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Abstract: The Danube is the second-largest river in Europe and has been subject to pollution in the
past. Additionally, in the last few years, the rapid pace of industrialization and urbanization has led
to the inevitable pollution of this aquatic ecosystem by certain metals (essential and non-essential
elements). This issue is considered the central problem of pollution in the Danube and is gaining
increasing attention. Fish is a good source of proteins, polyunsaturated fatty acids (especially omega-3
fatty acids), essential vitamins, and minerals. Fish are often exposed to metals present in their aquatic
environment through direct contact with contaminated water or by consuming organisms that have
accumulated metals in their tissues; therefore, the elevated concentrations of metals in water and
sediments are reflected in the fish flesh. In this context, the safety of fish and fishery products for
human consumption is a public health concern. In the last two decades, more and more reports
have shown that Danube River fish are contaminated with metals, causing great concern among
consumers. The negative perception continues, although recent scientific studies show that metal
levels in the edible parts of the fish are below acceptable limits. The objective of this study was to put
together a multitude of scientific research studies that investigate the levels of some metals in various
tissues of some fish species with high economic value in the Romanian market, as well as the levels
of metals in the water and sediments. The collected data were then utilized to assess the potential
health risks posed to humans.

Keywords: metals; tissue bioaccumulation; commercial fish species; Danube River

Key Contribution: This article provides a comprehensive review of data regarding the concentrations
of some important metals in the Romanian Danube River water and sediments and the bioaccumula-
tion of these metals in fish tissues. By critically analyzing the available research, this article aims to
strengthen the scientific community’s and the general public’s understanding of the magnitude of
fish contamination with metals and its potential implications. The conclusion of our study revealed
that in the Danube River, the levels of metals detected in fish meat generally remain below the maxi-
mum residue limits (MRLs) proposed in the Official Journal of the European Communities (2001).
Nevertheless, monitoring metal concentrations in fish meat is necessary, particularly considering its
consumption in the human diet.

1. Introduction

The increase in pollution with metals has emerged as a critical environmental concern
that has gathered more attention in recent decades. This is primarily due to the alarming
levels of metal deposition in various ecosystems and the subsequent detrimental impact
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on human health and the environment [1,2]. Metals are stable, non-biodegradable, and
tend to persist in the environment for prolonged periods [3–5]. Once the environmental
levels of these metals surpass a certain threshold and accumulate in living organisms,
they pose a significant threat to their health and well-being and lead to long-term adverse
effects on humans [1,2]. Some metals, such as copper (Cu), zinc (Zn), cobalt (Co), or
iron (Fe), are crucial for many biochemical processes in living organisms, being essential
elements for aquatic plants and animals [6,7]. Cadmium (Cd), arsenic (As), and lead (Pb)
are non-essential elements that can cause harmful effects even at trace concentrations [8].

Anthropogenic sources of metals include fuel combustion, industrial effluents, smelt-
ing, mining, the leaching of drill cuttings, and overburden leaching (Figure 1). The metals
do not undergo degradation once they enter the water ecosystem; instead, they persist and
can accumulate on solid surfaces or interact with aquatic organisms and plants through
absorption, dissolution, suspension, or uptake [9–14].
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Moreover, various fish species can serve as effective biological indicators for assessing
the extent of exposure to metals and other pollutants [15,16].

1.1. Effect of Metals on Fish due to Exposure

Metals exert significant influences on fish following exposure. Upon uptake, metals
can accumulate in fish tissues and disrupt physiological processes, leading to adverse health
effects. Metal-induced pathophysiological changes in fish can include oxidative stress [17],
alteration of the hematological profile [18], impaired immune function [19], disruption of
ion regulation, and alterations in tissue morphology and cellular function [20].

Accordingly, metals can impair immune function, resulting in decreased resistance to
pathogens and heightened susceptibility to infections [21]. Imbalances in ion regulation
can modify the body’s homeostasis, resulting in disturbances in both osmoregulation and
electrolyte balance. Moreover, metals can induce morphological changes in tissues, such as
gill damage and liver abnormalities, while also interfering with cellular functions, including
enzyme activity and gene expression [22]. Several other studies have indicated that fish
exposed to metals experience a decline in various reproductive parameters, including the
gonadosomatic index (GSI), fecundity, hatching rate, fertilization success, abnormal shape
of reproductive organs, and ultimately reproductive failure [23–25].

Understanding the complex interactions between metals and fish pathophysiology is
crucial for comprehending the consequences of metal pollution on aquatic ecosystems and
developing effective mitigation strategies.
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1.2. Effect of Metals on the Human Population

To safeguard human health, it is crucial to assess the levels of contaminants present
in fish meat. Therefore, these pieces of information are important for making informed
decisions and implementing measures to minimize human exposure to these contami-
nants [26,27].

However, the toxicity of the trace metals is correlated with the dose of exposure, pollu-
tant concentration, duration of exposure, the individual’s susceptibility, and other relevant
variables. Some studies have provided evidence of the potentially severe complications that
can arise from human exposure to high doses of mercury (Hg) and Pb [28]. For example,
Hg exposure can have detrimental effects on the nervous system, leading to symptoms such
as neurological impairment, cognitive deficits, tremors, and, in severe cases, even paralysis.
Prolonged exposure to high levels of Hg has been associated with Minamata disease, a
neurological disorder characterized by symptoms such as ataxia, sensory disturbances, and
visual impairments [29,30].

Pb exposure, on the other hand, can cause damage to multiple organ systems, in-
cluding the nervous system, gastrointestinal tract, or kidneys [31,32]. The central nervous
system is particularly vulnerable to Pb toxicity, and it can result in developmental delays
and cognitive impairments in children. In adults, Pb poisoning can lead to abdominal
colic pain, anemia, hypertension, and impaired renal function [33]. Additionally, metal
poisoning causes damage to cells of the heart, liver, blood composition, and other important
organs [34–36].

Consuming fish and seafood contaminated with Cd, Co, Cr, Ni, and Pb can cause
neurological disorders, kidney damage, circulatory system problems, and an increased risk
of cancer [31].

The target organ effects of inorganic As vary depending on the dose, mode of exposure,
and duration of exposure. Consuming high doses (0.04 mg/kg/day) orally, either as a
single exposure or repeatedly over weeks or months, can lead to nonspecific effects such as
gastrointestinal issues (diarrhea, cramping), hematological effects (anemia, leucopenia), pe-
ripheral neuropathy, and cardiovascular effects. While these effects are generally reversible,
they can cause permanent damage to the affected organ systems. Chronic exposure to
small doses of As (0.01 mg/kg/day or higher) through inhalation or oral ingestion for
3 to 5 years can result in skin hyper-pigmentation (diffuse or spotted) and, over time, be-
nign skin lesions (hyperkeratosis) and skin cancer. Prolonged exposure can also lead to
liver disease, as indicated by abnormal porphyrin metabolism [37].

Cd, particularly in its inorganic form, can have various health effects; acute effects
from oral exposure to Cd are uncommon [38]. Long-term exposure to low doses of Cd
over several years can result in kidney tubular dysfunction and osteoporosis in susceptible
populations, particularly elderly women with Fe deficiency [37,39].

Exposure to inorganic Pb compounds can have adverse effects on multiple organ
systems. Infants and young children, particularly during the neonatal period and early
childhood, are highly susceptible to lead exposure and may experience impaired motor
function and cognitive development, along with the possibility of developing anemia.
Chronic exposure to high levels of Pb in older children can also lead to anemia as well as
central nervous system effects such as impaired motor function and cognitive function, and
in severe cases, seizures, coma, and even death, especially when blood Pb levels exceed
80 µg/dL [37]. In adults, elevated blood Pb levels above 40 µg/dL can result in impaired
heme synthesis and chronic kidney disease, while sustained levels above 80 µg/dL can
lead to lethargy and cognitive impairment. Epidemiological studies indicate a slight
dose-effect relationship between Pb exposure and blood pressure, with blood levels up
to 30 to 40 µg/dL. Although Pb has been found to cause tumors in experimental animals,
there is currently insufficient evidence to classify Pb as a human carcinogen [40,41].

