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Abstract: Pseudomonas plecoglossicida is the pathogen of visceral white spot disease in marine fish,
which usually occurs at 16–19 ◦C and has resulted in heavy economic losses. Our previous RNA
sequencing revealed that the expression of the fliL gene in P. plecoglossicida was significantly up-
regulated during infection of the host. In order to study the influence of the fliL gene on the
virulence of P. plecoglossicida, the fliL gene of the NZBD9 strain was knocked out by the homologous
recombination method, the fliL gene-deleted strain (∆fliL strain) constructed, and complemented the
fliL gene to the ∆fliL strain to obtain the C-∆fliL strain. The growth curves of the NZBD9 strain, ∆fliL
strain, and C-∆fliL strain did not show significant differences. Compared with the NZBD9 strain,
the motility, adhesion, and biofilm formation ability were tendered in the ∆fliL strain (p < 0.05); the
complement of the fliL gene enhanced these abilities to the level of the NZBD9 strain. The results
of artificial infection experiments showed that the LD50 of NZBD9 strain, ∆fliL strain, and C-∆fliL
strain in hybrid grouper (Epinephelus fuscoguttatus ♀× E. lanceolatus ♂) were 5.0 × 103 CFU/fish,
6.3 × 104 CFU/fish, and 1.3 × 103 CFU/fish, respectively. RNA sequencing was performed on
wild-type strains and ∆fliL strains. A total of 126 differentially expressed genes (DEGs) were screened
(p < 0.05), of which 114 were downregulated and 12 were upcontrolled, among which several genes
related to the six-type secretion system and transport activity were significantly downregulated. The
DEGs were aligned to the GO and KEGG databases and enriched to 44 GO pathways and 39 KEGG
pathways, respectively. The active pathways of ABC transporters were significantly enriched in both
databases. These results indicate that the fliL gene is related to the movement, biofilm formation, and
adhesion ability of P. plecoglossicida, and may reduce virulence by affecting substance transport and
bacterial secretion.

Keywords: Pseudomonas plecoglossicida; fliL; virulence; transcriptome

Key Contribution: The fliL gene might be influencing the P. percoglossicida’s system of material
transportation and flagellum assembly to reduce its virulence.

1. Introduction

With the vigorous development of the mariculture industry, especially the promotion
of a high-density aquaculture model, the frequency and range of aquatic diseases caused
by bacteria have gradually increased [1–3]. Marine and freshwater fish diseases caused
by Vibrio, Pseudomonas, and Aeromonas are more common, causing serious losses to aqua-
culture [4–7]. Pathogenic Pseudomonas plecoglossicida was first isolated and identified as
a new strain in ayu (Plecoglossus altivelis) suffering from bacterial haemorrhagic ascites
from Japan in 2000 [8]. In recent years, reports have revealed that this pathogen can cause
infection in a wide variety of fish, including crucian carp (Carassius auratus), rainbow
trout (Oncorhynchus mykiss), large yellow croaker (Larimichthys crocea), and orange-spotted
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grouper (Epinephelus coioides), causing high mortality and posing a great threat to aqua-
culture [9–11]. Previous research in our laboratory found that many genes were involved
in regulating the virulence of P. plecoglossicida. The rpoD (RNA polymerase sigma factor)
gene was found to be a key virulence gene in the process of infecting grouper [12], and
fliG (flagellar motor switch protein, fliG), flgC (flagellar basal-body rod protein, flgC), exbB
(biopolymer transport gene), and other genes also made great contributions to the infection
of orange-spotted grouper [13–15]. However, the pathogenesis of bacterial diseases is an
extremely complex process, and the virulence of P. plecoglossicida is not well understood.
Based on the early transcriptome data of our laboratory (NCBI, SRP115064), the results
showed that the fliL gene was significantly overexpressed in the spleen of orange-spotted
grouper infected with the wild-type P. plecoglossicida strain NZBD9. It is speculated that
this gene is related to the virulence of P. plecoglossicida.

Most bacteria migrate to a favorable living environment by rotating flagella/flagella [16].
In this process, torque is generated by the flagella motor to provide rotational power for the
flagella filament [17]. FliL (flagellar basal body-associated FliL family protein) is a single-
transmembrane protein (IM protein) associated with flagellar motor function [18], close
to the flagellar basal body [19]. Studies have shown that the interaction of FliL with the
rotor (MS ring) and stator (MotA and MotB) enhances the flagellar motor torque, thereby
maintaining the integrity and stability of the flagellar rod [19–22]. Motility mainly plays a
role in the early stage of bacterial infection [23]. Studies have found that fliL is essential for
the movement of Rhodobacter sphericum, and in the absence of the fliL gene, flagella rotation
is seriously damaged [24]. In Vibrio alginolyticus, loss of fliL will not affect cell morphology
or flagella, but it will lead to a significant decrease in swimming speed under a high
load. Therefore, fliL is very important to generate torque under high-load conditions [16].
Moreover, it is reported that FliL is related to the swimming or adhesion mechanisms of
Clostridium difficile, and the loss of the fliL gene may affect the cell’s ability to perceive the
surface [19]. However, research on the function of the fliL gene in P. plecogerossicida has not
been published yet.

