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Abstract: In this study, we investigated the effects of cortisol on the regulation of the glycogen
metabolism biomarkers glycogen synthase (GS) and glycogen phosphorylase (GP) in the glycogen-
rich cells of the gills of tilapia (Oreochromis mossambicus). In the gills of tilapia, GP, GS, and glycogen
were immunocytochemically colocalized in a specific group of glycogen-rich cells adjacent to the
gills’ main ionocytes and mitochondria-rich cells. Cortisol plays a vital role in the regulation of
physiological functions in animals, including energy metabolism, respiration, immune response,
and ion regulation. However, no studies have elucidated the mechanisms regulating cortisol and
glycogen-rich cells in the gills. Therefore, we treated tilapia larvae with exogenous cortisol and a
glucocorticoid receptor (GR) antagonist to investigate the regulatory mechanisms between cortisol
and glycogen-rich cells in the gills. Our results showed that cortisol promoted the expression of gill
glycogen phosphorylase isoform (GPGG) mRNA via GR, whereas the GS gene expression remained
unaffected. We also found that GR mRNA was colocalized with some glycogen-rich cells in the
gills, further confirming our hypothesis that cortisol directly acts on glycogen-rich cells in the gills of
tilapia and regulates glycogen metabolism by promoting GPGG mRNA expression.

Keywords: cortisol; glycogen-rich cell; glycogen phosphorylase; glycogen synthase; ionocytes;
glucocorticoid receptor; tilapia

Key Contribution: Cortisol promoted the expression of gill glycogen phosphorylase isoform (GPGG)
mRNA in tilapia via the glucocorticoid receptor, whereas the glycogen synthase (GS) gene expression
remained unaffected.

1. Introduction

Glucose is the primary energy source for metabolism and is stored in the form of
glycogen, a long-branching high-molecular-mass polysaccharide, in animal tissues [1].
Animals increase their blood glucose levels and regulate energy metabolism in response
to stress. Glycogen metabolism is a source of energy for both vertebrates and inverte-
brates, particularly during periods of environmental fluctuation and stress responses [2–5].
The synthesis and degradation of liver glycogen are initiated by glycogen synthase (GS)
and phosphorylase (GP), respectively. Glucose is mainly released via the GP-induced
degradation of glycogen [1].

Corticosteroids are a group of hormones synthesized from cholesterol via a series of
biochemical reactions. They are classified into glucocorticoids (GC) and mineralocorticoids
(MC). Mammals mainly secrete corticosteroids from the adrenal cortex, while teleost fish
secrete them from interrenal tissue [6]. Corticosteroids play vital roles in many physiologi-
cal functions, including ion regulation, fluid balance, energy metabolism, respiration, and
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the immune response [7,8]. However, fish lack aldosterone synthase, which is required to
produce a specific mineralocorticoid; therefore, cortisol is considered the major corticos-
teroid in fish [9,10]. In mammals, the effects of cortisol are mediated by two corticosteroid
receptors: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) [11,12].
The type of physiological regulation that occurs depends on which receptor the cortisol
binds to, which is determined by the complex formed (CS–GR or CS–MR) between the
receptor and ligand (corticosteroids). This complex initiates transcription in the target cells
and regulates various physiological processes [13], including ion regulation, fluid balance,
energy metabolism, respiration, and the immune response.

Gills play a vital role in regulating ions in fish and serve as the primary organ for
ionoregulation. During the early developmental stages, before the gills are fully developed,
the skin serves as the main organ for ionoregulation [14,15]. Various studies have explored
the significance of cortisol, along with the GR and/or MR, in fish osmoregulation. Cortisol,
a crucial hormone in euryhaline fish, aids acclimation to seawater and freshwater ion
regulation. Exogenous cortisol was found to regulate the activity of ion transporters,
such as the Na+-K+-ATPase (NKA) and Na+-K+-2Cl− cotransporter (NKCC), which are
responsible for ion secretion by ionocytes. In addition, the expression of the genes encoding
these ion transporters is regulated by cortisol [16–18].

