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Abstract: Background: The effects of climate change negatively affect marine bivalves’ health. Lately,
the intensity of marine heatwaves poses serious threats to the aquatic environment setting of high-risk
bivalve farming. Since temperature increases can jeopardize bivalves’ immunity response, pathogen
infection becomes more evident. Reactive oxygen species (ROS) production, increased during the
process of phagocytosis, is confronted by the animals’ antioxidant defense system. However, apart
from pathogenic infections, antioxidant defense responses are also induced by seawater temperature
increases; Methods: To enlighten the antioxidant status of Mytilus galloprovincialis originating from
mortality events enhanced by intense heatwaves in Thermaikos Gulf, northern Greece, along with
Marteilia refringens infection, we examined the expression of genes related to antioxidant defense
(catalase, CuSOD and mt10) along with the lipid peroxidation levels and activity levels of antioxidant
enzymes (catalase, SOD and glutathione reductase); Results: Our results exhibited increased levels of
all these biomarkers. This increase was intensified in the Marteilia infected individuals; Conclusions:
Our findings shed light on the oxidative and antioxidant status of farmed mussels led to mortality
in the context of Marteilia infection. The latter is augmented by the synergistic effect of heatwaves
causing a significant increase in oxidative damage and subsequent antioxidant defense.

Keywords: marteiliosis; bouchot mussel farming; histopathology; parasite molecular identification;
defense response

Key Contribution: Heatwaves increased all examined oxidative and antioxidant-related bio-indicators
in M. galloprovincialis mussels, especially those infected with Marteilia, the major pathogen of farmed
mussels. These results enlighten the existing biological impact of heatwaves, providing insights for
future management of the marine aquatic sector.

1. Introduction

The effects of climate change constitute a major inhibition factor in global marine
aquaculture production [1–3]. Specifically, ocean acidification and acute temperature
precipitation pattern changes pose a negative impact on the sector [4,5]. Furthermore, the
consequences of the aforementioned factors directly affect farmed species, rendering them
more vulnerable to opportunistic microorganisms [3]. Hence, microorganisms belonging to
many taxonomic clades, such as bacteria, viruses and protozoan and metazoan parasites,
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take advantage of the physiological stress and the subsequent immunological depression
of aquatic farmed species, resulting in infections that lead to severe population reductions
or even mass mortalities [6–10].

The effects of climate change have been proven to greatly downregulate the physio-
logical performance of aquatic species. Regarding marine invertebrates, which constitute
a valuable group of animals in terms of food production, the effects of climate change
affect their productivity in many ways [3]. Acute modification of the values of several
abiotic factors affects both the growth performance and welfare of cultured species [3,6,11].
Additionally, it has been demonstrated that changes in salinity, pH and temperature affect
immunity in marine bivalves [12]. Since marine invertebrates rely mainly on their innate
immune system to confront microorganism infection, phagocytosis is the basal immune
mechanism that copes with pathogens [13,14]. During the process of phagocytosis, reactive
oxygen species (ROS) production, a process known as respiratory burst (resulting from
the interaction of several substrates with the NADPH—oxidase multiprotein complex)
is taking place in tissues [7,15–17]. Due to the fact that this process results in pathogen-
derived reactive oxygen intermediates (ROIs) and ROS production, marine bivalves possess
several antioxidant mechanisms [18] in order to prevent severe cellular damage from ex-
cessive oxidative stress and finally maintain an equilibrium between antioxidants and
pro-oxidants [19]. Thus, invertebrates such as marine bivalves possess enzymes, such as
superoxide dismutase (SOD), catalase (CAT) and glutathione reductase, as a part of their
antioxidant defense system [19]. These enzymatic processes can catalyze the conversion of
hydrogen peroxide into less-reactive oxygen molecules and water [20,21]. Nevertheless,
apart from pathogenic infections, antioxidant defense responses are also induced by rapid
changes in abiotic factors such as ambient seawater temperature [22,23].