In this study, a two-step allele exchange method was used to construct an unmarked
deletion strain of the fliL gene (∆fliL strain) and a complement strain of ∆fliL (C-∆fliL strain)
of P. plecoglossicida with reference to the previous method [25]. Meanwhile, a fliL gene
complement strain was constructed. In order to study the effect of the fliL gene on the
pathogenicity of bacteria, the biological characteristics and virulence tests were carried out
on the deleted and supplemented strains. In addition, to further elucidate the potential
mechanism of virulence of the fliL gene, the transcriptomes of the NZBD9 strain, the
fliL gene deletion strain of P. plecoglossicida were compared and analyzed.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

The strains used in this experiment were all P. plecoglossicida, in which the wild-type
strain NZBD9 was isolated from the spleen of diseased, large yellow croaker. The ∆fliL
strain was obtained by the knockout fliL gene of the wild strain, and the C-∆fliL strain was
obtained by complementing the fliL gene to the ∆fliL strain. All three strains were grown
in Luria-Bertani (LB) medium at 18 ◦C or 28 ◦C with 220 r/min (NZBD9, ∆fliL containing
100 µg/mL ampicillin, and C-∆fliL adding 10 µg/mL tetracycline.). Escherichia coli Top10
and DH5α were obtained from TransGen Biotech (Beijing, China) and cultured in LB broth
at 37 ◦C with 220 r/min. The plasmid pK18mobsacB and pCM130/tac located in DH5α
were preserved in our laboratory and cultured in LB broth at 37 ◦C with 220 r/min.

2.2. Construction of Deletion and Complement Strains
2.2.1. Construct the ∆fliL Strain

According to the genome sequence of the NZBD9 strain (NCBI, PHNR00000000), primers
P1P2 and P3P4 were designed (primers’ sequence is shown in Supplementary Table S1) to am-
plify the upstream and downstream homologous fragment (about 800 bp) of the fliL gene,
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respectively, and the fusion fragment (about 1600 bp) was obtained by running overlapping
PCR (P1/P4 primers). The PCR amplification procedure was as follows: 95 ◦C for 4 min;
30 cycles of 95 ◦C for 30 s, 56 ◦C for 30 s, and 72 ◦C for 1 min; and 72 ◦C for 5 min. The
fusion fragment (∆fliL) and plasmid pK18mobsacB were digested with restriction enzymes
EcoR I and Xba I (Takara Biotech, Beijing, China), respectively, (water bath at 37 ◦C for 5 h),
and T4 ligase (Takara Biotech, China) was added for connection (16 ◦C for 5 h) [25]. Then,
the ligation product was transformed into Top10 receptive cells of E. coli by heat shock, and
the recombinant plasmid pK18mobsacB-∆fliL was screened with LB agar (50 µg/mL Kan).
After enzyme digestion and sequencing (Shanghai Shengong Bioengineering Co., Ltd.,
Shanghai, China), the correct recombinant plasmid was transformed into the suscepti-
ble cells of the NZBD9 strain by electroporation with 2.5 kV (MicroPulserTM, BIO-RAD,
Mountain View, CA, USA), and the successful transformants were screened out by Kan
(25 µg/mL). After dilution, the transformant was spread onto LB agar plates containing
10% sucrose until a single colony grew [26]. Then, single colonies that could grow in ampi-
cillin but could not grow in Kan were screened; P1/P4 primers were used to PCR isolated
colonies, and the wild-type strain was used as a positive control. The PCR amplification
procedure was the same as above. The strain that can amplify the fusion fragment (about
1600 bp) is the strain that has lost the fliL gene (∆fliL strain).