Hg exists in three forms that are of toxicological concern: elemental Hg, inorganic
Hg, and methyl Hg. The target organs affected by Hg exposure vary depending on the
specific form. The central nervous system and the kidneys are the primary target organs
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for elemental Hg toxicity. Renal toxicity from elemental Hg exposure may involve an
immunological mechanism that can lead to glomerulonephritis, potentially progressing to
renal failure [37]. Methyl Hg exposure occurs through the consumption of fish that have
accumulated methyl Hg in the aquatic food chain. The brain is the primary target organ in
the case of methyl Hg exposure. The most vulnerable population is the developing fetus.
Methyl Hg easily crosses the placenta, exposing the developing brain to its toxicity. Even
low levels of exposure can result in impaired motor and language skill development during
neonatal life and early childhood. Higher exposures can cause severe cognitive effects,
including paresthesia, blindness, deafness, and, in the most severe cases, fetal death and
abortion. Methyl Hg in the brain slowly transforms into inorganic Hg, raising questions
about whether the actual toxic species of Hg in the brain is methyl Hg, inorganic Hg, or
elemental Hg [41,42].

Human activities in the past centuries have left metal contamination in terrestrial
and aquatic ecosystems [43]. Because of this historical metal contamination, metal concen-
trations in sediments and surface waters can remain above natural levels and potentially
threaten the health of aquatic ecosystems [44–46].

In order to ensure the preservation of a healthy ecosystem for both food security
and human safety, it is crucial to thoroughly investigate the negative consequences of
heavy metal exposure on fish, which can ultimately impact humans. In this context, the
objective of our research was to gather relevant information regarding nine different metals
(Cd, Cu, Cr, Fe, Hg, Ni, Pb, and Zn) and the metalloid As in both water and sediment
samples, as well as to overview the bioaccumulation of these metals in various organs
(such as the gills, liver, kidneys, digestive tract, and muscles) of some fish species with high
economic value in Romania. By comprehensively examining these factors, we can gain a
better understanding of the potential risks associated with metal contamination and make
informed decisions to mitigate their detrimental effects.

2. Materials and Methods

The Danube is the second-longest river in Europe, with a total length of 2826 km.
Because of the very different geographical regions through which it flows as well as the
different hydrobiological characteristics along its course, the Danube is divided into three
sectors: the Upper Danube (Alpine sector) from its sources to Bratislava, with a length of
1021 km; the Middle Danube (Pannonian sector), running between Bratislava and Baziaş,
with a length of 764 km; and the Lower Danube (Carpathian-Balkan sector) between Baziaş
and the Black Sea, with a length of 1075 km [47].

The Romanian Danube is divided into five sectors: the Carpathian sector between
Baziaş (km 1075) and Drobeta Turnu Severin (km 931); the upstream sector of Iron Gate II
(km 862) to Calafat (km 795); the sector between Calafat (km 795) and Călăraşi (km 370);
the sector between Călăraşi (km 370) and Brăila (km 170); and the sector between Brăila
(km 170) and the Black Sea [47] (Figure 2).

In this paper, we have conducted a comprehensive review of published research
focusing on the Pannonian sector of the Danube and the Romanian section. We aimed to
provide an overview of the metal levels found in water, sediments, and some fish species
within these regions, from entering Romania to reaching the Black Sea.

Taking into account the subdivision of the lower course of the Danube and the Pan-
nonian sector, we have named five sectors of investigation: sector I includes the km from
Bratislava to the entrance to Romania, sector II from Baziaş to the Iron Gate, sector III to
Călăraşi, sector IV to Brăila, and sector V from Brăila to the Black Sea.

Our study is based on a systematic search of the Web of Science (Clarivate Analyt-
ics), Google Scholar, and ResearchGate for articles published between 1950 and 2023. We
focused on selected metals, using keywords such as “metals in the Danube”, “bioaccumula-
tion in commercial fish”, and “Danube pollutants”. Publications that included seasonal
monitoring, the same sampling sites in different years, and various locations in the same
period were taken into account to ensure a comprehensive perspective.
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The assessment and interpretation of metal concentrations in the Danube were con-
ducted based on the findings of previous studies [3–5,48,49] and international treaties and
agreements such as the International Convention for the Protection of the Danube River [50]
(Table 1).

Table 1. National water quality criteria and standards for heavy metals in surface water [50].

Category Class I Class II Class III Class IV Class V

Cd (µg/L) 0.5 1 2 5 >5
Co (µg/L) 10 20 50 100 >100

Cr total
(µg/L) 25 50 100 250 >250

Cu (µg/L) 20 30 50 100 >100
Ni (µg/L) 10 25 50 100 >100
Pb (µg/L) 5 10 25 50 >50
Zn (µg/L) 100 200 500 1000 >1000

Water quality indices are valuable tools for assessing the quality of water. Their origins
can be traced back to 1965, when Horton introduced the initial version of the Water Quality
Index (WQI). Based on the WQI value, surface water can be classified into five quality
classes, as described in Table 2 [51].

Table 2. Water quality status based on the Water Quality Index (WQI).

WQI Values Status

0–25 Excellent (I)
26–50 Good (II)
51–75 Poor (III)

76–100 Very poor (IV)
>100 Unsuitable for drinking (V)

The metal profile in the sediments of the Danube River has a particular configuration.
Table 3 presents the standard values of some metal concentrations in the sediment according
to Romanian Order 161/2006 [50].
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Table 3. The standard value of some metal concentrations in the sediment according to Romanian
Order 161/2006 [50].

Standard Value (mg/kg)

Cd 0.8
Cu 40
Pb 85
Zn 150
Ni 35

The consumption of fish meat significantly influences the risk of metal accumulation
in humans.

In order to assess the levels of metals in fish and compare them with the maximum
allowable concentrations (MACs) established by the European Union [52], the Food and
Agriculture Organization of the United Nations [53], and national legislation [54] for safe
consumption of fish meat by humans, the concentrations are expressed in milligrams per
kilogram (mg/kg) of wet tissue weight (WW). This enables a comprehensive evaluation
of the potential risks associated with the presence of these substances in fish destined for
human consumption.

The maximum limits for metals in fish muscle (mg/kg) according to international
standards are listed in Table 4. The comparison of metal concentrations in fish was also
carried out according to the guidelines of the Council of Ministers of the Environment
of Romania (Decree No. 356/2001), with maximum limits for metal accumulation in fish
tissue (fillets) of 0.2 mg/kg for Pb and 0.05 mg/kg for Cd, but these guidelines exclude Zn
and Cu.

Table 4. Maximum metal limits in fish muscles according to international standards [55].

Organization
Metals (mg/kg)

As Cd Cr Cu Fe Hg Ni Pb Zn

FAO (1983) 1.0 0.05 0.15–1.0 30 100 0.5 80 0.2 30

FAO/WHO limit (1989) 0.5 - - 0.5

European Commission
Regulation EC No.
1881/2006

0.05 - - 0.5 0.3

Decree No. 365/2001 0.05 - - 0.2

Heavy Metals
Regulations Legal
Notice No. 66/2003

0.05 0.5 0.2

According to EU regulations, the maximum allowable Cd content in fish muscle is
0.05 mg/kg body weight, except in certain marine animals, because Cd is an element that
can cause chronic poisoning at a minimum concentration of 1 mg/kg [56]. The literature
indicates that Cd concentrations in freshwater fish range from 0.002 g/g in farmed carp to
0.011 g/g in wild fish. The primary source of Cd exposure is the food supply, i.e., highly
contaminated fish and fish products. Higher Cd concentrations lead to kidney failure
and lung cancer [57,58]. For Pb, fish meat’s maximum allowable concentration (MAC)
is 0.3 mg/kg body weight. The limit for Zn recommended by the FAO of the United
Nations is 30 mg/kg body weight [59]. According to FAO 1983, Heavy Metals Regulations
Legal Notice No. 66/2003, and European Commission Regulation EC No. 1881/2006, the
established limit for Hg is 0.5 mg/kg [55].
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3. Results

Factors affecting metal concentration and accumulation in aquatic organisms include
metal bioavailability, sampling season, environmental hydrodynamics, size, sex, tissue
composition, reproductive cycle [60], and dietary habits [61]. As metabolically active organs,
the liver and gills are the target organs for metal accumulation [62], while accumulation in
muscle tissue is lower [63–65].

