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Abstract: Dual-specificity phosphatase 2 (DUSP2) regulates the activation of members of the mitogen-
activated protein kinase (MAPK) family, which is involved in a variety of cellular processes including
cell proliferation, differentiation, apoptosis, and migration. DUSP2 also regulates the expression of
inflammatory mediators in macrophages; however, it remains unknown whether DUSP2 participates
in macrophage migration. Here, using the tail fin injury model in zebrafish larvae, we found that
the deletion of DUSP2 inhibited the expression of pro-inflammatory cytokines and macrophage
chemokines. Moreover, live imaging results showed that the migration of macrophages to the injury
site was inhibited after DUSP2 deletion. This inhibitory effect was mediated through the reduced
activation of extracellular regulated protein kinases (ERK) in DUSP2 knockout zebrafish.

Keywords: zebrafish; macrophages; migration; DUSP2; ERK

Key Contribution: Using zebrafish as a model organism; we studied the effect of DUSP2 on
macrophage migration in vivo; we found that DUSP2 deletion inhibited macrophage migration
by inhibiting the activation of ERK.

1. Introduction

The migration of immune cells is a key step in and major feature of the inflamma-
tory response [1]. Specifically, macrophage migration is a vital process in host defense
and homeostasis maintenance [2,3]. Abnormal macrophage migration leads to cytokine
accumulation, tissue destruction, and tumor formation, and it is a key factor in the de-
velopment and progression of many autoimmune diseases, inflammatory diseases, and
cancers [4,5]. Therefore, macrophage migration is a potential target for therapeutic strate-
gies for these diseases.

The DUSP2 protein regulates the activation of members of the MAPK family [6,7]. The
MAPK family mainly comprises extracellular signal-regulated kinase (ERK), c-Jun amino-
terminal kinase (JNK), and p38, and it mediates the transduction pathway of inflammation
induction [8–11]. Previous research has demonstrated that DUSP2-deficient macrophages
exhibit increased activation of JNK, decreased activation of p38 and ERK, and reduced
expression of inflammatory mediators, suggesting the positive role of DUSP2 in regulating
innate immune function through the MAPK [12]. However, DUSP2 adversely affects the
differentiation of TH17 cells and the anti-tumor effect of T cells [13,14], suggesting its
negative involvement in adaptive immunity. Thus, DUSP2 is an important part of the
immune function of an organism.

The deletion of DUSP2 inhibits the expression of inflammatory mediators in macrophages,
but it remains to be clarified whether DUSP2 affects macrophage migration and, if it does,
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how [12]. This study aimed to answer this question by using the macrophage reporter line
Tg(mpeg1:mCherry) and the dusp2−/− mutant previously generated in our lab [15,16].

There is a clear temporal separation between innate and adaptive immunity in ze-
brafish [17,18]. Furthermore, transparency in the early developmental stages of zebrafish
allows for visual manipulation and observations, and transgenic zebrafish lines that specif-
ically label immune cells facilitate the analysis of discrete immune events [15,19]. Based
on these advantages, we investigated the effect of DUSP2 on macrophage migration and
its potential mechanisms in zebrafish larvae with the tail fin injury model. We found that,
through the reduced activation of extracellular regulated protein kinases (ERK), dusp2
knockout inhibited the migration of macrophages to the injury site.

2. Materials and Methods
2.1. Zebrafish Lines

The zebrafish lines used in this experiment included wild-type (WT) zebrafish, dusp2−/−

mutant zebrafish, and transgenic zebrafish Tg(mpeg1:mCherry) and Tg(mpeg1:mCherry);
dusp2−/−. The dusp2−/− mutant zebrafish was previously obtained by knocking out the
dusp2 gene with CRISPR/Cas9 [16]. The dusp2−/− mutant zebrafish was crossed with
Tg(mpeg1:mCherry) to obtain the F1 generation, and the Tg(mpeg1:mCherry); dusp2−/−

was identified after incross among F1 littermates (Figure 1). All animal experimental proto-
cols were approved by the University of Science and Technology of China (USTC) Animal
Resources Center and the University Animal Care and Use Committee and the Committee
on the Ethics of Animal Experiments of the USTC (Permit Number: USTCACUC1103013).