2.2.2. Construction of the Complement Strain C-∆fliL

According to the fliL gene sequence of the NZBD9 strain and the enzyme restriction
site of plasmid pCM130/tac, the primers C-∆fliL-F/R were designed (primers’ sequence
is shown in Table S1). The complete fliL gene fragment was amplified by PCR with the
DNA of the NZBD9 strain as a template. The PCR amplification procedure was as follows:
95 ◦C for 4 min; 30 cycles of 95 ◦C for 30 s, 58 ◦C for 30 s, and 72 ◦C for 30 s; and 72 ◦C
for 5 min. The gene fragment and plasmid pCM130/tac were digested with BsrG I and
Nsi I (New England Biolabs, Ipswich, MA, USA) enzymes (water bath at 37 ◦C for 5 h),
and T4 ligase was added for connection (16 ◦C for 5 h). Then, the ligation product was
transformed into DH5α receptive cells of E. coli by heat shock, and the recombinant plasmid
pCM130/tac-fliL was screened with LB agar (10 µg/mL tetracycline). The receptor cells
of the ∆fliL strain were prepared, and the recombinant plasmid was shocked (2.5 kV) into
them. The ∆fliL strain cells with recombinant plasmid were inoculated on an LB agar plate
containing 10 µg/mL tetracycline and incubated under 18 ◦C. A single colony was selected
and cultured in LB broth (containing 10 µg/mL tetracycline) for colony PCR verification.
The sequence of all primers used is shown in Supplementary Table S1.

2.3. Validation of mRNA Levels of Deletion and Complement Strains

The genomes of the NZBD9 strain, ∆fliL strain, and C-∆fliL strain were extracted using
the bacterial genome DNA kit (TransGen Biotech, Beijing, China). The internal primer
P5/P6 (Table S1) of the fliL gene was designed as the verification primer and subjected to
PCR. The PCR amplification procedure was as follows: 95 ◦C for 4 min; 30 cycles of 95 ◦C
for 30 s, 52 ◦C for 30 s, and 72 ◦C for 30 s; and 72 ◦C for 5 min. To verify the expression of
the fliL gene at the mRNA level, total bacterial RNA was extracted with TRIzol reagent.
According to the manufacturer’s protocols, the cDNA was synthesized using TransScript
All-in-One First-Strand cDNA Synthesis SuperMix for qRT-PCR (One-Step gDNA Removal)
(Transgenic Biotechnology Company, Beijing, China). The temperature was set to 42 ◦C
for 15 min and 85 ◦C for 5 s. Compared with the NZBD9 strain, the qRT-PCR based on the
method of SYBR Green, was used to run the relative gene expression quantitatively, and
the relative gene expression level was calculated by the 2−∆∆CT method. The primer of the
fliL gene and the endogenous gene 16S rDNA was designed by Primer Premier 5.0, and the
sequence is shown in Supplementary Table S1. Three samples were in each group, and for
each sample, three replicates were performed.
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2.4. Determination of Growth Curve

The NZBD9 strain, ∆fliL strain, and C-∆fliL strain of P. plecoglossicida were cultured in
LB broth at 18 ◦C with shaking at 220 r/min overnight to OD600 = 0.5, and then diluted with
sterile LB broth to OD600 = 0.2 ± 0.01. The bacterial suspension was diluted 100,000 times
with sterile LB broth, and 200 µL was added into 96-well plates after mixing evenly. There
were 12 replicates for each strain, and 200 µL LB broth with 12 wells used for control group.
The OD value at 600 nm was measured at 18 ◦C with a multifunctional microtiter plate
detector (every 30 min for 48 h).

2.5. Motility Measurement

The motility assay of P. plecoglossicida was carried out according to the method
of Yang et al. [15] with some modifications. The NZBD9 strain, ∆fliL strain, and C-
∆fliL strain were cultured in LB broth, and overnight cultured at 18 ◦C with shaking
at 220 r/min until OD600 = 0.2. One uL bacterial suspension was inoculated on an LB
semi-solid plate containing 0.4% agar and cultured at 18 ◦C for 24 h. The colonies were
then photographed and the diameter of each colony was determined. Three independent
biological repeats were set up for the detection of each strain, and each repeat included
three technical repeats.

2.6. Determination of Bacterial Adhesion Ability
2.6.1. Preparation of Surface Mucus

Vigorous pearl gentian grouper with no parasites and wounds on the body surface
was obtained from a farm without a recent history of the epidemic in Xiamen (Fujian,
China). The method of Jiao et al. [14] was followed and slightly modified. We rinsed the
surface of the fish with sterile PBS, gently scraped off the mucus on the surface of the fish
with clean slides, and mixed well in PBS. The mucus was placed overnight at 4 ◦C and
centrifuged for 30 min twice at 4000× g and 4 ◦C. The supernatants were sterilized by
filtration using filters with pore sizes of 0.45-µm and 0.22-µm successively. The mucus’
protein concentration was adjusted to 1 mg protein/mL with PBS according to the Bradford
Protein Assay Kit (Solarbio®, Beijing, China).