Fish species have different levels of metals in their tissues (muscle, liver, or digestive
tract). Pollutants can enter fish through five pathways: feed, non-food particles, gills, oral
intake, and skin [66].

Numerous research results show that the distribution of these contaminants depends
on the affinity of fish tissues for metals, the degree of uptake and accumulation, and the
ability of the organism to excrete them. A major problem with metals is their long biological
half-life in living organisms [67]. Accumulated metal concentrations were higher in the
gills, liver, and kidneys but lower in muscles, consistent with the essential functions of
these tissues. The accumulation of metals in fish tissues, resulting from environmental
pollution, poses a potential risk to human health due to their toxic effects on various organ
systems. Given the worldwide consumption of fish as a protein source, the ingestion of
contaminated fish can lead to adverse health effects associated with metal toxicity [6].

3.1. Sediments

To provide a comprehensive overview of the presence of selected metals in sedi-
ments, we have analyzed each sector of the Danube River (Table 5). Following the an-
alyzed scientific works, the maximum concentration of non-essential elements reported
in the Pannonian sector of the Danube was declared in 2004 [3] for As (14.73 mg/kg),
Cd (4.03 mg/kg), Hg (0.30 mg/kg), and Pb (43.6 mg/kg). Similarly, the study [68] stated
higher concentrations of metals in the sediments collected in 2013, with Hg and Pb values
of 0.8 ± 0.09 mg/kg and 64.92 ± 2.39 mg/kg, respectively, from the Belgrade Region of the
Danube River, near Vinča in Grocka. Additionally, in the same studies in this sector, the
tendency to accumulate more essential elements was observed in the last decade compared
to the previous twenty years.

At the entrance of the Danube to Romania, in terms of As and Cr concentrations,
they have increased in the last two decades from 12.68 mg/kg in 2002 [3] to a value of
17.8 mg/kg in 2022 [69] for As, while for Cr, the values increased from 105.9 mg/kg [48] to
183 mg/kg in 2022 [69].

Concerning the concentrations of metals and metalloids in the sediments collected in
the sector between Iron Gate and Călăraşi, As concentrations registered values between
7.3 and 12.9 mg/kg [70]. Milenkovic et al. [3] reported, for the same sector, lower values
for As concentrations (3.16 mg/kg). Additionally, in the same study, higher values of
Cd, Cr, Cu, Hg, Ni, Pb, and Zn were recorded compared to those found in the SIMONA
Project [70]. Regarding the Fe concentrations, the studied articles provided no records for
the last two decades.

Sector IV, from Călăraşi to Brăila, was covered by studies starting in 2011, making
it difficult to obtain an overview of the entire period before Order 161/2006. From 2011
to 2020, the levels of Cd remained relatively consistent, with readings ranging between
0.3 mg/kg [50] and 0.59 mg/kg [50]. According to national standards, these readings were
discovered to be lower than the maximum permissible limits.



Fishes 2023, 8, 387 8 of 25

Table 5. The values of metal concentrations in the sediment (mg/kg).

Years As Cd Cr Cu Fe Hg Ni Pb Zn Ref.

Se
ct

or
I 2002 5.08 2.84 51.8 23.9 - 0.18 46.8 - - [3]14.73 4.03 112.5 36.8 - 0.3 116.4 - -

2012 8.9 0.61 - 35.95 16,104 0.69 - 32.58 139.4 [66]

2013 13.89 1.69 - 50.93 17,530 0.8 - 64.92 270.4 [68]

Se
ct

or
II 2002

12.68 3.2 105.9 41 - 0.27 99.9 40.9 389.5
[3]3.15 3.79 68 45.3 - 0.19 69.9 25.8 285.7

9.24 2.98 93.3 57.6 - 0.23 74.5 43.6 307.8

2020 - - - - 15.36 - - - - [71]

2022 17.8 - 183 56 - - 97 - 328 [69]

Se
ct

or
II

I 2002 3.16 2.12 71.1 31.6 - 0.19 59.2 28 197.5 [3]0.99 2.91 30.6 17.8 - <0.06 23.7 2.85 49.4

2020
7.3–8 1 60–96 12.9–29.4 - 0.04–0.005 38.6–21.4 15.3–17.9 59.2–59.7

[70]8.49–12.9 0.24–0.3 64–65.9 23.3–29.2 - 0.16–0.25 37.4–38.4 14.2–18.4 60–78.8
- 0.27–0.4 59.4–74.9 26.3–29.8 - 0.05–0.06 32.4–39 - -

Se
ct

or
IV

2011–2017

- 0.38 38.94 35.18 - - 37.9 20.2 94.91 [72]

- - 42.28 38.56 - - 33.83 - 98.37

[73]

- - 42.77 27.27 - - 32.54 - 95.63
- - 44.72 38.76 - - 40.11 - 103.39
- - 40.46 40.98 - - 35.83 - 105.46
- - 33.12 34.39 - - 34.73 - 100.85
- - 36.69 26.43 - - 32.46 - 95.72
- - 37.42 31.61 - - 35.1 - 98.71
- - 32.1 31.42 - - 34.6 - 106.35

- - 27.12 24.85 - - 32.26 - 89.33
- - 30.47 27.73 - - 27.48 - 88.87
- - 28.83 30.69 - - 30.4 - 97.55
- - 29.77 34.12 - - 34.08 - 103.9
- - 32.16 35.96 - - 34.28 - 104.72
- - 24.89 30.03 - - 33.89 - 92.85
- - 43.76 26.16 - - 33.49 - 89.83
- - 41.71 25.58 - - 31.7 - 83.99

- 0.434 29.44 34.24 - - 36.52 14.45 104.3
[74]- 0.368 30.64 32.17 - - 35.93 14.47 98.3

- 0.396 33.55 33.23 - - 42.18 16.94 112
- 0.401 29.8 31.93 - - 34.41 17.37 101

2018 - 0.3 - 4.3 - - 16.03 5.9 58.84
[50]

2019 - 0.59 - 10.31 - - 20.17 6.02 78.69

2020 5.5–7.68 - 30–41.7 28.9–52.2 - 0.067–0.1 32.1–47.7 20.1–26.9 70.1–102 [70]

Se
ct

or
V

1950 - <0.5 50 38 - - 56 36 90 [75]

1995–1997 - 0.5–10 18–101 2.0–51.0 - - 6.0–78 5.0–68 6–119 [76]

2003–2009 - <0.5–1.5 7.5–61.9 14.8–194 - - 19–111 7.5–51.3 29.8–218 [77]
- 0.115–1.9 20–124 3.5–94 - - 11–72.0 1.0–73 17–202 [76]

2007–2012

- 6.12–8.26 88.1–134.2 - - - 54.6–79.1 7.16–13.99 164.2–204.7

[78]
- 4.16–7.81 67.2–93.1 - - - 31.2–67.1 6.22–7.61 131.2–171.2
- 4.97–7.88 71.5–117.6 - - - 48.1–69.1 6.81–7.89 158.2–187.5
- 4.26–6.81 44.9–58.6 - - - 33.3–54.6 7.14–12.2 148.2–197.9
- 2.12–4.92 29.4–47.9 - - - 27.1–46 5.18–7.31 122.1–168.3
- 3.47–4.99 38.5–52.4 - - - 28.3–49.5 6.02–8.99 139.1–178.5

2012–2013 - BDL 7.62–32.5 4.65–45.9 - - 10.8–49.8 4.76–41.3 17.7–93.1 [53]

- 0.59 - 10.72 - - 29.12 8.96 118.54

[50]

- 0.74 - 17.39 - - 27.88 12.57 120.76
- 0.5 - 12.58 22.31 8.49 87.43
- 0.5 - 12.54 - - 20.53 7.93 84.15
- 0.46 - 7.6 - - 14 5.17 62.39
- 0.57 - 11.81 - - 19.99 7.28 84.65
- 0.54 - 10.24 - - 22.09 21.14 77.64
- 0.54 - 7.89 - - 16.28 4.84 64.48
- 0.76 - 13.42 - - 23.9 7.55 146.23
- 0.53 - 6.68 - - 24.83 7.83 85.4
- 0.63 - 9.79 - - 24.76 6.84 96.11
- 0.75 - 16.64 - - 28.35 8.29 121.38
- 0.57 - 15.17 - - 38.81 8.11 117.01
- 0.53 - 9.42 - - 16.94 5.34 69.97