Due to the ongoing climate change, the strength, frequency and duration of marine
heatwaves are expected to increase in the future [24], which are periods during which
the water temperature is abnormally warm for the time of the year relative to historical
temperatures (with temperatures warmer than the 90th percentile based on a 30-year
historical baseline period) with that extreme warmth persisting for days (five or more)
to months [24,25]. In recent years, climate change has become a serious inhibitory factor
in mussel aquaculture, and it has become clear that marine heatwaves tend to worsen
the aforementioned factor. Specifically, as described in Lattos et al. [6], marine heatwaves
with the synergistic effects of Marteilia refringens limited the production in North Greece
in 2022 and even annihilated mussels resulting in the complete loss of production in
2021 [6]. This phenomenon was initiated after strong precipitation events; these resulted
in a temporal temperature decrease during mid-summer (July) and continued in the next
days with an acute temperature increase. At the same time, protozoan parasites such
as M. refringens were favored from the temperature increase and the heat stress of the
hosts and multiplied uncontrollably, creating infections in the cultured species [6]. As a
result, farmers applying the long-line system of mussel culture are trying to submerge
their equipment in deeper spots. On the other hand, farmers using the traditional type
of farming (bouchot) as described in Lattos et al. [6] face the phenomenon occasionally
without being able to save their production unless they have the ability to transfer the
cultured species to greater depths.

Aquatic organisms’ biochemical and physiological responses during acclimation to
increasing temperature have been thoroughly studied under laboratory conditions. These
studies support the establishment of the physiological mechanisms that are involved during
both various exposures and acclimation to mimicked field conditions [26–29]. However, so
far, only a few studies examining the organisms’ physiological responses to seasonality have
been employed in the field. These studies eventually demonstrate the clear links between
the results obtained under laboratory and field conditions. Under this prism, field studies
on farmed aquatic organisms would be a useful tool to reveal climate-induced effects. Thus,
the main objective of the present study was to investigate the antioxidant responses of
the Mediterranean mussel Mytilus galloprovincialis (Lamarck, 1819) in both culture types
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(traditional bouchot culture (TC) and long-line system (LC)) under the presence or absence
of the cercozoan parasite M. refringens. Further, the investigation was carried out during
the increase in the ambient sea water temperature during a heatwave event in order to
enlighten the underlying mechanisms of antioxidant defense and complement our previous
results regarding mussels’ pathophysiological responses to marine heatwaves and, in
addition, to the synergistic effect of Marteilia infection.

2. Materials and Methods
2.1. Sampling Procedure

The sampling procedure is described in detail in Lattos et al. [6]. Specifically, adult
mussels (M. galloprovincialis) with a weight of 22.43 ± 3.21 g (mean ± SD), a shell length
of 5.62 ± 0.35 cm and a shell width of 2.89 ± 0.11 cm were sampled. The sampling
was conducted from both the traditional bouchot culture (TC) and long-line system (LC).
Variations in sea water physicochemical parameters were measured by the employment of a
Multiparameter Water Quality Meter (Model WQC-24, DKK-TOA Company, Bad Nauheim,
Germany). Thus, apart from the sea water temperature, the pH, the concentration of oxygen
and the salinity were also recorded (at both 12 a.m. and 12 p.m. daily on a monthly basis).
The samplings were conducted in the marine area of Thermaikos Gulf at the end of May
when the surface sea water temperature was 18 ◦C, at the beginning of July when the
surface sea water temperature reached 28 ◦C, on 25 July 2022 when the surface sea water
temperature increased to 28.2 ◦C and finally on 1 August 2022 when the surface sea water
temperature reached 29.5 ◦C (Figure 1). The selection of 26 May as the initial sampling
point was due to the fact that mussels exhibit their optimal physiological performance at
approximately 18 ◦C [30,31]. It should be mentioned that the highest surface sea water
temperature value in the period from 2009 to 2022 was 27.2 ◦C, thus underlying the fact that
the present study’s samplings were conducted during a marine heatwave (Figure 1). Other
sea water physicochemical parameters remained unchanged and thus are not presented
(Salinity (g/L): 26 May = 34.9, 13 July = 34.9, 25 July = 35.2, 1 August = 35.1; oxygen
(mg/L): 26 May = 8.1, 13 July = 8.2, 25 July = 8.3, 1 August = 8.1; and pH: 26 May = 8.1,
13 July = 8.2, 25 July = 8.3, 1 August = 8.1). Mortalities increased parallel to the increasing
seawater temperature and reached 100% in the bouchot culture. From each culture process,
ten individuals were sampled. From each sample animal, half of the digestive gland and
half of the mantle were extracted, stored in 1.5 mL eppendorf tubes and immediately frozen
in liquid nitrogen. Then, all samples were transferred to the laboratory, where they were
stored at −80 ◦C.