2.6.2. In Vitro Adhesion Experiment

In vitro adhesion was determined following a previous study [11]. Some 20 µL of
mucus (1 mg protein/mL) was evenly coated onto a 22 mm2 glass slide area and fixed with
methanol for 20 min. A total of 200 µL of a bacterial suspension (OD600 = 0.3 ± 0.01) was
spotted on a mucus-coated glass slide. Then, the glass slides were placed in a humidified
chamber, incubated at 18 ◦C for 2 h, and then washed five times in PBS (0.01 mol/L,
pH = 7.2). Finally, the bacteria were fixed with 4% methanol for 30 min, stained with 1%
crystal violet for 3 min, and counted under a microscope (×1000) (Leica DM4000 B LED,
Leica, Wetzlar, Germany). Five glass slides were performed per strain, and the adhered
bacteria in 20 randomly selected fields were counted per slide.

2.7. Biofilm Determination

Biofilm formation was explored following previous research [11] with some modifi-
cations. Overnight cultures of P. plecoglossicida were adjusted to OD600 = 0.2 ± 0.01 in LB
broth. The bacterial suspension (100 µL) was added to the wells of 96-well plates (ten wells
per strain) and incubated at 18 ◦C for 24 h. Then, each well was washed gently twice with
PBS (2 mL), dyed with 120 µL of crystal violet (0.1%) for 15 min, gently washed twice with
sterile PBS, and air dried. Finally, 200 µL of acetic acid (33%) was added to each well to
dissolve the stained biofilm for 30 min, and OD590 of each well was determined using a
SYNERGY H1 microplate reader (BioTek, Winooski, VT, USA).
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2.8. Measurement of the Chemotactic Response

The assay was accomplished in accordance with the previous method [12]. The
P. plecoglossicida NZBD9, ∆fliL, and C-∆fliL strains were cultured in sterile LB broth medium
at 18 ◦C until an OD600 of about 0.5. The bacteria were adjusted to OD600 = 1.0 using sterile
PBS. One end of the mucus-filled capillary tube (inner diameter 0.1 mm, the other end
sealed) was immersed in a syringe containing bacterial suspension (250 µL) and incubated
at 18 ◦C for 1 h. Sterile PBS was applied as a blank control. The bacteria−mucus mixtures
in the capillary were diluted into 995 µL PBS for serial dilution, and 100 µL bacterial
suspension per gradient was coated on an LB agar plate to calculate CFU. Three replicates
were set up for each strain.

2.9. Half Lethal Dose (LD50) Test for P. plecoglossicida

Healthy weight-match pearl gentian grouper were temporarily cultured in clean
and sterile seawater (temperature controlled at 18 ± 1 ◦C) for one week. After the fish
adapted to recirculating aquaculture, the infection test was carried out. Grouping was
set according to the reported method [27]. A total of 160 pearl gentian grouper were
randomly divided into 16 groups; each group contained 10 fish, including 5 groups
of NZBD9 strain, ∆fliL strain, and C-∆fliL strain, plus a set of negative control (PBS).
The intrabitoneal injection dose of the bacterial solution was set to 5 × 106, 5 × 105,
5 × 104, 5 × 103, and 5 × 102 CFU/fish. The fish injected with 0.2 mL PBS was used
as the negative control. The death of the injected fish was observed every 12 h after
injection, and the dead fish were removed every time.

2.10. Transcriptomic Analysis
2.10.1. Library Preparation and Sequencing

Overnight cultures of the NZBD9 strain and ∆fliL strain were centrifuged (4 ◦C,
4000× g, 15 min), and the bacteria were collected for RNA sequencing. Three samples were
prepared for each strain as independent biological replicates. The concentration and purity
of bacteria total RNA extracted from the sample were detected by Nanodrop2000. The
TruSeqTM total RNA library preparation kit was used to construct a library with an initial
total RNA volume of 2 µg.

In the synthesis of the second strand of cDNA, dTTP was replaced by dUTP, and
the second strand was degraded by adding the UNG enzyme (Illumina, San Diego,
CA, USA). The enriched library was amplified by PCR and quantified by TBS380
(Picogreen). The constructed RNA-seq libraries were sequenced on the Illumina No-
vaSeq 6000 sequencing platform [28] by Shanghai Majorbio Biomedical Technology
Co., Ltd. (Shanghai, China).