2019

- 0.65 - 11.65 - - 19.33 6.05 84.21
- 0.99 - 25.01 - - 35.8 13.78 177.33
- 0.63 - 8.97 - - 16.04 6.41 73.57
- 0.57 - 10.08 - - 24.58 5.7 95.67
- 0.41 - 7.55 - - 19.09 4.17 71.27
- 0.46 - 7.47 - - 17.65 5.68 63.21
- 0.78 - 19.47 - - 28.49 10.35 131.5
- 0.46 - 9.29 - - 17.4 4.31 66.06
- 0.65 - 17.18 - - 27.41 8.33 121.05
- 0.72 - 27.5 - - 50.46 14.64 161.24
- 0.77 - 20.75 - - 32.55 9.87 146.53
- 0.82 - 23.29 - - 39.03 9.9 154.34
- 0.48 - 9.29 - - 25.85 6.76 81.26
- 0.52 - 10.07 - - 28.13 8.01 86.43
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Also, some authors reported Cu concentrations in the sediments ranging from
26.16 to 40.98 mg/kg for this sector, which falls within the acceptable limits set by na-
tional regulations [50,70,73,74]. However, there were a few exceptions to this trend, in
particular the minimum value of 4.3 mg/kg [50] and the maximum value of 52.2 [70]. The
value of 52.2 mg/kg exceeded the allowable limits, according to international standards.

The Pb values achieved in 2011–2020 are identified as being lower than the 85 mg/kg
limit. Regarding Ni, the concentrations have significantly increased over time; the maxi-
mum value that exceeded the allowed limit was declared in 2020 [70].

No specific study was identified that reported concentrations of Zn exceeding the
permissible limit of 150 mg/kg. The highest value of Zn (106.35 mg/kg) was observed
between 2011 and 2017, as reported by [73].

The studies on the last sector of the Romanian Danube, from Brăila to the Black Sea,
spanned a more extensive timeframe from 1950 to 2019. As per the records examined in the
relevant articles, it was found that most of the concentrations identified in the studies were
within the acceptable limit. However, the values reported between 2005 and 2012 exceeded
the permissible limits in most cases [58], while other researchers reported acceptable levels
of metals [50,53,75–77].

The concentration of metals (Zn, Hg, and Cu) increased until 1989 due to industrial-
ization in Central and Eastern Europe [52], including Romania. However, in the last five
decades, a decrease in metal concentrations has been observed in the Danube River due
to the management of intensive agricultural programs, which has led to a decline in Cd
concentrations as this compound is a component of fertilizers [53].

3.2. Water

Between 2007 and 2021, several authors conducted analyses of metal levels in the
Danube water, both upstream of the Baziaş entry point and in the sections before Brăila
leading to the Black Sea. The results indicated that the Danube contained acceptable levels
of essential and non-essential elements, which met the water quality criteria outlined in
Class I of the national standards (Table 6).

After passing through ten countries and being subjected to agricultural pollution,
industrial pollution, and human impact, the Danube flows into the Black Sea. The metal
concentrations in this region showed significant variations, but the water quality was
classified as Class II (indicating a good ecological status) [78,79]. The only exception was
Zn, where excessive levels were detected in most cases.

Table 6. The value of each metal concentration in the water (mg/L).

Years As Cd Cr Cu Fe Hg Ni Pb Zn Ref.

Se
ct

or
I

2012 0.004 ND - 0.004 0.33 ND - ND 0.032 [66]

2013 0.006 ND - 0.004 0.41 ND - ND 0.063 [68]

2011–2013 0.001 0.00004 0.002 0.006 0.26 0.0001 0.0014 0.0006 0.02 [80]0.0006 0.00002 0.009 0.006 0.21 0.0001 0.003 0.0005 0.02

2010–2012
- 0.002 - 1.8 - - - - 1.82

[81]- - - 3.17 - - - - 1.35
- 0.008 - 1.46 - - - 2.76 0.78

2020

0.09 0.004 - - 0.766 0.011 - 0.21 21.4

[71]

0.12 0.009 - - 0.821 0.017 - 0.24 18.5
0.12 0.008 - - 0.685 0.012 - 0.28 20.1
0.14 0.012 - - 0.801 0.014 - 0.21 18.5
0.1 0.014 - - 0.804 0.011 - 0.21 17.9
0.11 0.008 - - 0.792 0.009 - 0.22 19.1
0.09 0.011 - - 0.803 0.01 - 0.22 19.7
0.11 0.042 - - 0.911 0.009 - 0.22 19.4
0.14 0.088 - - 2.193 0.015 - 0.31 18.1

2011–2013 0.002 0.00002 0.007 0.006 0.08 0.00001 0.0009 0.0005 0.009 [80]
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Table 6. Cont.

Years As Cd Cr Cu Fe Hg Ni Pb Zn Ref.

Se
ct

or
IV

2010 - 18.4 - 112.3 - - - 21.44 47.14 [82]

- - 1.13 4.14 - - 2.78 - 12.5

[73]

- - 1.09 4.12 - - 2.5 - 11.95
- - 1.12 4.18 - - 2.44 - 12.18
- - 1.21 4.79 - - 2.6 - 13.14
- - 0.77 3.52 - - 1.75 - 15.62
- - 0.71 3.49 - - 1.76 - 15.94
- - 0.64 3.92 - - 1.96 - 16.4
- - 0.63 3.26 - - 1.7 - 15.12
- - 0.61 3.43 - - 1.84 - 16.07
- - 0.63 3.14 - - 1.63 - 14.03
- - 0.69 3.27 - - 1.9 - 15.76
- - 0.64 3.29 - - 1.62 - 15.11
- - 0.52 3.06 - - 1.78 - 15.76
- - 0.6 3.51 - - 1.61 - 16.45
- - 1.13 5.2 - - 2.57 - 11.28
- - 0.93 4.03 - - 2.38 - 10.6

- 0.067 0.718 3.1 - - 1.82 0.784 23
[74]- 0.067 0.89 3.31 - - 1.94 0.781 22.1

- 0.065 0.867 3.2 - - 1.74 0.884 23.7
- 0.063 0.848 3.26 - - 1.7 0.917 23.3

Se
ct

or
V

2007–2012

- 6.62–10.5 43.1–81.2 - - - 49.6–78.9 7.76–11.2 161.2–209.8

[78]
- 4.26–8.41 31.0–64.2 - - - 41.2–59.1 6.11–7.52 138.2–188.7
- 6.26–8.41 35.2–73.1 - - - 43.4–71.2 6.83–8.91 146.9–179.6
- 4.71–8.46 30.1–48.2 - - - 40–59.1 6.81–8.96 124.5–181.9
- 3.5–6.46 20.6–37.0 - - - 27.9–46.6 6.24–7.21 100.2–164.0
- 3.6–7.32 29.4–44.6 - - - 36.2–52.8 6.23–7.81 117.7–179.3

- 8.3 81.24 - - - 86.18 42.61 333.78

[79]

- 7.11 26 - - - 104.28 21.39 144.56
- 7.8 28.59 - - - 67.97 24.33 230.59
- 5.82 56.8 - - - 64.05 9.29 175.95
- 8.67 72.56 - - - 38.16 48.04 249.58
- 6.33 32.67 - - - 31.67 34.67 124.5
- 6.27 47.67 - - - 27.15 36.02 165.54
- 5.8 28.65 - - - 47.9 8.23 167.95
- 9.13 71.81 - - - 41.1 32.52 310.79
- 9.33 35 - - - 89.67 28.22 178.89
- 7.69 47.67 - - - 39.5 29.35 187.15
- 9.26 29.4 - - - 35.85 6.81 128.35
- 10.47 55.39 - - - 98.55 35.99 312.02
- 9.5 56.67 - - - 92.33 11.33 197.33
- 10.09 61.27 - - - 88.82 23.21 182.27
- 6.6 56.23 - - - 48.7 7.31 125.58
- 11.05 73.12 - - - 54.95 39.37 209.12
- 8 47.33 - - - 41.17 17 172
- 7.28 41.72 - - - 85.38 32.11 161.4
- 4.21 58.5 - - - 47.8 6.93 150.6