2.2. Tail Fin Injury

The experimental model used in this study was a tail fin injury model. The slide
and a sterile scalpel were sterilized with 75% ethanol prior to tail fin injury. At 4 days
post-fertilization (dpf), the zebrafish larvae were then anesthetized with MS-222 (Sigma,
Saint Louis, USA, E10505) and placed on the slide, and the tail fins were cut from the
end of the spinal cord with a sterile scalpel under a stereomicroscope (Olympus SZX-16,
Tokyo, Japan).

2.3. In Vivo Imaging

In the absence of tail fin injury, macrophages in the 800 µm region from the end of
the spinal cord forward were imaged at 10× using a laser confocal microscope (Olym-
pus FV1000, Tokyo, Japan), and macrophages in this area were enumerated, giving the
total number of macrophages in the sample. At different time points after the tail fin
injury, macrophages in the 250 µm region from the end of the spinal cord forward were
imaged at 10× using a fluorescence microscope (Olympus BX60, Tokyo, Japan); similarly,
macrophages in this region were counted, giving the number of macrophages that migrated
to the injury site. For the analysis of macrophage motility velocity, a laser confocal micro-
scope (Olympus FV1000, Tokyo, Japan) was used to image continuously for 30 min at 10×,
scanning 1 z-stack every 1 min. The imaging time points were before the tail fin injury
and 2.5 h post-injury (hpi)–3 h post-injury (hpi) for each group of 8 zebrafish larvae. The
data obtained were analyzed for macrophage motility using the software ImageJ (National
Institutes of Health, Bethesda, MD, USA), and only those macrophages that migrated
towards the injury site were counted.

2.4. Drug Treatment

To investigate the effect of the ERK protein on macrophage migration, we used an
ERK inhibitor, PD0325901 (MCE, State of New Jersey, USA, HY-10254), to inhibit the
phosphorylation of the ERK protein [20]. The working liquid concentration of PD0325901
was 20 µM, and the control group was treated with 0.1% DMSO. Zebrafish larvae were
treated with PD0325901 or DMSO three hours before tail fin injury. Zebrafish larvae
continued to be treated with either the inhibitor or DMSO after tail fin injury.
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Figure 1. (A) Zebrafish strain with dusp2 mutation previously constructed by CRISPR/Cas9. (B) 
Generation of Tg(mpeg1:mCherry); dusp2−/−  zebrafish. 

2.2. Tail Fin Injury 
The experimental model used in this study was a tail fin injury model. The slide and 

a sterile scalpel were sterilized with 75% ethanol prior to tail fin injury. At 4 days post-
fertilization (dpf), the zebrafish larvae were then anesthetized with MS-222 (Sigma, Saint 
Louis, USA, E10505) and placed on the slide, and the tail fins were cut from the end of the 
spinal cord with a sterile scalpel under a stereomicroscope (Olympus SZX-16, Tokyo, 
Japan). 

2.3. In Vivo Imaging 
In the absence of tail fin injury, macrophages in the 800 µm region from the end of 

the spinal cord forward were imaged at 10× using a laser confocal microscope (Olympus 
FV1000, Tokyo, Japan), and macrophages in this area were enumerated, giving the total 
number of macrophages in the sample. At different time points after the tail fin injury, 
macrophages in the 250 µm region from the end of the spinal cord forward were imaged 
at 10× using a fluorescence microscope (Olympus BX60, Tokyo, Japan); similarly, 

Figure 1. (A) Zebrafish strain with dusp2 mutation previously constructed by CRISPR/Cas9.
(B) Generation of Tg(mpeg1:mCherry); dusp2−/− zebrafish.