2.10.2. Raw Data Statistics and Quality Control

Using statistical methods, the base distribution and quality fluctuation of all sequenc-
ing readings in each cycle were counted to obtain raw data. Illumina Hiseq original data
contained junction sequences, reads of low quality, sequences with high N-rates, and exces-
sively short sequences, which would affect subsequent sequence assembly. Therefore, the
original sequencing data was filtered to obtain high-quality sequencing data (clean data) to
ensure the smooth conduct of subsequent analyses. The method was as follows: remove
the adapter sequence in reads and 5′-end contains non-A, G, C, T base. The ends of the
reads with a quality value less than Q20 were trimmed, the reads with 10% N content were
removed, and the small fragments with a length of less than 25 bp were discarded. The
FASTX-Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/ accessed on 22 December
2022) was used to analyze the Illumina raw sequencing data as well as library construc-
tion and sequencing quality. SeqPrep (https://github.com/jstjohn/SeqPrep accessed on
22 December 2022) was used to perform quality control of the raw sequencing data to
obtain high-quality clean data to ensure the accuracy of subsequent analyses.

http://hannonlab.cshl.edu/fastx_toolkit/
https://github.com/jstjohn/SeqPrep


Fishes 2023, 8, 397 6 of 17

2.10.3. Comparison with Reference Genome

Clean data (reads) was compared by software based on the Burrows−Wheeler method,
and mapped data (reads) was obtained for subsequent analysis. The sequence was indexed
by classification and transformation characteristic matrix and compared with the refer-
ence genome (NCBI, GCA_003391255-1) with the software of Bowtie (http://bowtie-bio.
sourceforge.net/index.shtml, accessed on 22 December 2022).

2.10.4. Differentially Expressed Genes (DEGs) and Enrichment Analysis

The gene expression levels were quantitatively analyzed by RSEM software based
on one million transcripts (TPM). DESeq2 software was used to analyze the differen-
tially expressed genes (DEGs) between the groups, and the significance screening level
was p-adjust < 0.05 and |log2FC| ≥ 1. GOATOOLS (https://files.pythonhosted.org/
packages/, accessed on 24 December 2022) and R script were used for GO and KEGG
Pathway enrichment analysis of DEGs, and the Fisher precise test was used for calculation.
In GO enrichment analysis, the Bonferroni method was used to correct the p value, and
the corrected p value (FDR) was <0.05, indicating that the GO function was significantly
enriched. For KEGG Pathway enrichment analysis, BH (Benjamini and Hochberg) was
selected to correct the p value. The corrected p value (FDR) was set to 0.05 as the threshold,
and FDR < 0.05 was considered significant enrichment.

2.10.5. Validation of Transcriptome Data

To confirm the reliability of transcriptome data, several upregulated and downregu-
lated genes were randomly selected from RNA-seq results for qRT-PCR validation. The
sequence of gene primers is shown in Supplementary Table S2. The 16S rDNA (Table S1)
was used as the internal reference gene, and the 2−∆∆CT method was used for data
processing. Three samples were in each group, and for each sample, three replicates
were performed.

2.11. Data Analysis

All data were the average standard deviation (SD) of three independent experiments.
The data were analyzed by IBM SPSS Statistics v 26.0, and the Dunnett test was used for
one-way ANOVA. The p value < 0.05 was indicated as statistically significant.

2.12. Data Access

The RNA-seq data were stored in the GenBank SRA database with entry numbers
SRP423148 (NZBD9 strain group) and SRP428021(∆fliL strain group).

3. Results
3.1. Construction of fliL Gene Deletion and Replacement Strain of P. plecoglossicida

The results of the construction process of ∆fliL and C-∆fliL strains are shown in
Supplementary Figures S1 and S2. As shown in Figure 1A, the ∆fliL strain did not exhibit
the fragment of the fliL gene (468 bp), while both the NZBD9 strain and C-∆fliL strain
exhibited the fragment. Through further verification (mRNA level), as shown in Figure 1B,
compared with the wild-type strain, the ∆fliL strain was almost unexpressed, while the C-
∆fliL strain showed an upregulated expression. These results demonstrate that the fliL gene
deletion strain and complement strain of P. plecoglossicida was successfully constructed and
can be used in subsequent experiments.

http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
https://files.pythonhosted.org/packages/
https://files.pythonhosted.org/packages/
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Figure 1. Verification of ∆fliL and C-∆fliL strain of P. plecoglossicida. (A) Detection of fliL DNA
fragment (P5/P6 primers), M: DL1000 DNA Marker; 1: DNA of ∆fliL strain as a template; 2: DNA of
C-∆fliL strain as a template; 3: DNA of NZBD9 strain as a template; (B) fliL gene mRNA levels in
three strains of P. plecoglossicida. Data were represented by mean + SD (n = 3).

