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Abstract: Climate change causes warming of rivers and may increase discharge, particularly during
winter. Downstream of hydropower plants, fluctuating water temperature and flow create dynamic
overwintering conditions for juvenile salmonids. We used inSTREAM 7.2-SD to simulate the effects
of increased temperature (+2 ◦C) and discharge (+10%) on the overwinter growth and mortality of
one-summer- and two-summer-old Atlantic salmon and brown trout in a river with a hydropeaking
flow regime in a 2 × 2 design with replicated simulations. Water temperature had a major positive
relationship with growth for both species and year classes, whereas increased flow alone had no
major general effect on overwinter growth. For one-summer-old trout experiencing the high tem-
perature regime, however, increased flow resulted in reduced growth. There were no major effects
from temperature and flow on the survival rate of the two-summer-old fishes. On the other hand,
there were significant interaction effects for the one-summer-olds, indicating that the effect of flow
depended on temperature. For one-summer-old salmon, high flow resulted in increased survival in
the low temperature regime, whereas it resulted in reduced survival in high temperature. In contrast,
for one-summer-old trout, high flow resulted in reduced survival in the low temperature regime and
increased survival in the high temperature. Different hydropower operation alternatives may interact
with warming, affecting the relative competitive abilities of stream salmonids. Ecological models that
predict the effects of different environmental conditions, such as temperature and flow regimes, may
offer insight into such effects when in situ experiments are not feasible.

Keywords: flow; global warming; habitat; IBM; inSTREAM; salmon; trout

Key Contribution: Using the individual-based model inSTREAM 7.2-SD, we predicted how altered
temperature and discharge regimes in a future climate would influence the growth and survival
of brown trout and Atlantic salmon in the Gullspång River, Sweden, from September to April.
Increased temperature and flow, and their interaction, affected the two species and the different age
classes differently.

1. Introduction

Climate change causes warming of rivers and streams [1], and during winter it may
increase discharge, resulting in less snow and ice on streams at high latitudes. In rivers
that do not freeze during winter, elevated water temperature and winter spates affect the
riverine biota [1–3]. Fish that are winter active, such as salmonids, must cope with these
changing winter conditions by adjusting their behaviour and physiology [4–6].

Many salmonid populations inhabit regulated rivers, and the operation of hydroelec-
tric power plants, which affects downstream flow and temperature, plays a key role in
ensuring that there is enough suitable rearing and spawning habitat for salmonid popu-
lations to survive [5,7]. In regulated rivers with hydropower generation that must meet
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sub-daily fluctuations in electricity demand, hydropeaking flow may contribute further to
dynamic winter conditions by causing a fluctuation in water temperature and flow, which
in turn affects ice dynamics [8] and fish habitat [4,9,10]. These changing environmental
winter conditions affect the risk of stranding [11] and displacement [12] and may increase
energy expenditure [4–6] in juvenile salmonids.

Typically, it is not generally feasible to test in situ the effects of different hydropower
operation alternatives on salmonid population dynamics. In lieu of such field studies,
ecological models that predict the effects of different environmental conditions, such as tem-
perature and flow regimes, may offer insight. In particular, bioenergetic individual-based
models (IBMs) have given biologically meaningful and mechanistically understandable
explanations for observed ecological phenomena [13–15].

Here, we used inSTREAM 7.2-SD (an IBM of salmonids in a stream environment
with sub-daily flow fluctuations) [16] to simulate the effects of increased temperature and
discharge on the overwinter mortality and growth of one-summer- and two-summer-old
Atlantic salmon and brown trout in the Gullspång River, Sweden. These two salmonid
populations have high cultural, economic and conservation value [7]. This river is subject to
sub-daily flow fluctuations because the hydropower plant that regulates the river operates
with hydropeaking power generation [17]. Our study built on the work by Hajiesmaeili
et al. [17], in which the effects of different hydropeaking and non-hydropeaking flows were
compared. Here, we used the same study system to assess how winter conditions, including
temperature change, may affect the two species. Specifically, we compared mortality and
growth under current flow and temperature conditions and compared these to the growth
and mortality in an environment with a 2 ◦C higher temperature and 10% higher discharge.