2.5. Quantitative Real-Time PCR

Total RNA was extracted using a TRIZOL reagent (Takara, Beijing, China) without tail
fin injury or 1 h after tail fin injury. The expression levels of dusp2, inflammatory cytokines,
and chemokines were evaluated using qPCR and the SYBR Green kit (Vazyme, Nanjing,
China). The samples were obtained from 3 independent experiments, each with 3 replicates,
and were subjected to a standard protocol (pre-denaturation at 95 ◦C for 5 min, followed
by 44 cycles of 95 ◦C for 15 s and 60 ◦C for 30 s, and, finally, 95◦ C for 15 s, 60 ◦C for
60 s, and 95 ◦C for 15 s). Relative mRNA expression levels were obtained by standardizing
to the β-actin mRNA level using the 2−∆∆Ct method. Table 1 showed the specific primers
used in the PCR.



Fishes 2023, 8, 310 4 of 16

Table 1. Primers used in this study.

Primer Name Primer Sequence (5′–3′)

il1β-qRT-PCR Forward: GTACTCAAGGAGATCAGCGG
Reverse: CTCGGTGTCTTTCCTGTCCA

il6-qRT-PCR Forward: TTTGAAGGGGTCAGGATCAG
Reverse: TCATCACGCTGGAGAAGTTG

il8-qRT-PCR Forward: CACTTAGGCAAAATGACCAGCA
Reverse: AGACCTCTCAAGCTCATTCCTTC

tnfα-qRT-PCR Forward: GCGCTTTTCTGAATCCTACG
Reverse: TGCCCAGTCTGTCTCCTTC

dusp2-qRT-PCR Forward: ATCGGCGACCCTCTCGAGATCTC
Reverse: GACACCACGGAGCTCTTGGACCT

cxcl11-qRT-PCR Forward: GGCACAGTGAAGAGCTCCAT
Reverse: TGAGCTTGTTTGGGCAGTGT

ccl2-qRT-PCR Forward: TCTGCACTAACCCGACTGAGA
Reverse: CATCTTAGGCGCTGTCACCAG

β-actin-qRT-PCR Forward: TCCGGTATGTGCAAAGCCGG
Reverse: CCACATCTGCTGGAAGGTGG

2.6. Western Blot

The zebrafish larvae were lysed with RIPA (Sangon, Shanghai, China) without tail fin
injury or 1 h after tail fin injury. The primary antibody of p-ERK (CST, 4370T,1:1000) from
rabbits was incubated overnight at 4 ◦C. The primary antibody of ERK (CST, 4695T, 1:1000)
from rabbits and the primary antibody of β-actin (HuaBio, Hangzhou, China, ET1701-80,
1:1000) from rabbits were incubated for 3 h at 37 ◦C. The HRP-conjugated goat anti-rabbit
antibody (Proteintech, SA00001-2, Chicago, IL, USA, 1:5000) was incubated for 1 h at 37 ◦C.
We used ImageJ (National Institutes of Health, Bethesda, USA) software to calculate the
gray value of the strip.

2.7. Statistical Analysis

Data were analyzed using the Student’s t-test with GraphPad Prism 8.0 (Santiago,
Chile, USA). One-way analyses of variance (ANOVA) were used as indicated in the results.
All data are presented as the mean± SEM. p < 0.05 was assumed to be a significant difference.

3. Results
3.1. The Expression of dusp2 Was Significantly Up-Regulated in Acute Inflammation Induced by
Tail Fin Injury

First, we used a tail fin injury model to investigate whether DUSP2 is involved in
acute inflammation induced by tail fin injuries in zebrafish larvae (Figure 2A). The expres-
sion of pro-inflammatory cytokines was up-regulated and neutrophils and macrophages
were recruited to the injury site after the tail fin injury [21]. One hour after the tail
fin injury, the qPCR results showed that the expression of the pro-inflammatory cy-
tokines IL-1β, IL-8, and TNF-α was significantly increased (Figure 2B–D). Meanwhile,
the expression of the chemokines CCL2 and CXCL11 was also significantly up-regulated
(Figure 2E,F). These results suggest that the tail fin injury model successfully induced
acute inflammation in zebrafish larvae. Furthermore, we found that the expression
of dusp2 was significantly up-regulated (Figure 2G), indicating that DUSP2 might be
involved in acute inflammation induced by tail fin injuries in zebrafish larvae.