3.2. Effect of the fliL Gene on the Phenotype of P. plecoglossicida

The results of the growth curve (Figure 2A) show that there was no significant
difference between the growth of the wild-type strain, ∆fliL, and C-∆fliL strain. The
motility of the three strains was determined on LB soft agar. Figure 2B shows that
the colony diameter of the ∆fliL strain (10.14 ± 0.85 mm, p < 0.01) was significantly
smaller than that of the wild strain (11.92 ± 0.52 mm), and the motility of the C-∆fliL
strain (11.73 ± 0.66 mm) was restored to the state of the wild type. The comparison of
biofilm formation indicated that the biofilm color of the ∆fliL strain was the lightest
among the three strains, and the OD590 value of the ∆fliL strain (1.22 ± 0.08, p < 0.01)
was significantly lower than that of the wild strain (1.57 ± 0.19) and the C-∆fliL strain
(1.37 ± 0.08) (Figure 2D). Similarly, the adhesion of the ∆fliL strain decreased. The
number of ∆fliL strain bacteria attached to the mucus-coated slide was significantly
less than that of the wild strain (p < 0.05) under the same visual field (Figure 2E,F). As
shown in Figure 2C, the chemotactic ability of the ∆fliL strain was weaker than that of
the wild strain, but there was no significant difference.

3.3. Effect of the fliL Gene on the Virulence of P. plecoglossicida

Mortality (within 7 days) of artificial infection of pearl gentian grouper with P. plecoglos-
sicida is presented in Table 1. No fish in the PBS group died during animal testing.
Kohl’s [29] modified method was used to calculate the LD50 of the wild-type strain, ∆fliL
strain, and C-∆fliL strain, with values of 5.0 × 103 CFU/fish (2.1 × 103–1.2 × 104, 95%
confidence interval), 6.3 × 104 CFU/fish (1.9 × 104–2.1 × 105, 95% confidence interval),
and 1.3 × 103 CFU/fish (4.8 × 102–3.7 × 103, 95% confidence interval), respectively. The
result showed that the virulence of the ∆fliL strain was twelve-fold lower than that of the
wild-type strain, while that of the C-∆fliL strain was four-fold higher.
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Figure 2. Comparison of the phenotype between different strains of P. plecoglossicida. (A) Growth
curve; (B) Motility, left: measurement of colony diameter, right: photograph of colony morphology;
(C) Chemotaxis; (D) Biofilm formation capacity, left: measurement of OD590 value, right: comparison
of biofilm colors; (E) The average number of adherent bacteria; (F) Adherence of bacterial cells under
the microscope (×1000). Data were mean ± SD of different assays with different biological replicates,
* p < 0.05, ** p < 0.01.
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Table 1. Results of the artificial infection of different strains of P. plecoglossicida to pearl gentian grouper.

Dose
(CFU/Fish)

The Number of
Test Animals

Wild Type Strain ∆fliL Strain C-∆fliL Strain

The Number
of Dead Mortality/% The Number

of Dead Mortality/% The Number
of Dead Mortality/%

5 × 106 10 10 100 10 100 10 100
5 × 105 10 10 100 7 70 10 100
5 × 104 10 9 90 4 40 9 90
5 × 103 10 6 60 3 30 8 80
5 × 102 10 0 0 0 0 3 30

3.4. Effect of Knockout of fliL Gene on Transcriptome of Wild Strain of P. plecoglossicida

Judging from the quality of quality-controlled sequence data, the base distribution of
each sample is relatively concentrated, with N% approaching 0%. The Q20 (percentage of
bases with mass value ≥20) and Q30 (percentage of bases with mass value ≥30) of each
sample were greater than 98.5% and 95.5%. The sequencing error rate was less than 0.1%,
indicating the high quality of transcriptome sequencing results. The ratio of clean reads
(mapped reads) to the reference genome was more than 98%, which indicated that the
selected reference genome assembly could meet the needs of information analysis.

The analysis found that there were 126 DEGs between the transcriptome of the ∆fliL
strain and wild-type strain, including 114 downregulated genes and 12 upregulated genes
(Figure 3A). The first 50 differentially expressed genes were selected for thermographic
analysis (Supplementary Figure S3). Five upregulated and downregulated genes were selected
for qRT-PCR detection. The trend of gene expression in qRT-PCR results was consistent with
sequencing results (Figure 4), which indicated the reliability of transcriptome data.

Fishes 2023, 8, x FOR PEER REVIEW 10 of 18 
 

 

 

 

Figure 3. Cont.



Fishes 2023, 8, 397 10 of 17

Fishes 2023, 8, x FOR PEER REVIEW 10 of 18 
 

 

 

 

Fishes 2023, 8, x FOR PEER REVIEW 11 of 18 
 

 

 

 
Figure 3. Comparative transcriptomic analysis between wild-type strain and ΔfliL strain of P. 
plecoglossicida. (A) Volcano map of transcriptome gene expression; (B) KEGG enrichment analysis 
of differentially expressed genes (DEGs); (C) KEGG functional enrichment chord diagram; (D) GO 
enrichment analysis of DEGs. 