2.2. Histopathogical Detection of M. refringens

The remaining part of the digestive gland after dissection was stored in Davidson
fixative agent as described in Lattos et al. [6] according to Shaw and Battle [32]. Parasitic
infections were evaluated via histological sections stained with hematoxylin and eosin
according to Howard et al. [33].

2.3. RNA Extraction and cDNA Synthesis

Total RNA extraction was conducted from the mantle of the mussels using the Nucleo-
ZOL reagent (Macherey-Nagel, Düren, Germany). This process was carried out according to
the manufacturer’s instructions. However, the optional separation step was not performed.
Briefly, approximately 50 mg of the mantle was homogenized with piston pestling in 500 µL
NucleoZOL. Then, into the lysate, RNAase-free water was added. Subsequently, for RNA
precipitation, centrifugation and then the addition of isopropanol followed. The samples
were again centrifuged, and the RNA pellet was subjected to two ethanol washes. Finally,
dilution in 60 µL nuclease-free water of the extracted RNA was performed. A Quawell
UV–Vis 5000 spectrophotometer (Quawell Technology, San Jose, CA, USA) was used for
the estimation of RNA purity and concentration. The extracted RNA was stored at −80 ◦C
until reverse transcription. For the reverse transcription process, approximately 500 ng of
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total RNA from each sample was subjected to cDNA synthesis using the PrimeScript kit
(Takara, Japan) and the oligodT primers according to the manufacturer’s protocol. Similarly
to RNA, the evaluation of cDNA concentration and purity was performed. Thereafter, the
samples were stored at −20 ◦C until qPCR application.
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seasonal sampling took place in both culture techniques. The incorporated table depicts the sam-
ple prevalence rate of seasonal infection with M. refringens, while the incorporated figure depicts
climatological (long-term mean) seasonal cycles of satellite-derived sea surface temperature (SST).

2.4. Gene Expression Analysis

The gene expression of three antioxidant genes (Catalase, Cu/Zn superoxide dismu-
tase and Metallothionein-10) was calculated through quantitative real-time PCR (qPCR).
The comparative CT method (2−∆∆CT method) [34] was employed for the quantification
of the relative expression of the above-mentioned genes. The cDNA originating from the
samples collected on the 26th of May was designated as the control samples. The Ct values
of all studied genes were normalized to the Ct values of the reference gene EF1-a. For
each gene, three different cDNA from each group of mussels were subjected to real-time
PCR. The PCR reactions were performed by the employment of the KAPA SYBR® FAST
qPCR Master Mix (2X) kit in a 10 µL volume. The reaction wells contained 2 µM of each
primer, 5 µL of KAPA SYBR® FAST qPCR Master Mix (2X), 10 ng of template cDNA and
PCR-grade water up to 10 µL. The qPCR Thermocycler Eco 48 Real-time PCR (PCRmax,
San Diego, CA, USA) was used in order to perform the runs for 40 cycles. The gene-specific
primers utilized for the qPCR reactions are shown in Table 1.

Table 1. Primer pair sequences, amplicon sizes and GenBank accession numbers for the analyzed
genes through real-time PCR.