3.2. DUSP2 Deletion Significantly Decreased the Expression of Pro-Inflammatory Cytokines and
Chemokines after Tail Fin Injury

Next, we aimed to explore whether the deletion of DUSP2 affects the expression of
pro-inflammatory cytokines and chemokines in zebrafish larvae. CCL2 and CXCL11 are
key chemokines involved in macrophage migration and infiltration [22] Here, we focused
on the expression of four pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and two
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macrophage chemokines (CCL2, CXCL11) in WT and dusp2−/− zebrafish larvae before
and after tail fin injury. The results of the qPCR showed that the deletion of DUSP2
did not affect the expression of the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and
TNF-α and the macrophage chemokines CCL2 and CXCL11 in the absence of a tail fin
injury (Figure 3B–G). However, the deletion of DUSP2 suppressed the expression of the
pro-inflammatory cytokines IL-1β, IL-6, and IL-8 and the macrophage chemokine CCL2
after tail fin injury (Figure 3B–D,F); it did not affect the expression of TNF-α and CXCL11
(Figure 3E,G). These results suggest that DUSP2 is involved in the acute inflammation
induced by tail fin injuries in zebrafish larvae and might be involved in the migration of
macrophages.
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Figure 2. (A) Collection of WT zebrafish larvae without tail fin injuries and 1 h after tail fin injury
for total RNA extraction. (B–F) The mRNA expression levels of the pro-inflammatory cytokines
IL-1β (B), IL-8 (C) and TNF-α (D) and the macrophage chemokines CCL2 (E) and CXCL11 (F) were
significantly higher in the tail fin injury samples than in the control. (G) The mRNA expression levels
of dusp2 were significantly up-regulated in larvae with tail fin injuries. Data were obtained from 3
independent experiments, each of which used samples from 30 zebrafish larvae; * p < 0.05, ** p < 0.01,
**** p < 0.0001. Error bars represent the SEM.
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Figure 3. (A) Collection of WT and dusp2−/− zebrafish larvae without tail fin injuries and 1 h after
tail fin injuries for total RNA extraction. (B–G) The mRNA expression levels of the pro-inflammatory
cytokines IL-1β (B), IL-6 (C), IL-8 (D) and TNF-α (E) and the macrophage chemokines CCL2 (F) and
CXCL11 (G) were not significantly different between the dusp2 mutant and WT groups in the absence
of tail fin injuries. The mRNA expression levels of the pro-inflammatory cytokines IL-1β (B), IL-6
(C), and IL-8 (D) and the macrophage chemokine CCL2 (F) were significantly lower in the dusp2
mutants than the WT group after tail fin injury. The mRNA expression levels of TNF-α (E) and
CXCL11 (G) were not significantly different between the dusp2 mutant and WT groups after tail fin
injury. Data were obtained from 3 independent experiments, each of which used samples from 30
zebrafish larvae; * p < 0.05, ** p < 0.01, *** p < 0.001, ns: no significance; error bars represent the SEM.
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3.3. DUSP2 Deletion Inhibited the Migration of Macrophages to the Injury Site

