ± 0.51 28.0 ± 1.60
MUFA 22.5 ± 0.15 21.9 ± 1.43
PUFA 45.1 ± 0.11 43.2 ± 2.08

n-3 PUFA 23.3 ± 0.05 23.0 ± 1.13
n-6 PUFA 21.8 ± 0.16 20.2 ± 0.95

n-3/n-6 PUFA 1.07 ± 0.01 1.14 ± 0.00
EPA (eicosapentaenoic acid), DHA (docosahexaenoic acid), SFA (saturated fatty acids), MUFA (monounsaturated
fatty acids) and PUFA (polyunsaturated fatty acids). The results are expressed as mean ± standard error (n = 3).
No letter in the same row indicates no significant difference (p > 0.05).
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