Target Gene Forward Primer (5′→3′) Amplicon Size (bp) GenBank Accession No. ReferenceReverse Primer (5′→3′)

Catalase (cat) CTCTGACCGTGGAACCCCTGA
193 AY743716.2 [35]ATCACGGATGGCATAATCTGGA

Cu/Zn superoxide
dismutase (Cu/Zn sod)

AGGCGCAATCCATTTGTTAC
212 JN863296.1 [36]CATGCCTTGTGTGAGCATCT

Metallothionein-10 (mt-10)
GGGCGCCGACTGTAAATGTTC

93 AY566248.1 [37]CACGTTGAAGGCCCTGTACACC

Elongation factor (EF1-α) GATATGCGCCAGTCTTGGAT
223 AB162021 [38]CTCATGTCTCGGACAGCAAA
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2.5. Assays of Antioxidant Enzymes and Lipid Peroxidation (TBARS)

The activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD)
and glutathione reductase (GR) in the mantle of the sampled mussels were measured in the
homogenized tissue samples’ supernatants (2000× g, 4 ◦C, 15 min) [39]. Specifically, catalase
(EC 1.11.1.6) enzymatic activity resulted from the changes in absorbance of hydrogen
peroxide (H2O2) (240 nm) [40]. SOD (EC 1.15.1.1) total enzymatic activity was the result
of the inhibition of NADH by β-mercaptoethanol [41], while GR (EC 1.8.1.7) enzymatic
activity levels resulted from the absorbance changes in NADPH (240 nm) [42]. Protein
concentrations were determined using the BioRad protein assay. All enzymatic activities
are expressed as U per mg protein.

Homogenization of the mantle samples for the measurement of TBARS and the activi-
ties of the cytosolic and mitochondrial enzymes was performed according to Buege and
Aust [43]. The terminal product, malondialdehyde (MDA), formed by the decomposition
of polyunsaturated fatty acids mediated by free radicals was quantified as thiobarbituric
acid reactive substances.

2.6. Statistical Analysis

To test for significance at p < 0.05 (5%) between all experimental groups, one-way
analysis of variance (ANOVA) (GraphPad Instat 3.0) was employed. This was followed by
Bonferroni post hoc analysis. Friedman’s nonparametric test and Dunn’s post hoc test were
applied, since normality tests exhibit little power to test the homogeneity of small sample
size data. For the assessment of the significance of factor interactions, two-way ANOVA
(GraphPad Prism 5.0) was also performed with the following as fixed factors: different
aquaculture techniques and Marteilia spp. presence. Moreover, for the determination of
the correlation between the examined variables, principal components analysis (PCA) was
applied using the FactoMineR package in R [44].

3. Results
3.1. Marteilia Detection

As already mentioned in Lattos et al. [6], no infected individuals were detected in the
LC in the sampling from the 13 July 2022, thus indicating a 0% prevalence rate. On the other
hand, in the TC from the same date, one sample was heavily infected with marteiliosis. In
the sampling from the 25 July 2022, the prevalence rate of marteiliosis was 20% in both the
LC and TC, while in both culture types, individuals were divided into one lightly and one
heavily infected. In the sampling from the 1 August 2022, M. refringens was detected only
in the LC (Figures 1 and 2).
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3.2. Gene Expression

A generally increasing pattern of expression was observed in all three genes examined
from the samples infected with Marteilia spp., exhibiting higher levels compared to the
non-infected samples (Figure 3). Specifically, catalase gene expression levels increased in all
samplings compared to the one from May with the sampling on the 1 August of the TC
treatment exhibiting the highest values compared to all other samplings. Although the LC
samples infected with Marteilia spp. in this sampling exhibited no differences compared to
the LC samples in the sampling from the 13 July, the TC samples infected with Marteilia
spp. exhibited higher levels compared to the TC samples. This was also the case for the LC
samples and the LC samples infected with Marteilia spp. (Figure 3A). Contrary to catalase,
CuSOD and mt10 gene expression levels exhibited their highest levels in the TC samples
infected with Marteilia spp. in the sampling from the 13 July compared to the non-infected
TC samples of the same sampling. However, in the next sampling, no differences were
observed between Marteilia spp. infected and non-infected individuals (Figure 3B,C).
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Figure 3. Relative mRNA expression levels of catalase (A), CuSOD (B) and mt10 (C) in the mantle
of infected and non-infected by Marteilia spp. (M) M. galloprovincialis specimens. The collection
of the samples was performed in Thermaikos Gulf from both the traditional bouchot culture (TC)
and long-line system (LC) during a summer heatwave. Values constitute means ± SD of n = 5
(preparations from different animals). Statistically significant differences (p < 0.05) between samples
are indicated by lower case letters.