To investigate whether the deletion of DUSP2 affects the migration of macrophages,
we used a fluorescent microscope to image and enumerated the macrophages at the injury
site at 1, 3, and 6 h after tail fin injury. The results showed that the deletion of DUSP2
inhibited the migration of macrophages to the injury site at 1 and 3 h, but not at 6 h after
tail fin injury (Figure 4). Therefore, DUSP2 seems to influence only the early recruitment
of macrophages.
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Figure 4. (A) Image of macrophages migrating to the injury site at various time points after tail fin
injury. (B) The number of macrophages migrating to the injury site was significantly reduced in
the dusp2 mutant groups than in the control group at 1 (n = 30, n = 30) and 3 hpi (n = 33, n = 34).
The number of macrophages migrating to the injury site was not significantly different between
the dusp2 mutant (n = 30) and control groups (n = 32) at 6 hpi. The results of this experiment were
obtained from 3 independent experiments. scale bar: 100 µm; hpi: hours post-injury. ** p < 0.01, ns:
no significance; error bars represent SEM.
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Figure 5. (A) Image of macrophages within 800 µm of the end of the spinal cord forward. (B) The
total number of macrophages in the zebrafish larvae were not significantly different between the
dusp2 mutant (n = 13) and control groups (n = 12). (C) The movement velocity of the macrophages
was not significantly different between the dusp2 mutant (n = 8) and control groups (n = 8) in the
absence of a tail fin injury. (D) The movement velocity of macrophages migrating to the injury
site was not significantly different between the dusp2 mutant (n = 8) and control groups (n = 8) at
2.5 hpi–3 hpi. Scale bar: 100 µm; hpi: hours post-injury; ns: no significance; error bars represent SEM.
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Next, we investigated why DUSP2 knockout (KO) decreased the number of mi-
grating macrophages at 1 and 3 h after injury. First, we checked whether DUSP2 KO
reduced the total number of macrophages in zebrafish larvae. Based on an approach
established in our lab, the number of macrophages within 800 µm of the end of the spinal
cord forward was used to characterize the total number of macrophages in the zebrafish
larvae [23]. The results showed that there was no significant difference in the total
number of macrophages between the mutant and control (Figure 5A,B), indicating that
the total number of macrophages was not the reason why fewer macrophages migrated
after injury.

The second possible explanation that came to our attention was the motility rate
of the macrophages. After tail fin injury, neutrophils and macrophages migrated to the
injury site at different velocities [24]. We assessed the effect of DUSP2 on the motility
velocity of the macrophages by real-time analysis. The results showed that DUSP2 KO
had no significant effect on the motility of the macrophages either in uninjured fish
(Figure 5C) or 2.5–3 h post-injury (Figure 5D). Hence, the decreased number of migrating
macrophages in the DUSP2 KO larvae was not due to a decreased migration rate.

3.4. DUSP2 Deletion Inhibited ERK Protein Phosphorylation

After excluding the possible contributions of the macrophage pool and motility, we
hypothesized that DUSP2 KO may downregulate some signaling pathways that promote
macrophage migration and/or upregulate some that inhibit it. Based on a previous
finding that the activation of ERK was decreased in DUSP2-deficient immune cells [12],
we speculated that the deletion of DUSP2 might reduce macrophage migration via
ERK in zebrafish larvae. Western blotting results showed that, even without injury, the
phosphorylation level of ERK was significantly lower in DUSP2 KO than in the control
(Figure 6A,D), while the protein level of ERK was not significantly different (Figure 6A,C).
The same observations were made after the tail fin injury (Figure 6B,E,F). These results
suggest that the deletion of DUSP2 inhibited the activation of ERK. Returning to our
hypothesis, we have identified a factor, ERK, the activation of which was inhibited by
DUSP2 KO.

3.5. ERK Inhibitor Inhibited the Migration of Macrophages

To find the final missing piece of the puzzle, it was necessary to confirm whether
the reduced activation of ERK leads to fewer migrating macrophages. To this end, we
used an inhibitor, PD0325901, to reduce the level of ERK activation [20,25]. As expected,
the migration of macrophages to the injury site was significantly reduced in the inhibitor
group compared to the control (Figure 7). Taking these findings together, the puzzle
is completed. The reduced migration of macrophages after DUSP2 KO is due to the
reduced activation of ERK.