- 15.7 - 93.5 - - - 14.31 32.58 [82]

2 0.2 1.4 - - 0.21 2 1.6 1.2

[83]

2.1 0.19 1.3 - - 0.22 2.1 1.5 1.3
1.9 0.21 1.2 - - 0.2 2.3 1.76 1.1
2.2 0.055 - - - 0.2 2.1 1.5 1.2
2.4 0.056 - - - 0.16 2.1 1.5 1.3
2.3 0.054 - - - 0.18 2.3 1.5 1.1
2.9 0.28 - - - 0.2 2 1.5 -
2.8 0.11 - - - 0.16 2.1 1.5 -
2.7 0.21 - - - 0.18 2.3 1.5 -

2018

- 0.243 - 5.7 722.65 - 7.2 3.67 16.27 [84]- 0.158 - 9.59 1244.7 - 5.65 2.76 38.9

- 0.4 <1.3 <1–2.9 - - <1 <0.75 <2.1–14.9

[85]2020 - 0.4–0.9 <1.3 0.9–1.3 - - <1–1.2 <0.75 <2.1–6.3

2021 - 0.4–0.8 <1.3 0.9–2.8 - - 0.9–1.8 <0.75–1.1 3.3–11.6

ND—not detected.

3.3. Fish Tissues

The accumulation of metals in different tissues varies depending on their physiological
functions. Fish gills and digestive tracts have a high capacity for metal accumulation, with
levels influenced by the concentrations of metals in the water and food. In comparison,
muscle tissue accumulates lower levels of metals and is commonly used to assess water
pollution and associated health risks related to fish consumption [86].

Gills are important entry points for essential elements, such as Cu, Zn, Se, Mn, and
Fe, and non-essential elements, including Al, As, Cd, Cr, and Pb [87]. Furthermore, the
analysis of gills can be utilized to evaluate bioaccumulation levels. For example, the carp
gills can accurately reflect metal pollutants in water, as the negatively charged gill attracts
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positively charged metal species in water [87–90]. Therefore, monitoring metal content in
carp gills can be important for assessing water quality and potential risks to public health.

However, some studies on common carp showed that Pb, Cd, and As concentrations
in the digestive tract and liver were higher than in muscle [68].

The liver and kidney are commonly studied in bioaccumulation research [91,92]. It
is important to note that the liver is a vital organ responsible for detoxification and is
particularly prone to metal accumulation [54].

Studies conducted on various fish species have shown that elements accumulate
mainly in metabolic organs such as the liver, which produces metal-binding proteins [93]
(Table 7).

Table 7. The value of each metal concentration in the fish tissue (µg/g).

Tissues As Cd Cr Cu Fe Hg Ni Pb Zn Years Ref. Sect

Common carp (Cyprinus carpio)

M

0.01 0.01 - - - 0.24 - 0.048 - 2013 [68] I

0.258 0.059 - 0.688 9.38 0.393 - 0.059 6.16 2013 [94] I

0.333 0.082 - 0.757 9.68 0.466 - 0.084 6.17 2013 [94] I

0.66 0.005 0.01 1.3 19.62 0.89 - - 59.01 2010 [95] I

0.395 - - - 7.42 - - - 54.70 2010 [96] I

0.66 - - - - 0.89 - - 54.23 2010 [48] I

0.055 0.016 - - - 0.234 - 0.014 - 2010 [97] I

0.013 0.014 - - - 0.207 - 0.036 - 2012 [66] I

- 0.01 - - - 0.5 - 0.16 - 2018 [96] I

- 0.084 - 5.10 - - - 0.58 42.2 2008 [98] IV

- 0.010 - 3.22 - - - 0.38 39.20 2008 [98] V

0.412 - 1.1435 1.291 - 0.2315 1.6855 0.1445 - 2013–2014 [99] V

- - - - - 0.054 - - - 2014 [85] V

Int

0.02 0.10 - - - 0.22 - 0.21 - 2013 [68] I

0.016 0.103 - - - 0.207 - 0.266 - 2012 [66] I

- - - 13.5 - - 0.9 - 644 2003–2013 [100] V

G

0.29 0.03 0.01 1.90 139.26 0.89 - - 1186.3 2010 [97] I

- - - - 261.97 - - - 1773.76 2010 [96] I

- - - 4.33 - - <0.03 - 674 2003–2013 [101] V

- - - 6.13 - - 9.5 - 872 2003–2013 [101] V

Skin
- - - 3.98 - - <0.03 - 263 2003–2013 [101] V

- - - 3.15 - - 12.9 - 485 2003–2013 [101] V

L

0.49 0.28 0.01 33.49 141.44 1.63 - - 325.377 2010 [95] I

- - - 21.97 418.36 - - - 582.79 2010 [96] I

0.02 0.13 - - - 0.22 - 0.06 - 2013 [68] I

0.018 0.132 - - - 0.206 - 0.047 - 2012 [66] I

0.48 - - - - 0.63 - - 325.37 2010 [48] I

- - - 73.3 - - 4.41 - 450 2003–2013 [101] V

- - - 110 - - 8.17 - 243 2003–2013 [101] V

- - - 89.9 - - 2.46 - 189 2003–2013 [101] V

Gon - - - - 6.28 - - - 74.53 2010 [96] I

Crucian carp (Carassius carassius, Carassius gibelio)

M

0.031 0.017 - - - 0.087 - 0.052 - 2010 [97] I

0.139 0.057 - 0.809 8.05 0.094 - 0.030 11.16 2013 [94] I

0.172 0.051 - 0.824 7.25 0.139 0.040 10.26 2013 [94] I

0.6045 - 1.345 1.4115 - 0.3 2.2465 0.1835 - 2013–2014 [99] V

0.5985 - 1.2085 1.5005 - 0.267 1.994 0.1675 - 2013–2014 [99] V

- - - - - 0.0255 - - - 2014 [79] V

- - - - - 0.073 - - - 2014 [79] V

- - - 0.715 - 0.15 - - 11.72 2007 [102] V
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Table 7. Cont.

Tissues As Cd Cr Cu Fe Hg Ni Pb Zn Years Ref. Sect

Freshwater bream (Abramis brama)

M

0.16 0.004 0.23 0.2 2.31 0.16 0.02 0.21 3.15 2011–2013 [80] I + II

0.21 0.004 0.2 0.14 2.32 0.08 0.02 0.25 3.9 2011–2013 [80] I + II

0.15 0.004 0.26 0.17 1.66 0.15 0.05 0.23 4.64 2011–2013 [80] I + II

1.73 - 0.26 1.13 9.72 - - 0.08 - 2014 [103] I

0.46 - 0.30 1.41 14.23 - - ND - 2014 [103] I

ND - 0.33 0.66 27.64 - - ND - 2014 [103] I

ND - 0.19 1.49 15.40 - - ND - 2014 [103] I

ND - - - 1.31 - - - 23.84 2010 [96] I

0.035 0.018 - - - 0.237 - 0.030 - 2010 [97] I

0.109 0.021 - 0.707 13.6 0.110 - 0.019 9.06 2013 [94] I

0.154 0.027 - 0.717 13.54 0.161 - 0.028 9.02 2013 [94] I

- 0.01 - - - 0.17 - 0.08 - 2018 [96] I

- 0.053 - 2.77 - - - 0.27 33.27 2008 [98] IV

- - - 2.15 - - - 0.29 35.77 2008 [98] V

0.2375 - 0.962 1.889 - 0.2395 2.6735 0.1685 - 2013–2014 [99] V

- - - - - 0.02–0.035 - - - 2014 [79] V

L

0.22 - 0.25 44.25 177.56 - - 0.20 - 2014 [103] I

0.14 - 0.18 22.07 225.11 - - 0.05 - 2014 [103] I

ND - 0.20 44.06 190.35 - - 0.47 - 2014 [103] I

ND - 0.21 64.66 177.74 - - 0.11 - 2014 [103] I

ND - - 14.14 213.53 - - - 66.77 2010 [96] I

G

ND - 1.32 2.11 428.22 - - 0.23 - 2014 [103] I

3.2 - 0.91 0.85 158.45 - - 0.12 - 2014 [103] I

ND - 3.71 1.76 167.64 - - ND - 2014 [103] I

ND - 0.76 0.98 117 - - ND - 2014 [103] I

ND - - ND 369.21 - - - 59.85 2010 [96] I

Gon

1.75 - 0.08 1.16 20.67 - - 0.08 - 2014 [103] I

1.21 - 0.18 1.54 33.80 - - 0.08 - 2014 [103] I

1.61 - 0.10 1.31 28.12 - - 0.09 - 2014 [103] I

1.04 - 0.21 0.81 29.26 - - ND - 2014 [103] I

0.15 - - ND 19.24 - - - 137.76 2010 [1] I

Grass carp (Ctenopharyngodon idella)