3.3. Enzymatic Activity

The activity levels of antioxidant enzymes followed a pattern similar to that of the
expression of genes. Specifically, the samples infected with Marteilia spp. exhibited higher
activity levels compared to the non-infected samples. The latter was also exhibited in
the MDA levels, depicting higher lipid peroxidation levels in the Marteilia spp. infected
samples (Figure 4). While catalase, GR and SOD exhibited their highest activity levels in the
LC samples infected with Marteilia spp. in the samplings from the 25 July and the 1 August
compared to the other samplings, the lipid peroxidation levels depicted their highest levels
in the TC samples infected with Marteilia spp. in the samplings from the 13 and 25 July
compared to the other samplings (Figure 4).

3.4. Multivariate Analysis

PCA analysis was performed for each sampling in order to examine each sea water
temperature effect and for all samplings together in order to provide the whole effect of
seasonality.

Specifically, in the sampling from the 13 July, clear clusters were formed according to
the culture technique and the infection. Specifically, a cluster displaying higher levels of all
examined biochemical parameters except that of GR formed in the TC samples infected
with Marteilia spp., while the latter parameter formed a cluster with the TC samples.
Overall, 79.65% of the variance was attributed to PC1, while 20.35% was attributed to PC2.
Cumulatively, PC1 and PC2 explained 100% of the total variance in the dataset (Figure 5A).
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In the sampling from the 25 July, two clear clusters were formed: LC samples infected with
Marteilia spp. and TC samples infected with Marteilia spp. The LC samples infected with
Marteilia spp. formed a cluster with all examined biochemical indicators and shared MDA,
CuSOD and mt10 gene expression levels with the cluster formed with the TC samples
infected with Marteilia spp. A total of 71.19% of the variance was attributed to PC1, and
16.09% was attributed to PC2. Cumulatively, PC1 and PC2 explained 87.28% of the total
variance in the dataset (Figure 5B).
Likewise, in the sampling from the 1 August, two clear clusters were formed: TC samples
and LC samples infected with Marteilia spp. Specifically, the TC samples formed a cluster
with CuSOD and mt10 gene expression levels, while the LC samples infected with Marteilia
spp. formed a cluster with catalase gene expression; catalase, SOD and GR activity levels;
and MDA levels. A total of 81.3% of the variance was attributed to PC1, while 18.7% was
attributed to PC2. Cumulatively, PC1 and PC2 explained 100% of the total variance in the
dataset (Figure 5C).
Regarding the overall effect of seasonality, two clear clusters were formed: TC samples and
LC samples, both infected with Marteilia spp. Specifically, the TC samples infected with
Marteilia spp. formed a cluster with CuSOD and mt10 gene expression levels, while the LC
samples infected with Marteilia spp. formed a cluster with all the remaining biochemical
indicators. A total of 61.01% of the variance was attributed to PC1, while 22.97% was
attributed to PC2. Cumulatively, PC1 and PC2 explained 83.97% of the total variance in the
dataset (Figure 5D).
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Figure 4. Enzymatic activity levels of catalase (A), GR (B), SOD (C) and levels of MDA (D) in the
mantle of infected or non-infected by Marteilia spp. (M) M. galloprovincialis specimens. The collection
of the samples was performed in Thermaikos Gulf from both the traditional bouchot culture (TC)
and long-line system (LC) during a summer heatwave. Values constitute means ± SD of n = 5
(preparations from different animals). Statistically significant differences (p < 0.05) between samples
are indicated by lower case letters.
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Figure 5. Multivariate component analysis depicting biochemical parameters’ correlations with the
PC1 and PC2 (principal components) in the mantle of M. galloprovincialis in the samplings from
13 July (A), 25 July (B), 1 August (C) and the overall samplings (D). The PCA was generated from the
complete biochemical and physiological dataset (parameters with red vector arrows were included
as predictors in constructing the PCA). Analytical table of the contribution of biochemical parameters
studied according to factor loadings and variable correlations with each of the first two principal
components (PCs) in the multivariate analysis.