Figure 3. Cont.



Fishes 2023, 8, 397 11 of 17

Fishes 2023, 8, x FOR PEER REVIEW 11 of 18 
 

 

 

 
Figure 3. Comparative transcriptomic analysis between wild-type strain and ΔfliL strain of P. 
plecoglossicida. (A) Volcano map of transcriptome gene expression; (B) KEGG enrichment analysis 
of differentially expressed genes (DEGs); (C) KEGG functional enrichment chord diagram; (D) GO 
enrichment analysis of DEGs. 

Figure 3. Comparative transcriptomic analysis between wild-type strain and ∆fliL strain of P. plecoglos-
sicida. (A) Volcano map of transcriptome gene expression; (B) KEGG enrichment analysis of differen-
tially expressed genes (DEGs); (C) KEGG functional enrichment chord diagram; (D) GO enrichment
analysis of DEGs.
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and the horizontal coordinate shows the multiple of expression difference.

The differential genes were analyzed by GO enrichment and KEGG pathway to
further explore the effect of fliL gene deletion on the transcriptome of P. pleclossicida. The
GO enrichment analysis with GOATOOLS software showed that there are three types
of GO enrichment functions: molecular function (MF), cellular component (CC), and
biological process (BP). A total of 44 GO pathways were enriched, 42 of which were
significantly enriched. The 20 GO pathways with the highest degree of enrichment are
shown in Figure 3D, among which the top 5 are the intrinsic component of membrane,
an integral component of cytoplasm, transporter activity, transmembrane transporter
activity, and siderophore uptake transmembrane transporter activity. It is suggested that
the deletion of the fliL gene may affect the membrane and transmembrane transport
activity of P. plecoglossicida. KEGG Pathway enrichment analysis showed that 35 differential
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genes (DEGs) were enriched into 39 pathways in the KEGG database. Among them,
29 pathways downregulate differential gene enrichment, including the ABC transporter,
flagellar assembly, biofilm formation, bacterial secretion system, and two-component
system, etc. The top 20 enrichment pathways are shown in Figure 3B, and the genes
corresponding to the top 10 KEGG pathways and their expression levels are shown in
Figure 3C. It was noteworthy that the ABC transporter receptor pathway was the most
significant pathway of enrichment. As one of the largest protein superfamilies, ABC
transporters transport a variety of substrates across the cellular membranes of bacteria
by ATP binding and hydrolysis (Figure 5A). The ABC transporter receptor pathway was
analyzed, and its upregulation and downregulation are shown in Figure 5B. As shown
in the Figure 5, the alkanesulfonate-binding protein (SsuA), ABC transporter permease
(SsuC), and SsuB transporter are all downregulated. AfuB transporters in the iron uptake
system and ZnuA and ZnuB transporters in the zinc uptake system were downregulated.
In addition, the phosphate transport system permease protein PstA, methionine uptake
transporter MetNI, and the urea permease UrtA, UrtC were also downregulated. The
results showed that the transport and absorption ability of the ∆fliL strain to the outside
world were weakened.
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4. Discussion

As an important gene modification technology, gene knockout technology is widely
used in the fields of animals and plants [30–32] and microorganisms [33–35]. It is one
of the most powerful tools for studying the function of biological genes. The main
methods include homologous recombination, the ZFN technique, TALEN technique, and
CRISPR/Cas9 system mediation [36–38]. Homologous recombination has played a role
in the study of a variety of bacteria. Examples of strains were Bifidobacterium longum [39],
Helicobacter pylori [40], Mycobacterium avium subespecie paratuberculosis, (MAP) [41]. In
this study, the fliL gene of P. percoglossicida was knocked out by homologous recombina-
tion of suicide plasmids, and the ∆fliL strain was constructed successfully, which laid the
foundation for this study.