M 0.039 0.018 - - - 0.367 - 0.034 - 2010 [97] I

W.B. 48.5 - 0.03 - 11.6 <7.3 109 - 15.4 2011 [104] I

Silver carp (Hypophthalmichthys molitrix)

M

ND - - ND 12.53 - - - 31.90 2010 [96] I

0.018 0.015 - - - 0.441 - 0.015 - 2010 [97] I

0.036 0.014 - - - 0.140 - 0.048 - 2012 [66] I

0.04 0.01 - - - 0.16 - 0.056 - 2013 [68] I

L

0.08 0.21 - - - 0.20 - 0.14 - 2013 [68] I

0.21 - - 188.78 511.72 - - - 222.40 2010 [96] I

0.073 0.191 - - - 0.185 - 0.125 - 2012 [66] I

G ND - - ND 211.88 - - - 73.72 2010 [96] I

Int
0.065 0.062 - - - 0.253 - 1.518 - 2012 [66] I

0.07 0.07 - - - 0.26 - 1.3 - 2013 [68] I

W.B. 58.7 - 0.24 - 51.4 <13 284 - 82.5 2011 [105] I

Pontic shad (Alosa immaculata)

M

7.725 0.433 - 4.074 40.346 - - - 66.098 2007–2008 [65] III

12.6 0.17 - 3.45 143.26 - - 0.13 58.4 2010 [106] III

6.53 0.31 - 15.5 269 - - 0.35 44.1 2010 [106] III

- 0.091 - 5.34 - - - 0.65 44.55 2008 [98] IV

- 0.012 - 3.3 - - - 0.45 41.45 2008 [98] V

L
9.4 20.8 - 34.2 1225 - - 0.27 83.5 2010 [106] III

6.389 0.714 - 20.003 751.814 - - - 99.759 2007–2008 [65] III

G 1.63 0.219 - 2.987 289.506 - - - 80.507 2007–2008 [65] III
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Table 7. Cont.

Tissues As Cd Cr Cu Fe Hg Ni Pb Zn Years Ref. Sect

Wels catfish (Silurus glanis)

M

0.1 0.09 0.145 0.07 0.95 0.33 0.074 0.17 7.62 2011–2013 [80] I + II

0.09 0.001 0.13 0.07 1.33 0.2 0.016 0.18 2.97 2011–2013 [80] I + II

0.11 0.004 0.14 0.07 0.55 0.62 0.03 0.16 3 2011–2013 [80] I + II

ND ND ND ND ND ND ND ND 7.91 2010 [96] I

0.034 0.02 - - - 0.235 - 0.032 - 2010 [97] I

0.22 0.01 0.08 1.42 27.06 1.63 - - 20.81 2011 [97] I

0.003 0.008 - - - 0.327 - 0.014 - 2012 [66] I

0.131 0.004 0.138 0.949 19.46 1.598 0.120 0.006 19.62 2013 [100] I

0.003 0.01 - - - 0.53 - 0.06 - 2013 [68] I

0.160 0.068 - 1.55 8.32 0.208 - 0.058 7.06 2013 [94] I

0.211 0.069 - 1.62 8.17 0.260 - 0.069 6.68 2013 [94] I

0.7635 - 3.638 1.9455 - 0.235 1.823–4.089 0.145–0.382 - 2013–2014 [99] V

- - - - - 0.014–0.042 - - - 2014 [79] V

G

ND - - 160.11 54.93 - - - 53.77 2010 [96] I

0.16 0.07 0.06 1.98 74.88 1.50 - - 58.05 2010 [97] I

0.008 - 0.270 4.460 163.0 0.328 0.170 0.236 80.42 2013 [107] I

0.117 0.005 0.090 0.412 43.98 0.071 0.211 0.387 69.81 2013 [100] I

L

ND - - ND 412.29 - - - 38.69 2010 [96] I

0.24 0.02 0.04 8.37 396.16 1.90 - - 41.52 2010 [97] I

0.004 0.064 - - - 0.143 - 0.034 - 2012 [66] I

0.096 - 0.010 17.77 745.7 0.639 0.060 0.067 93.14 2013 [107] I

0.005 0.12 - - - 0.23 - 0.10 - 2013 [68] I

Int
0.005 0.101 - - - 0.167 - 0.036 - 2012 [66] I

0.006 0.14 - - - 0.30 - 0.10 - 2013 [68] I

Skin 0.360 0.005 0.154 1.902 25.86 0.657 0.244 0.009 58.95 2013 [100] I

W.B < 29 - 0.062 - 13.7 <3.1 84 - 12.4 2011 [105] I

Gon 0.960 - 0.100 2.200 99.29 0.114 0.220 0.018 134.3 2013 [107] I

Pike-perch (Sander lucioperca)

M

0.11 0.003 0.18 0.09 0.81 0.15 0.01 0.25 2.74 2011–2013 [80] I + II

0.13 0.04 0.18 0.11 2.35 0.3 0.016 0.23 3.76 2011–2013 [80] I + II

0.15 0.002 0.11 0.11 4.63 0.28 0.08 0.18 3.07 2011–2013 [80] I + II

0.032 0.018 - - - 0.173 - 0.043 - 2010 [97] I

0.17 0.005 0.043 0.75 17.97 1.32 - - 15.14 2010 [95] I

0.199–0.219 - 0.708–1.587 0.979–1.244 - 0.205–0.223 2.084–3.543 0.091–0.143 - 2013–2014 [99] V

- - - - - 0.016–0.041 - - - 2014 [79] V

L 0.50 0.02 0.04 6.18 241.07 1.66 - - 58.37 2010 [95] I

G 0.25 0.01 0.02 1.01 73.01 1.52 - - 40.11 2010 [95] I

Barbel (Barbus barbus)

M

0.84 - - 4.8 11.12 2.15 - - 10.06 2010 [108] I

1.4 - - ND ND - - - 12.89 2010 [109] I

1.57 - 0.41 1.90 - 0.27 0.19 0.11 18.37 2012 [110] I

0.189 0.052 - 0.826 12.22 0.222 - 0.048 5.2 2013 [94] I

0.239 0.062 - 0.839 11.91 0.325 - 0.062 6.02 2013 [94] I

L

1.488 0.014 - 19.63 74.81 - 14.88 - 25.65 2010 [108] I

0.54 - - 27.49 78.82 - - - 47.08 2010 [109] I

1.74 - 0.37 25.85 - 0.09 0.16 0.12 59.50 2012 [110] I

G

0.001 - - 12.15 106.22 1.187 0.96 - 40.59 2010 [108] I

0.59 - - ND 120.91 - - - 47.85 2010 [109] I

0.85 - 0.64 2.68 - 0.02 0.22 ND 68.33 2012 [110] I

Gon 1.41 - - ND ND - - - 71.69 2010 [109] I

M - 0.01 - - - 0.09 - 0.15 - 2018 [111] I

Int 1.80 - 0.57 5.81 - ND 0.33 0.37 49.76 2012 [110] I
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Table 7. Cont.

Tissues As Cd Cr Cu Fe Hg Ni Pb Zn Years Ref. Sect

Northern pike (Esox lucius)

M.