2. Material and Methods
2.1. Model Description and Study Site

The inSTREAM models are fed the following input: (1) a shapefile of cell geometry and
habitat features imported from a geographical information system (GIS), (2) 2D bathymetry-
based hydraulic modelling output to predict water velocity and depth in the cells at
different discharges, (3) time-series information of turbidity, discharge and temperature
(Figure 1), (4) parameters specific for the simulated reach and the fish species investigated
and (5) the initial fish population at the start of the simulation (Table 1). The models
provide different outputs at the individual level, such as growth and survival, as well as the
selected cell position and the proportion of individuals displaying different behaviour (drift
feeding, cruise feeding and hiding) at each time step. All choices are based on maximizing
individual short-term fitness. These data can be summarized into population responses,
such as population growth or decline, and spatial and temporal distribution patterns.

Using the NetLogo modelling software platform, the 7th version of inSTREAM is the
most recent update that uses multiple time steps per day related to the light (dawn, day,
dusk and night) and enables the user to incorporate additional flow change-dependent time
steps (inSTREAM 7-SD [16,18]), thereby making this version suitable for simulations of
rivers that have a hydropeaking flow regime [17]. At every time step, each individual fish
selects its habitat cell and activity (drift feeding, search feeding or hiding) and experiences
growth or weight loss based on its net energy intake. In addition, survival for each
individual at each time step is determined in relation to mortality risks: high temperature,
stranding (associated with an extremely shallow habitat), poor condition (starvation), and
predation by terrestrial animals and other fish. Habitat selection (and consequently growth
and survival) is modelled using a hierarchy of fish length. Selecting where to feed or hide
is executed from the largest to the smallest fish, and individuals can only use food and
velocity shelters that had not been used by larger fish. Growth is modelled as proportional
to the net rate of energy intake, which was the difference between the energy from feeding
and the metabolic costs.
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Table 1. Initial size of one- and two-summers-old Atlantic salmon and brown trout population in a 

hydropeaking Swedish river used as input data for the individual-based salmonid population 

model inSTREAM 7-SD. Fish sizes were matched to electrofishing data. 
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Atlantic salmon one summer 810 6.2–9.0–14.3 
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Brown trout one summer 360 4.6–10.5–19.0 
 two summers 20 19.7–22.5–23.5 
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Figure 1. Effects of increased temperature and flow on growth and survival of Atlantic salmon and
brown trout in a Swedish hydropeaking river was investigated by simulating population responses
from 1 September to 30 April using the individual-based salmonid population model inSTREAM
7-SD. In the 2 × 2 design, each combination of low (baseline) and high temperature (+2 ◦C) and flow
(+10%) regime was tested. As an example of how the treatments affect discharge and temperature,
the figure shows the hydrograph and water temperature during the month of September.

Table 1. Initial size of one- and two-summers-old Atlantic salmon and brown trout population in a
hydropeaking Swedish river used as input data for the individual-based salmonid population model
inSTREAM 7-SD. Fish sizes were matched to electrofishing data.

Species Starting Age Number Length (Min–Mode–Max; mm)

Atlantic salmon one summer 810 6.2–9.0–14.3
two summers 40 15.5–17.2–18.6

Brown trout one summer 360 4.6–10.5–19.0
two summers 20 19.7–22.5–23.5

Discharge affects water depth and velocity, which influences prey capture probability
and energy expenditure, which in turn is affected by the availability of velocity shelters
and fish size. The energy budget, in turn, affects growth rates and mortality risk. Various
temperature effects are incorporated in the model, including metabolic rates and physical
performance, which are represented through a bioenergetics approach. If the fish lose
weight, they are vulnerable to poor condition (starvation) and predation because the
decision of an individual fish on where and when to feed or hide depends on its own state.
Predation risk from piscivores also increases with temperature due to increases in metabolic
demands and feeding activity. Furthermore, temperature affects the maximum sustainable
swimming speed, which influences the success of drift feeding. All the parameters in the
model and detailed documentation of its formulation are described in the inSTREAM 7 user
manual [16,18].