4. Discussion

The current field study demonstrates the effect of intense phenomena, in particular
marine heatwaves favored by climate change, on the oxidative status and the antioxidant
defense of the Mediterranean mussel M. galloprovincialis, occasionally infected with M.
refringens. The results demonstrate the synergistic effects of a temperature rise and par-
asitic infection in the antioxidant responses of M. galloprovincialis. Temperature alone is
considered to be an important abiotic factor, seriously affecting the physiology of marine
bivalves [6,7,45], since a temperature rise can lead to higher energy costs due to an increase
in oxygen consumption, which subsequently leads to an increase in ROS production [46,47].
Enhanced and prolonged ROS production can result in oxidative damage that, in turn, may
lead to cellular damage and eventually mortalities in marine invertebrates [48,49]. How-
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ever, the recruitment of antioxidant defense mechanisms may ameliorate these oxidative
stress effects [6,7,50].

Due to the stress provoked by climate change impacts, disease etiology tends to
become more complex, especially when phenomena such as marine heatwaves weaken
the immune responses of the aquatic species [8,51]. M. refringens, the causative agent
of ‘’Aber disease”, has been implicated several times in mortalities of wild and cultured
populations of marine bivalves along Greek coastlines [1,52,53]. It is widely known that the
dynamics of M. refringens in aquatic environments are highly correlated to temperature rises,
although there is evidence of overwintering in hosts [1]. Aber disease has been correlated
with physiological and immunological depression in marine bivalves [54,55]. Specifically,
infections with M. refringens in marine bivalves may result in the downregulation of
metabolism and physiological processes and, finally, energy allocation disruptions, leading
to mortalities [6,56,57].

Oxidative stress damage by means of lipid peroxidation levels was increased in the
mussels exposed to increased sea water temperature. Generally, increased temperature
elevates the lipid peroxidation levels in various bivalve species [58–61]. However, studies
specifically on M. galloprovincialis, Crassostrea virginica (Gmelin, 1791) and Scrobicularia
plana (da Costa, 1778) have shown that heat stress may not lead to increased levels of lipid
peroxidation [62–64]. Therefore, it seems that the intensity of the oxidative stress and its
subsequent effects probably rely on the differences of species, temperature, intensity and
form of temperature-induced stress. Lipid peroxidation levels in the present study were
additionally increased in Marteilia infected individuals. It has been previously documented
that the implication of pathogenic agents induces oxidative stress, which leads to an alarm
of pathogenic invasion to the host species [65,66]. Hemocytes of bivalves seem to trigger a
burst of respiratory activity under pathogen stimulation, which involves the production of
ROS that eliminates the phagocytized material [17,67]. ROS overproduction is restrained
by antioxidant defense systems to eliminate tissue peroxidation and oxidative damage. The
latter has been demonstrated in Ruditapes decussatus (Linnaeus, 1758) clams infected with
Perkinsus olseni [68]. Comparing the two types of culture, uninfected mussels exhibited
higher levels of lipid peroxidation with the traditional culture (TC). This observation can
be attributed to the small depth of the culture site and the possible intense and rapid
temperature shifts during the day. On the other hand, Marteilia infection elevated lipid
peroxidation levels regardless of the culture type or the sampling date. Similar to the
above, lipid peroxidation levels were found to be increased in Pinna nobilis (Linnaeus, 1758)
specimens infected with the parasite Haplosporidium pinnae [18].