Most bacteria-infected hosts undergo four processes: contact, adhesion, entry, and
host colonization [42], which are closely related to flagellar movement, biofilm formation,
adhesion ability, and other virulence factors [43,44]. Flagellar movement is crucial to the
survival and virulence of many pathogenic bacteria [17] and is one of the determinants of
pathogenicity. The flagellar structure consists of three parts: a rotary motor, a universal joint,
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and a helical propeller [45], which consists of more than 50 genes with multiple operons
that regulate flagella synthesis and function [46]. For example, the fliK gene controls the
length of flagellar hooks and is crucial for the motility of Bacillus thuringiensis [47]. In
the study of P. percoglossicida, the silence of genes such as fliG, flgK, and flgC that encode
flagellin all lead to a significant decline in the movement, adhesion, and biofilm formation
of P. percoglossicida [10,14,15]. The survival rate of infected Epinephelus coioides increased by
55%, 55%, and 80%, respectively. These results suggest that flagella genes play a key role in
the pathogenicity of bacteria. In this study, we used a homologous recombination technique
to knock out the flagellum-related gene fliL. The biological characterization showed that
the motility, adhesion, and biofilm-forming ability of ∆fliL strain were obviously decreased,
but it has no effect on the growth of P. percoglossicida. By supplementing the fliL gene,
the C-∆fliL strain has regained its motility, and its biofilm-forming ability has also been
improved. These results suggest that the fliL gene may be involved in the regulation of
flagella assembly, thus weakening the virulence of the P. percoglossicida. The virulence of
∆fliL strain was reduced 12-fold compared to the wild-type strain by testing the median
lethal dose (LD50) of the infected pearl gentian grouper. Moreover, it was found that the
virulence of C-∆fliL strain was significantly greater than ∆fliL strain.

Bacterial virulence is regulated by a variety of factors besides flagella. Studies have
shown that the bacterial outer membrane proteins OmpF and OmpA contribute to swim-
ming motility and biofilm formation in Citrobacter werkmanii [48,49]. Ferredoxin receptor
FusA is involved in iron transport, and knocking out the fusA gene significantly reduced
the biofilm formation and adhesion ability of P. percoglossicida. The coregulation of flagella
and other virulence factors on bacterial virulence is a complex mechanism that needs
further study.

Transcriptomics is the study of the function of RNA transcripts. Transcriptome analysis
can help us to study gene transcription and transcriptional regulation in cells at the overall
level, which is the basis and starting point of gene function and structure research [50,51].
The transcriptome of prokaryotes adopts the chain-specific library building strategy [52,53].
The rapid development of this technology has promoted the research on the pathogenesis
of pathogenic bacteria [54], and played an important role in the study of the drug resistance
mechanism [55,56] and pathogenicity of pathogenic bacteria [57,58]. The ∆fliL strain in
this study was different from the wild-type strain in the transcriptome level to some
extent. A total of 126 genes with significant expression differences were screened in this
transcriptome analysis, including 114 DEGs downregulated and 12 DEGs upregulated. The
gene fliK, which is involved in flagella assembly, was significantly downregulated. Through
enrichment analysis, the differential genes enriched into the GO pathway were mostly
genes related to the membrane and transporter activity of bacteria, including those involved
in the ferritic uptake of transporters. However, the absorption of manganese, iron, zinc, and
other metal ions by bacteria is one of the key factors for their virulence [59–61]. There were
35 DEGs enriched ABC transporters, flagellar assembly, and the bacterial two-component
system in the KEGG Pathway.

The ATP-binding cassette transporter family (ABC) transporter is a ubiquitous molec-
ular pump [62] that can be classified as either an importer (type I and type II) or an exporter.
Whereas type I and type II importers are found only in bacteria, whose role is to absorb
essential nutrients, exporters transport molecules out of cells or organelles and exist in
all organisms [63]. ABC exporters include type I secretory systems associated with the
secretion of toxins, S-layer protein, siderophore, hydrolase, or antimicrobial peptide, which
have roles in adhesion and colonization of the host. There are also glycoconjugates and
polysaccharide biosynthetic pathways involved in membrane biosynthesis and immune
escape. Importers are associated with nutrient acquisition (e.g., metal ions, amino acids,
vitamins, and oligopeptides) and osmotic protection processes, all of which contribute
significantly to bacterial pathogenicity [64]. In the transcriptome sequencing results of this
study, the most significant pathway of KEGG enrichment was the ABC transport pathway,
in which the expression of transporters for iron, zinc, and phosphate was significantly
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downregulated. These results suggest that the deletion of the fliL gene weakens the trans-
port system of P. percoglossicida and affects its absorption of nutrients. This may be one of
the reasons for the decreased virulence of the ∆fliL strain.

5. Conclusions

The fliL gene was related to the regulation of biofilm formation, migration, and
adhesion ability of P. percoglossicida. After the knockout of the fliL gene, the virulence of
the strain was reduced 12-fold (LD50 test), and the transcriptome of P. percoglossicida was
significantly affected. The fliK gene related to flagellar assembly and several genes related
to transport were significantly downregulated, and the pathway enriched by differentially
expressed genes was the ABC transporter. It suggests that the fliL gene might be influencing
the P. percoglossicida’s system of material transportation and flagellum assembly to reduce
its virulence.
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