The 8 km-long Gullspång River, which connects Lakes Skagern and Vänern, serves a
5000 km2 catchment area of mainly forested land and has a mean discharge at the mouth of
62 m3 s−1. The river harbours migratory populations of land-locked, large-bodied Atlantic
salmon and brown trout, and because of their high cultural, conservation and economic
value [7,19], river restoration projects have been initiated to help these populations to
recover. However, the efficiency of these restorations has not been thoroughly assessed, in
particular in face of further climate change. Spawning and rearing habitats are limited to
three rapids, and this study used the Lilla Åråsforsen rapids, as the study site (59.012 ◦N,
14.098 ◦E). Hydropeaking in this river is allowed from 20 August to 19 April, with a
minimum base flow of 9 m3 s−1. The maximum capacity of the hydropower plant is
230 m3 s−1, but not all of this high discharge reaches Lilla Åråsforsen because a diversion
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weir upstream reduces the maximum flow. In our simulations, we assumed that all water
over 80 m3 s−1 would be directed to the diversion channel and not reach Lilla Åråsforsen.

The model was calibrated using electrofishing data on growth for the different year
classes and adjusting drift and benthic food availability in addition to aquatic and terrestrial
predation risk because these parameters have been shown to affect model output the
most [17,18,20]. A detailed description of the hydrodynamic modelling (using MIKE 21;
DHI Sweden), Lilla Åråsforsen model application description, model calibration and a map
of the area can be found in Hajiesmaeili et al. [17]. The model covered 24,000 m2 (5500 cells)
and was populated by 810 one-summer-old and 40 two-summer-old salmon and 360 one-
summer-old and 20 two-summer-old trout with sizes according to those electrofished in
the same reach [17].

2.2. Flow and Temperature Scenarios

We used two temperature and two discharge time series in a 2 × 2 full factorial design.
For the temperature time series, which represented the current temperature, we used
modelled data based on air temperature for 2013–2014 [21]. The temperature model was
validated by empirical water temperature data from 2019 to 2021. We used the temperature
time series from 2013–2014 in our simulations because these years were not unusually
warm or cold. To create the time series that represented an increased temperature regime,
we used the first temperature time series and added 2 ◦C to all data points (Figure 1). In
arctic rivers with ice dynamics, climate change will likely have less effect on winter water
temperatures because these rivers will stay frozen [1]. However, in the Gullspång River,
an increase can be expected because it is rarely ice covered and typically has winter water
temperatures > 0 ◦C (SMHI’s Vattenwebb [22]), and it will likely be affected by a milder
and wetter winter. The discharge time series that represented the current flow regime was
based on data having a high temporal resolution (1 h−1) provided by the hydropower
operator, and originating from years that were not unusually dry or wet (2013–2014). For
the time series 1 September to 30 April, which represented a future flow regime in a climate
with wetter winters, we used the first discharge time series and added a 10% discharge
to all data points (Figure 1). We could not reliably estimate when conditions similar to
those in our scenarios may occur. Nevertheless, as a comparison, modelling results from
the Norwegian River Mandalselva (at approximately the same latitude as the Gullspång
River) predict a substantially larger increase than 2 ◦C and 10% more discharge within
100 years [23].