Similar to the levels of lipid peroxidation, the activity levels of antioxidant enzymes as
well as gene expression levels regarding antioxidant responses are also in line with tem-
perature rises. The latter indicates the fact that a temperature rise induces the antioxidant
defense mechanism in mussels [58,59]. Specifically, CuSOD gene expression demonstrated
higher levels in high ambient sea water temperature (26.5 ◦C). It must be highlighted that
these levels were additionally increased in infected individuals. Concerning the antioxidant
defense mechanisms, it has been shown that infections with protistan parasites can result
in variations in the activity levels of antioxidant enzymes during infections from the effort
of the host to confront the invasive parasitic pathogen [7]. However, it should be noted
that, although at this temperature increase mortality cases have been documented to be
higher compared to lower temperatures, the infection rate is lower compared to lower
temperatures [69,70]. In the same way, SOD activity levels exhibited higher values in
infected individuals of both culture types exposed to higher ambient sea water temper-
ature. This observation is in line with other studies documenting higher values in SOD
during an encounter of a marine invertebrate with a protozoan parasite such as Bonamia
ostreae [71]. Regarding catalase activity, the results presented an upregulation in infected
individuals, while uninfected individuals followed different patterns. More specifically,
our results regarding catalase expression (mRNA and enzymatic activity) are in line with
the ones presented by Lattos et al. [7], demonstrating an upregulation of catalase activity in
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Pinna nobilis individuals infected with Haplosporidium pinnae. These levels were even more
amplified under the prism of seasonal temperature rises due to the presence of marine
heatwaves. Concerning mt10 gene expression, which acts as a cytoprotective agent in ox-
idative stress, gene expression showed an initial upregulation in temperatures until 28.2 ◦C
and then a downregulation at the peak temperature (29.5 ◦C) [35]. The aforementioned
results are in line with those demonstrated by Feidantsis et al. [49], which also indicated a
downregulation during a temperature increase from 26 ◦C to 28 ◦C. The downregulation of
mt10 expression is correlated with higher oxidative stress under this temperature increase,
which probably surpasses the ability of the organism to induce some antioxidant defense
mechanisms. However, this seems to be extremely versatile regarding which of these mech-
anisms will be down- or up-regulated. On the contrary to the above-mentioned results,
GR activity levels do not exhibit any correlation with the parasitic infection in mussels.
Specifically, GR exhibited higher values in the presence of M. refringens in the LC culture,
while in the TC type of culture, GR exhibited lower values in the rise of the temperature.

It should be underlined that greater activities of antioxidant enzymes during pathogenic
conditions in bivalves may also not be accompanied with increased lipid peroxidation
levels, thus indicating the presence of sophisticated antioxidant defense mechanisms to
avoid tissue peroxidation [72]. The latter strategy protects the organism from cellular
damage and suggests great capacities of bivalve species to adapt to infections and chang-
ing temperatures. However, the incidents of most mass mortalities are attributed to the
synergistic effects of multiple factors [73]. The increased frequency and/ or duration of
extreme climatic events could destroy the adaptive mechanisms and could decrease the
ability of bivalve Mollusks to counteract multiple stressors, such as increased temperature,
diseases and harmful algal blooms, leading to repeated mortality outbreaks.

5. Conclusions

Due to the ongoing extreme phenomena of climate change, such as the intensity of
marine heatwaves, drastic management measures should be considered for the amelioration
of this phenomena in order for the restoration of marine production to be accomplished. The
latter is of great necessity since the synergy of M. refringens infection and heatwaves have
resulted in devastating mass mortalities of M. galloprovincialis in northern Greece’s farms
in 2020 and 2021. Since long-term exposure to such conditions can lead to uncontrollable
effects in the future, investigation in this field of research should be encouraged. To this end,
the present study aimed to shed light on the underlying molecular mechanisms of mussels
exposed to both M. refringens infection as well as to the synergy of marine heatwaves and
M. refringens infection. As it has been shown by the present results and confirmed by the
employed PCA analysis, M. refringens infection intensifies the responses of this bivalve to
the marine heatwaves. Although bivalves seem to recruit sophisticated mechanisms for the
maintenance of their physiological fitness and homeostasis, environmental stress seems to
exceed these defenses, subsequently leading to extensive mortalities.
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