0.030 0.015 - - - 0.236 - 0.036 - 2010 [97] I

0.105 0.023 - 0.548 10.10 0.106 - 0.032 5.10 2013 [94] I

0.153 0.036 - 0.574 9.97 0.162 - 0.037 5.17 2013 [94] I

- 0.044 - 2.9 - - - 0.36 23.9 2008 [98] IV

- - - 1.5 - - - 0.26 21.92 2008 [98] V

0.173–1.199 - 0.781–2.071 0.901–2.696 - 0.182–0.428 1.892–3.601 0.060–0.270 - 2013–2014 [99] V

- - - - - 0.021–0.058 - - - 2014 [79] V

European perch (Perca fluviatilis)

M

1.00 ND 0.09 0.45 11.85 2.72 ND - 18.89 2011 [111] I

- 0.034 - 3.85 - - - 0.19 32.33 2008 [98] IV

- - - 1.25 - - - 0.33 32.36 2008 [98] V

0.150–0.341 - 0.248–3.063 1.588–2.319 - 0.190–0.417 1.252–3.353 0.182–0.582 - 2013–2014 [99] V

- - - - - 0.012–0.038 - - - 2014 [79] V

- - - 0.26–0.37 - 0.29–0.35 - - 6.13–6.36 2007 [102] V

L 3.03 ND 0.11 18.20 225 2.52 ND - 77.66 2011 [111] I

G 1.11 ND 0.25 0.66 189.39 1.84 ND - 64.82 2011 [111] I

Gon 1.43 ND 0.11 2.21 53.98 1.19 ND - 68.06 2011 [111] I

M—muscle, L—liver, Gon—gonads, G—gills, Int—intestine, W.B.—whole body, ND—not detected.

Lenhardt et al. conducted studies on the levels of metals and trace elements in the
tissues of freshwater fish in the Danube River and found that carp had higher levels of Zn
in their liver, muscle, and gill samples than catfish, while catfish had higher levels of Mn in
their gill samples than carp [96]. These differences in metal bioaccumulation between the
two species could be due to their feeding habits, physiology, and habitat variations.

Overall, the results confirm the differences in elemental accumulation in different
tissues. The highest concentrations of Cu, Fe, Mn, and Zn were found in the liver, which
agrees with other studies [112–117].

On the other hand, Hg concentrations are highest in muscles [116–118]. Muscle is
not an active tissue for element accumulation, as reported in many studies [112,119,120].
For example, Figure 3 shows the bioaccumulation trends of As, Cd, and Pb in the muscle
tissues of certain fish species upon their entry into the river sector of Romania (2010–2013).
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Metal accumulation was lower in muscle than in other fish organs such as the gills,
skin, and liver [121]. Although muscle tissue may not always accurately measure metal
contamination in fish, it remains a crucial concern as it is part of the fish most commonly
consumed by humans.

Lower Cu, Fe, manganese, and Zn concentrations in muscle tissue may be due to
lower amounts of binding proteins in muscle tissue [122].

Compared to other species, the lower Hg concentration in carp muscle tissue can be
attributed to biomagnification in the food chain [123]. This means that as Hg travels up the
food chain, it accumulates in higher concentrations in the bodies of organisms at higher
trophic levels.

In Figure 4, the analysis of muscle tissue samples taken from Freshwater bream
(Abramis brama), Wels catfish (Silurus glanis), and Pike-perch (Sander lucioperca) collected
from sectors I and II reveals some noteworthy findings. Although all values for As, Cr,
Cu, and Pb fall within acceptable limits, the Abramis brama samples exhibit relatively
higher concentrations than the other species. Conversely, regarding Hg and Pb, the muscle
tissue samples from Sander lucioperca demonstrate slightly elevated levels, which still meet
acceptable standards. Notably, the samples taken from Silurus glanis in sector I exhibit the
highest values for Fe and Zn, measuring 19.46 mg/kg and 19.62 mg/kg, respectively.
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Metal contamination in fish tissue has been linked to various health issues, including
neurological problems, kidney damage, and cancer [124]. Thus, to ensure the safety of
fish as a food source and to protect public health, regular monitoring of metal content
in fish tissue is crucial [125,126]. Moreover, it is essential to note that the level of metal
contamination can vary significantly depending on the fish’s species, age, location, and
type of metal involved. Therefore, a comprehensive and continuous monitoring system is
necessary to identify potential risks and ensure the safety of fish consumption.
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4. Discussion

Several industrial accidents in the Romanian Carpathian region, where there is a long
mining tradition, especially for gold, silver, Pb, Zn, Cu, Cd, and Mn, have led to pollution of
the Danube River [127,128]. Toxic elements such as As, Cd, Hg, and Pb, as well as essential
trace elements such as Ca, Co, Cu, Fe, Mn, molybdenum (Mo), nickel (Ni), selenium (Se),
and Zn, are toxic to organisms at high concentrations, according to Barlas [129] and Lopez
Alosno et al. [130].

While some of these elements are essential for human metabolism [131], they can be
divided into potentially toxic (aluminum (Al), As, Cd, Pb, Hg, etc.), possibly essential (Ni,
vanadium, and Co), and elemental (Cu, Zn, and Se) [132,133]. When metals are ingested
through long-term food consumption, they can accumulate in the body, causing damage to
the liver (hepatotoxicity), kidneys (nephrotoxicity), central nervous system (neurotoxicity),
and DNA (genotoxicity) [134,135]. Metals have unique physicochemical properties and
exhibit variable tissue distribution and bioaccumulation in fish [136,137].

Fish that contain metals can cause serious health problems, such as developmen-
tal disorders, neurological disorders, liver and kidney damage, reproductive and hema-
tological effects, cancer, and cardiovascular disease, if the exposure concentrations are
exceeded [138–145]. As a result, many researchers have recently focused on the potential
risk posed by contaminated fish to consumers health.

Studies conducted by Jarup [146] and Ko [147] have indicated that consuming fish
containing elevated levels of metals, including Hg, Cd, As, and Pb, can potentially result
in severe skin diseases and autism in children. The disparity in metal exposure may be
attributed to variations in dietary habits, with coastal populations consuming more fish
than inland populations.

While chromium and Cu are essential for good health, excessive intake can lead to
liver and kidney damage. The hexavalent form of chromium is toxic when ingested and has
been classified as carcinogenic by the International Agency for Research on Cancer (IARC).
The maximum allowable Fe content in fish, as determined by [59], is set at 100 mg/g. Ni is
a significant pollutant in aquatic environments, and its toxicity can cause respiratory cancer
and harm the immune and reproductive systems.

From 2008 to 2013, a study conducted on fish species such as Common carp (Cyprinus
carpio), Crucian carp (Carassius carassius), Silver carp (Hypophthalmichthys molitrix), Wels
catfish (Silurus glanis), and Barbel (Barbus barbus), specifically in sector I, revealed a signifi-
cant accumulation of Cd, particularly in the muscle tissue. Furthermore, in sectors closer to
the point where the Danube River flows into the Black Sea, Cd levels exceeded the optimal
accepted threshold between 2007 and 2010. This excessive Cd content was observed not
only in the muscle tissue but also in the liver and gonads of the fish.

The elevated concentrations of Cd in the samples of fish in sector I could be caused by
the sediment samples, which displayed increased metal values collected between 2002 and
2013 [3,66].

Secondly, fish belonging to the Cyprinidae family, such as Common carp (Cyprinus
carpio) and Crucian carp (Carassius carassius), primarily consume phytoplankton during
the fry period. As phytoplankton can accumulate Cd, it is plausible that the phytoplank-
tonophagous nature of these stages of carps led to higher Cd levels in their tissues. The
Common carp (Cyprinus carpio) is an omnivorous fish that feeds on various food sources,
including detritus, chironomids, mollusks, amphipods, zooplankton, and epiphytes [48].

Moreover, fish species such as catfish and barbel, which spend a significant part of
their lives dwelling at the bottom of the water, near the shore, and in the sand, exhibited Cd
concentrations exceeding the accepted level. This behavior makes them more susceptible
to contact with sediments and substances, including Cd, in these environments.

It is worth noting that all other samples detailed in Table 6 showed Cd concentrations
below the accepted level, indicating that the bioaccumulation of Cd was predominantly
observed in the fish species mentioned above and in specific areas rather than being a
widespread issue across all samples.
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Between 2010 and 2014, studies reported increased accumulation of Cu in liver samples
obtained from Common carp (Cyprinus carpio), Freshwater bream (Abramis brama), and
Silver carp (Hypophthalmichthys molitrix) samples in sector I [96,97,103]. Additionally,
elevated Cu levels were observed in Silurus glanis gonads during 2010 in the same sector.
Surprisingly, these accumulations cannot directly correlate with the Cu values measured in
water and sediments from the corresponding study area.