2.3. Data Analysis

For each of the four combinations of temperature and flow regimes in our 2 × 2
design, we carried out five replicated simulation runs using different random seeds each
time for a total of 20 runs. We calculated the overwinter growth and survival for each
species and year class based on the mean mass and number of individuals at the start of
the simulation (1 September) and the end (30 April) (Table 1). Specifically, we calculated
the mean instantaneous growth rate (g) as

g = (ln(Mend) − ln(Mstart))/∆t

where Mend and Mstart are the mean body masses at the end and the start of the simulation,
and ∆t is the duration of the simulation. Specific growth rate (SGR, % per day) was
calculated per Crane et al. [24]:

SGR = 100 × (eg − 1)

Survival rates were calculated as the proportion of live fish at the end of the simula-
tions. We arcsine square root- transformed the proportions to achieve normal distribution.
Levene’s test for equality of variances showed that variances were similar among the
groups (p > 0.05). We argue that inferential statistical methods based on null hypothesis
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testing may be relevant when the model used for the simulations is complex; the predic-
tion of the treatment effects is not trivial; and the results are presented as both statistical
significance and effects size [25]. To analyse the effect of increased temperature and flow
(and their interaction term) on the overwinter growth and survival of juvenile salmon and
trout in the Gullspång River, we used two-way ANOVAs and analyzed the data using SPSS
Statistics 28 (IBM, Armonk, NY, USA).

3. Results
3.1. Specific Growth Rates

Both the salmon and trout grew during the simulated period 1 September to 30 April
the following year. The mean lengths of the salmon at the start of the simulations were 9.8
and 17.1 cm for the one-summer-olds and two-summer-olds, respectively, and 14.1 and
27.9 cm, respectively, at the end. The corresponding values for trout were 11.4 and 22.0 cm
at the start and 17.3 and 29.7 cm at the end. The mean body mass growth (SGR) across
all treatment combinations was 0.52% day−1 for the one-summer-olds and 0.60% day−1

for two-summers-olds. One-summer-old trout had higher growth (0.62% day−1), whereas
two-summer-old trout had lower growth (0.39% day−1).

Increased flow had no major effect on overwinter growth (Table 2; Figure 2). Only for
one-summer-old trout experiencing a high temperature regime did the increased flow result
in reduced SGR (Figure 2), as indicated by a significant interaction term in the ANOVA
(Table 2). For one-summer-old trout in high temperature, mean SGR decreased from 0.68%
day−1 for the low flow regime to 0.65% day−1 for high flow. Water temperature had a
major positive relationship with growth for both species and year classes (Figure 1; Table 2).

Table 2. Results from two-way ANOVAs, presenting the effects of temperature and flow regimes
on specific growth and survival rates of one-summer-old and two-summer-old Atlantic salmon
and brown trout. Growth and survival rates were extracted from simulations (n = 5) of salmonid
populations in a Swedish hydropeaking river in low (baseline) and high (+2 ◦C increase from baseline)
temperature regimes and low (baseline) high (+10% from baseline) flow regimes in a 2 × 2 design.
The individual-based salmonid population model inSTREAM SD-7 was used for the simulations.
The p values in boldface indicate significant effects (α = 0.05).

Variable Population Source of Variation F df p ηp
2

Specific Atlantic salmon,
one summer Temperature 112.65 1, 16 <0.001 0.876

growth Flow <0.01 1, 16 1.000 <0.001
rate Temperature × Flow 0.67 1, 16 0.426 0.040

Brown trout,
one summer Temperature 136.97 1, 16 <0.001 0.895

Flow 2.80 1, 16 0.114 0.149
Temperature × Flow 4.98 1, 16 0.040 0.237

Atlantic salmon,
two summers Temperature 13.13 1, 16 0.002 0.451

Flow 0.04 1, 16 0.851 0.002
Temperature × Flow 1.78 1, 16 0.201 0.100

Brown trout,
two summers Temperature 8.08 1, 16 0.012 0.336

Flow 1.29 1, 16 0.272 0.075
Temperature × Flow <0.01 1, 16 1.000 <0.001

Survival Atlantic salmon,
one summer Temperature 158.24 1, 16 <0.001 0.908

rate Flow 0.20 1, 16 0.661 0.012
Temperature × Flow 11.84 1, 16 0.030 0.425

Brown trout,
one summer Temperature 7.26 1, 16 0.160 0.312

Flow 0.10 1, 16 0.752 0.006
Temperature × Flow 5.29 1, 16 0.035 0.248
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Table 2. Cont.