To consolidate our conclusions, we explored whether the total number or motility
of macrophages were influenced by the inhibitor treatment. The results showed no
significant difference in either case (Figure 8). Thus, the ERK inhibitor had no effect on
the total number or motility of macrophages in zebrafish larvae. We have further verified
our hypothesis that DUSP2 KO reduced macrophage migration via the inhibition of
ERK activation.
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Figure 6. (A) Representative image of the results of the Western Blot in the absence of injury, with
data from three sets of samples. (B) Representative image of the results of the Western Blot after
tail fin injury; data from three sets of samples. (C) Statistical plot of ERK1/2 protein levels in the
absence of injury: there was no significant difference in the background levels of ERK1/2 between
the dusp2 mutant and control groups. (D) Statistical plot of p-ERK protein levels in the absence of
injury: the levels of p-ERK were significantly decreased in the dusp2 mutant group. (E) Statistical plot
of ERK1/2 protein levels after tail fin injury: there was no significant difference in the background
levels of ERK1/2 between the dusp2 mutant and control groups. (F) Statistical plot of p-ERK protein
levels after tail fin injury: the levels of p-ERK were significantly decreased in the dusp2 mutant group.
Data were obtained from 3 independent experiments, each of which used samples from 30 zebrafish
larvae; * p < 0.05; ns: no significance; error bars represent SEM.
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Figure 7. (A) Zebrafish larvae at 4 dpf were pretreated with PD0325901; after tail fin injury, treatment
with PD0325901 was continued, followed by observation of the macrophages migrating to the injury
site under a fluorescence microscope (Olympus BX60, Tokyo, Japan). (B) Image representation of
macrophages migrating to the injury site at various time points after tail fin injury. (C) The number of
macrophages migrating to the injury site was significantly reduced in the PD0325901 group compared
to the control at 1 (n = 31, n = 32), 3 (n = 34, n = 34), and 6 hpi (n = 32, n = 33). The results of this
experiment were obtained from three independent experiments. The red dashed line indicates the
site of the injury; hpi: hours post-injury; scale bar: 100 µm. **** p < 0.0001; error bars represent SEM.
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Figure 8. (A) Image of macrophages within 800 µm of the end of the spinal cord forward. (B) The
total number of macrophages in the zebrafish larvae were not significantly different between the
PD0325901 group (n = 10) and the control (n = 10). (C) The movement velocity of the macrophages
was not significantly different between the PD0325901 group (n = 8) and the control (n = 8) in the
absence of a tail fin injury. (D) The movement velocity of the macrophages migrating to the injury
site was not significantly different between the PD0325901 (n = 8) group and the control (n = 8) at
2.5 hpi–3 hpi. Scale bar: 100 µm; hpi: hours post-injury; ns: no significance; error bars represent SEM.

4. Discussion

An acute inflammatory response was induced by a tail fin injury. Neutrophils were
recruited first at the site of the injury, followed by macrophages, and the recruitment of
TNF-α-positive pro-inflammatory macrophages peaked at six hpa [26,27]. In our study, we
found that the deletion of DUSP2 reduced the migration of macrophages to the injury site
at one hour and three hours, but not at six hours after tail fin injury. We speculated that
the deletion of DUSP2 might mainly affect the early macrophage recruitment. However,
the use of the ERK inhibitor inhibited the migration of macrophages to the injury site at
one, three, and six hours after tail fin injury. This suggested that the effect of ERK on the
macrophages was stronger than DUSP2, possibly because ERK was downstream of DUSP2.