Despite the lack of a clear correlation between Cu bioaccumulation in fish tissues
and the Cu levels found in water and sediments, several factors could contribute to this
disparity. Various complex interactions within the aquatic environment may influence Cu
accumulation in fish organs. Factors such as the bioavailability and speciation of Cu in the
water column and the fish species’ physiology and dietary habits may play significant roles
in the differential accumulation patterns observed.

Moreover, variations in the exposure routes and uptake mechanisms of Cu can also
contribute to the mismatch between tissue and environmental Cu levels. The fish species
studied, including Common carp (Cyprinus carpio), Freshwater bream (Abramis brama), and
Wels catfish (Silurus glanis), may exhibit unique physiological and metabolic processes that
lead to differential Cu accumulation in their livers and gonads. Additionally, the timing
and duration of exposure to Cu in the aquatic environment may further complicate the
relationship between environmental Cu concentrations and fish tissue accumulation.

It is essential to consider these complexities and explore additional factors that could
influence Cu accumulation in fish tissues, such as other contaminants, inter-species dif-
ferences in metabolism, and potential interactions between Cu and other trace elements.
Further research is necessary to fully understand the mechanisms underlying the observed
variations in Cu accumulation in the studied fish species and to ascertain the factors driving
these disparities between tissue and environmental concentrations.

Based on the examination of three data consolidation tables obtained from the special-
ized literature, it is possible to postulate various correlations between elevated metal levels
in water and sediments and their presence in the muscle tissue of various fish species.

In the case of the species Cyprinus carpio, the slightly elevated Cd values (0.059 and
0.082) reported in the year 2013 [94] can be attributed to the increased Cd levels found in
the sediments within the same study area and year (1.69) [68]. Similarly, high Cd values
were observed in sector 1 in 2013 for Carassius carassius (0.057 and 0.051) and Silurul glanis,
as documented in the aforementioned study [94].

Pb, due to its lipophilic properties, can be readily absorbed by fish into their blood
and bones. Omnivorous fish are more likely to accumulate metals than pelagic species due
to the higher metal concentrations in sediment than in the water column [148]. This diverse
diet may contribute to their high bioaccumulation of Pb.

The analysis of fish muscle samples from Cyprinus carpio and Alosa immaculata species
obtained from sectors IV and V revealed elevated Pb levels, as reported in 2008 [98]. These
higher Pb concentrations in the fish muscles could potentially be associated with the
increased values found in water samples, as indicated by Burada in their articles from 2014
and 2015, covering the period between 2007 and 2012.

The findings suggest a potential relationship between the Pb levels detected in the
fish muscles and the corresponding Pb concentrations in the water samples. The studies
conducted by Burada (2014–2015) likely provide valuable insights into environmental Pb
contamination during the specified timeframe [78,79]. By examining the water samples,
Burada may have identified elevated Pb values that could have influenced the accumulation
of lead in the muscle tissues of carp and mackerel species.

It is essential to consider that Pb accumulation in fish can occur through various
pathways, including direct exposure to contaminated water or through the food chain. Fish
species such as carp and mackerel exhibit different feeding habits and ecological behaviors,
which can affect their susceptibility to Pb contamination. Factors such as the proximity
of the sampled sectors to potential pollution sources, the concentration and availability
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of Pb in the water, and the migratory patterns of the fish species should also be taken
into account.

Further research and investigation are necessary to establish a more definitive cause-
and-effect relationship between the Pb levels in the fish muscles and the corresponding
water samples. This would involve assessing the temporal and spatial correlation, consid-
ering other potential sources of Pb contamination, and evaluating the bioaccumulation and
biomagnification processes within the aquatic ecosystem.

The analysis of samples collected between 2003 and 2013 indicated that the Zn content
in muscle tissue, liver, gonads, and tegument exceeded the accepted limits for Cyprinus
carpio and Alosa immaculata in all studied sectors. These findings suggest a widespread
issue of elevated Zn levels in these fish species.

In sector V, there was a notable correlation between the high Zn values observed in
water and sediment samples. The elevated Zn levels in the water and sediment samples
from sector V may have contributed to the higher Zn concentrations found in the fish
species, thus potentially playing a role in the occurrence of diseases.

Regarding catfish, barbel, and perch samples from sector I, higher Zn values were
specifically detected in the gonads and liver. This indicates that these organs of the studied
fish species in sector I accumulated elevated amounts of Zn. The reasons behind these
higher Zn levels in the gonads and liver of Silurus glanis, Barbus barbus, and Perca fluviatilis
in sector I may be associated with specific environmental factors or biological characteristics
of these fish species, such as their feeding habits or habitat preferences.

Further investigation is necessary to determine the causes of the high Zn content in
the various fish tissues and sectors. Factors such as pollution sources, dietary patterns, and
species-specific physiological processes should be considered to understand the mecha-
nisms leading to Zn accumulation in different organs. Additionally, assessing the potential
health implications of these elevated Zn levels in fish species is essential to evaluating the
overall ecological impact and potential risks to human consumption.

The differences in metal concentrations within tissues can be attributed to the tissue’s
capacity to generate metal-binding proteins such as metallothionein [68].

Various pathways facilitate the entry of metals into the human body, which can occur
through multiple sources, such as water, food, air, and even cosmetics. Among these av-
enues, the most prevalent metal intake method is regularly consuming contaminated food.

Several factors influence the potential risk to human health related to fish consumption.
These include the size of the meal, the type of fish consumed, variations in bioaccumulation
among different fish species, and the presence of specific chemicals [98]. Monitoring the
concentration of substances, including inorganic and organic compounds, is essential for
reducing pollution and minimizing metal contamination.

Due to regular consumption of such contaminated food, these metals gradually accu-
mulate in the body over time. Addressing and monitoring this primary pathway of metal
intake is important to safeguard public health and minimize the potential risks associated
with metal exposure.

5. Conclusions

It is crucial to have a comprehensive understanding of metal concentrations in fish to
safeguard human health and effectively manage the environment. Metal poisoning can
cause damage to the brain, kidneys, liver, and other important organs and even lead to the
development of cancer, as exemplified by the carcinogenic properties of As. Symptoms of
metal poisoning can range from weakness to headaches. Therefore, continuous monitoring
of metal concentrations in fish is of utmost importance.

Fish have long been considered practical pollution biomarkers in aquatic environments.
Evaluating the levels of metals in edible fish is essential for ensuring the safety of fish protein
for consumers and comprehending its detrimental effects on individuals, populations,
or ecosystems.
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It is vital to assess the ecological and health risks associated with metal exposure
through food, especially when consuming fish contaminated with metals. However, there
is a lack of comprehensive studies addressing this issue in Romania. Previous studies have
focused on small areas or solely examined sediment contamination without exploring the
connection between metals in entire watersheds or sediments and their impact on humans
through the food chain.

Specific populations, such as pregnant women, children, and fishermen relying heavily
on fish as a protein source, may be disproportionately affected by consuming contaminated
fish. Therefore, assessing the potential health risks associated with exposure to metals
is essential.

Further research is needed to evaluate the nutrient and metal concentrations in com-
monly consumed fish to determine acceptable toxicity levels and understand their potential
effects on human health. While several studies have already addressed the risks of metal
exposure from fish consumption, more research is required to compare different thresholds
and better understand the impact on human health.

Although many fish species can absorb metals, in the Danube River, the levels detected
in fish meat generally remain below the maximum residue limits (MRLs) proposed in the
Official Journal of the European Communities (2001). Nevertheless, monitoring metal
concentrations in fish meat is necessary, particularly considering its consumption in the
human diet.

Monitoring fish welfare and assessing the quality of aquatic ecosystems in proximity
to significant human activities is essential to proactively mitigate potential health risks
for consumers.
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4. Vuković, Ž.; Vuković, D.; Radenković, M.; Stanković, S. A new approach to the analysis of the accumulation and enrichment of

heavy metals in the Danube River sediment along the Iron Gate reservoir in Serbia. J. Serb. Chem. Soc. 2012, 77, 381–392.
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heavy metal content of the Danube starlet (Acipenser ruthenus Linnaeus, 1758). Environ. Toxicol. Chem. 2010, 29, 515–521.
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