Variable Population Source of Variation F df p ηp
2

Atlantic salmon,
two summers Temperature 0.90 1, 16 0.358 0.053

Flow 0.07 1, 16 0.800 0.004
Temperature × Flow 0.36 1, 16 0.555 0.022

Brown trout,
two summers Temperature 0.18 1, 16 0.679 0.011

Flow 0.18 1, 16 0.679 0.011
Temperature × Flow 1.60 1, 16 0.224 0.091
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Figure 2. Mean specific growth rate (1 September–30 April) of (A) one-summer-old Atlantic salmon
and (B) brown trout and (C) two-summer-old Atlantic salmon and (D) brown trout estimated from
simulations (n = 5) of a Swedish hydropeaking river in low (baseline) and high (+2 ◦C increase from
baseline) temperature regimes. Open circles represent a low (baseline), and filled circles a high (+10%
from baseline) flow regime. The individual-based salmonid population model inSTREAM SD-7 was
used for the simulations. Error bars indicate ± 1 SE.
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3.2. Survival

One-summer-olds had lower mean survival rates (salmon: 40%; trout: 50%) than did
the two-summers-olds (salmon: 84%; trout: 92%). Temperature and flow regimes did not
affect the survival rates of the two-summer-olds (Figure 3; Table 2). For the analysis of
survival rates for one-summer-old fish of both species, there was significant interaction
between the temperature and flow regime (Figure 3; Table 2), indicating that the effect of
the flow depended on the temperature. For one-summer-old salmon, high flow resulted
in increased survival in low temperatures, whereas it resulted in reduced survival in high
temperatures. For one-summer-old trout, the pattern was the reverse; high flow resulted in
reduced survival in the low-temperature and increased survival in the high-temperature
regimes (Figure 3).

Figure 3. Mean survival rate (1 September–30 April) of (A) one-summer-old Atlantic salmon and
(B) brown trout and (C) two-summer-old Atlantic salmon and (D) brown trout estimated from
simulations (n = 5) of a Swedish hydropeaking river in low (baseline) and high (+2 ◦C increase from
baseline) temperature regimes. Open circles represent a low (baseline) and filled circles a high (+ 10%
from baseline) flow regime. The individual-based salmonid population model inSTREAM SD-7 was
used for the simulations. Error bars indicate ± 1 SE.
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4. Discussion

We used the salmonid population IBM inSTREAM 7.2-SD to simulate the effects
of an increase in temperature and flow on overwintering juvenile Atlantic salmon and
brown trout in a Swedish hydropeaking river. The results indicated the potential effects
of climate change on two threatened salmonid populations in the Gullspång River and
highlighted that the youngest size class (one-summer old) was the life stage most vulnerable
to warming.

Increased winter temperature due to climate warming resulted in faster growth.
Salmonid growth typically ceases at 1–3 ◦C [26], and with an increase of 2 ◦C in the
Gullspång River, the period with little-to-no potential growth (water temperatures ≤ 3 ◦C)
was considerably shorter by approximately 70% during the winter of 2013–2014). On the
other hand, high winter temperatures resulting in increased metabolic rates required access
to food resources and foraging opportunities to avoid starvation, and this feeding activity
may have increased predation risk [4,6]. Although increased winter temperatures resulted
in higher prey capture success for drift-feeding salmonids [27], foraging positions with a
low predation risk may be lacking. Therefore, our result that the one-summer-old Atlantic
salmon suffered from increased mortality in the high temperature regime was expected
because small fish are typically more vulnerable to both predation and starvation compared
to large fish [4,28].