The DUSP2 protein regulated the activation of the MAPK family, which is involved
in a series of cellular processes such as cell proliferation, differentiation, apoptosis, and
migration [7,28–32]. MAPK family members include ERK, JNK, and p38 [33,34]. ERK is
involved in regulating the migration of a variety of cells, including macrophages [35–38].
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Previous research indicated that the deletion of DUPS2 would lead to increased levels
of phosphorylation of JNK but decreased levels of phosphorylation of ERK and p38 in
immune cells [12]. Our group also demonstrated that the deletion of DUSP2 increased the
level of phosphorylation of JNK [16]. In this study, the deletion of DUSP2 led to a decreased
level of phosphorylation of ERK, and the use of the ERK inhibitor inhibited macrophage
migration, suggesting that the effect of DUSP2 on macrophage migration was mediated by
ERK activation.

Extensive research has focused on the function of DUSP2 in immunology and tu-
mors [12–14,39–41]. Recent studies have found that DUS2P also plays a role in the nervous
system, such as by participating in axon regeneration [16,42,43]. Our research results
indicate that DUSP2 is involved in the migration of macrophages in zebrafish larvae, which
is consistent with previous studies on DUSP2’s involvement in immune responses [12].

CCL2 is one of the key chemokines of macrophages and is involved in macrophage
migrations after tail fin injuries in zebrafish [22,44]. In our study, the deletion of DUSP2
consistently suppressed the expression of CCL2 after tail fin injury. This also suggests that
DUSP2 was involved in the migration of macrophages.

The relative mRNA levels of TNF-α and CXCL11 were not significantly different
between the WT fish and the DUSP2 mutant group. This suggested that, in our experimental
model, DUSP2 might not regulate immunity through TNF-α and CXCL11.

The immune system of zebrafish is highly conserved with that of humans, so zebrafish
constitute a good model for studying inflammation [17,18]. The tail fin structure of zebrafish
is simple and the tissue is transparent. Therefore, tail fin injury is the most commonly
used model to induce inflammation in zebrafish [26,45]. When combined with transgenic
zebrafish specifically labeling immune cells, it allows researchers to track the behavior of
immune cells and identify relevant regulatory molecules. Previous studies on macrophage
migration mostly focused on in vitro experiments [46–50]. Here, we performed live imaging
in zebrafish and found that the knockout of DUSP2 led to a decrease in the number of
macrophages migrating to the injury site, which suggested that DUSP2 might be an internal
factor regulating macrophage cell migration.

The accumulation of macrophages in the inflammatory site exacerbates the inflamma-
tory response and is a key factor in the occurrence and development of many inflammatory
diseases and cancers. Migration is a key step whereby macrophages enter the inflammatory
site and participate in the pathological process [51]. Therefore, inhibiting the migration of
macrophages is a potential anti-inflammatory strategy. This study identified an endoge-
nous factor, DUSP2, that regulated ERK, a factor that promotes macrophage migration,
providing a target for developing treatments for macrophage-related diseases.

As well as macrophages, neutrophils are another type of phagocyte recruited to the
injury site in zebrafish. However, in our preliminary experiments, neutrophil behavior did
not display obvious differences between the control and DUSP2 KO. Previous research
has noted that DUSP2 mainly affects the function of macrophages [12]. Therefore, in this
research, we chose macrophages as our object and explored their behavior in depth after
DUSP2 KO.

5. Conclusions

In this study, we found that the expression of dusp2 was significantly up-regulated
in acute inflammation induced by tail fin injuries in zebrafish larvae. It was preliminarily
speculated that DUSP2 might participate in the acute inflammation induced by tail fin
injury in zebrafish larvae. Subsequently, it was found that the deletion of DUSP2 inhibited
the expression of proinflammatory cytokines and macrophage chemokines after tail fin in-
jury. By using live imaging and conducting tail fin injury in Tg(mpeg1:mCherry); dusp2−/−,
it was found that the deletion of DUSP2 inhibited the migration of macrophages to the
injury site. We verified that DUSP2 deletion might inhibit the migration of macrophages by
inhibiting the activation of ERK, using the methods of Western blotting and the ERK in-
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hibitor. To sum up, DUSP2 was involved in the regulation of the migration of macrophages
in zebrafish larvae through the ERK signal pathway (Figure 9).
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