Flow had only minor effects on growth and survival; however, in interaction with
temperature it did affect one-summer-old Atlantic salmon survival. The combination
of high flow and low temperature resulted in the highest survival rates, whereas high
flow with high temperature resulted in the lowest. This may be worrisome because
both temperature and flow will likely continue to increase. Here, we added 10% to the
baseline scenario (empirical flow data from 2013–2014) as a constant addition. However,
the potentially added discharge in northern rivers during winter will unlikely be released
evenly over the year. Further simulations to investigate how an increased yearly discharge
may be released over the year, i.e., different scenarios of hydropower generation schemes,
may be worthwhile to find measures to minimize Atlantic salmon parr mortality in the
Gullspång River. For one-summer-old brown trout, the pattern was the reverse: the highest
survival was achieved under the low-flow and low-temperature regimes, whereas low
flow and high temperature resulted in the lowest survival rates but the highest growth.
Therefore, it is possible that by adjusting the flow under different warming scenarios, the
relative competitive abilities of salmonid species will change [29,30].

In a previous study employing the same inSTREAM model, Hajiesmaeili et al. [17]
tested the effects of hydropeaking scenarios with different baseflows. They found that
increased flow generally had a negative effect on the survival of both species over the
course of a whole year due to the increased aquatic predation facilitated by increased water
depth. However, increasing the minimum base flow within hydropeaking flow scenarios
had positive effects on the predicted growth of both species [17]. In the present study,
focusing on the winter season, we demonstrated that these flow effects can be mediated by
temperature at least for the one-summer-old fish.

The modelled species-specific differences in response to flow and temperature was
likely driven by the size differences between species, a pattern reflecting observed life
history variation [17]. In the Gullspång River, brown trout spawn in the fall earlier than
Atlantic salmon, and their eggs hatch and emerge earlier in the spring. This difference in
hatching date results in brown trout being larger than Atlantic salmon at the alevin, fry and
parr life stages. Key inSTREAM factors, such as drift-feeding performance, predation risk,
metabolic rate and habitat selection depend on the body size in the model [20]. Therefore,
specific differences in these factors may relate to the different intra- (one- vs. two-summer-
old) and interspecies (Atlantic salmon vs. brown trout) effects of flow and temperature
regimes. The contrasting interaction effects of temperature and flow on one-summer-old
Atlantic salmon and brown trout may be partly caused by brown trout outcompeting
Atlantic salmon for the best feeding positions.
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The inSTREAM modelling framework has the potential to develop hypothesis-driven
research that may help to answer questions relating to complex ecological processes such
as how sympatric species may respond to interacting factors like climate change and hy-
dropeaking. This study, for example, highlighted the need for developing species-specific
ecophysiological parameters for salmon and trout in the Gullspång River. Although con-
ducting such ecophysiological studies would be a nontrivial task [31], further developed
model capabilities may yield even more detailed and realistic results for these two popula-
tions. The alternative, replicated field studies under varying streamflow and temperature
regimes, would clearly be impractical and require considerable resources. Thus, ecolog-
ical modelling approaches will likely remain a key element of any research efforts that
aim to assess the complex realities of river management, especially under future climate
change scenarios.

5. Conclusions

In the Gullspång River, potential winter conditions with increased water temperatures
and altered flows will likely influence the relative competitive abilities of Atlantic salmon
and brown trout. In a warmer future, juvenile brown trout may dominate the most
favourable feeding positions because of its competitive advantage of being larger at any
given time and being a relatively more aggressive species [32] than the Atlantic salmon.
On the other hand, the thermal preference of brown trout is lower than that of Atlantic
salmon [26], but this physiological difference was not considered in the model we used
due to a lack of standardized tests across species, size, temperature and water velocity [33].
Further modelling studies to investigate the potential non-linear effects and tipping points
(using more than two levels of each treatment) should prove to be useful, together with
species-specific physiological parameters, to assess the combined effects of different climate-
change scenarios. We demonstrated potential trends in growth and survival of sympatric
salmonid populations in hydropeaking rivers [34] caused by a future environment with
warmer and wetter winters in temperate areas, which may influence the relative competitive
abilities of juvenile salmonid species [30,32].
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