Since gills are directly exposed to the external aquatic environment, they function in
gas exchange, acid–base balance, and ion/osmotic regulation [18], and they directly resist
drastic environmental changes, such as heavy metal pollution [5]. A series of studies have
shown that these processes are highly correlated with cortisol and that acclimation to seawa-
ter environments can cause rapid increases in plasma cortisol levels [19–25]. Additionally,
research has also shown that tilapia exposure to cadmium, a heavy metal, can increase
the cortisol levels in the bloodstream [5]. These processes are energy-consuming [5,18,26].
Tseng et al. reported that a group of cells rich in glycogen deposits, called glycogen-rich
cells, are surrounded by ionocytes [27,28]. These cells express a specific form of GP (gill
glycogen phosphorylase isoform, GPGG). In this study, both the GP activity and protein
expression in tilapia gills rapidly increased after transfer from freshwater to seawater.
Simultaneously, the glycogen levels in the gills and liver were significantly depleted after
transfer to seawater. These results suggest that changes in salinity promote the rapid
supply of energy by the ionocytes adjacent to glycogen-rich cells, triggering osmotic regu-
lation [27,28]. These results indicate that glycogenesis and glycogenolysis in the gills are
involved in energy metabolism during acclimation to salinity changes [27,28], with cortisol
potentially playing an important role. However, the detailed mechanisms remain unclear.
No studies have elucidated the regulatory mechanisms of cortisol- and glycogen-rich cells
in the gills during acclimation to salinity changes.

The Mozambique tilapia (Oreochromis mossambicus) is a euryhaline teleost species
known for its strong salinity adaptation ability [29–31]. It can adapt to a wide range of
salinities, from freshwater to seawater, and can even tolerate extremely low-ion water
and high-salinity environments twice that of seawater. Owing to the well-defined types
of ionocytes in freshwater and seawater, Mozambique tilapia is considered a suitable
model for studying ionocyte regulation [32]. Additionally, this fish species is a maternal
mouthbrooder, meaning the female carries fertilized eggs in its mouth until hatching,
enabling researchers to obtain embryos for research purposes throughout the year. Previous
studies have provided ample evidence regarding the cortisol levels in the plasma and
glycogen-rich cell-related research in response to environmental stressors in tilapia, making
it a suitable experimental species for this study [5,27,28].

In this study, we chose the euryhaline Mozambique tilapia as an animal model to
investigate whether cortisol regulates GPGG or GS gene expression. We further designed
experiments to determine whether cortisol affects gill glycogen metabolism and function
through the GR, using the GR antagonist RU-486. Therefore, we treated tilapia larvae with
exogenous cortisol to understand how cortisol acts on glycogen-rich cells through the GR
by inhibiting GR function using antagonists.
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2. Materials and Methods
2.1. Experimental Animals

Adult tilapia (Oreochromis mossambicus) weighing 30–60 g and measuring 9–15 cm in
length were obtained from stocks maintained at the National University of Tainan, Taiwan.
The fish were housed in a freshwater (local tap water; [Ca2+], 0.20 mM; [Mg2+], 0.16 mM;
[Na+], 0.5 mM; [K+], 0.3 mM; [Cl−], 0.45 mM) circulating system at 28 ± 0.5 ◦C, with a
14:10 h light:dark photoperiod. Tilapia larvae were obtained as follows: fertilized eggs were
collected from the mouths of female tilapia during mouthbrooding and incubated in aerated
freshwater. The fertilized eggs were used immediately upon hatching, with no feeding
occurring during the incubation period. The adult fish and larvae were anesthetized using
buffered 0.03% MS-222 (tricaine; Sigma-Aldrich, St. Louis, MO, USA) and dissected for
subsequent experiments. The Institutional Animal Care and Use Group (Approval No.
IACUG1050005) of the National University of Tainan reviewed and approved the animal
use protocol. The 3R (reduce, replace, and refine) policy for animal handling followed the
guidelines of the National Science and Technology Council of Taiwan.

2.2. Cortisol and Receptor Antagonist Treatment of Tilapia Larvae

The cortisol dosage was determined using previously established methods [33–38]. A
cortisol (hydrocortisone, Sigma-Aldrich, Burlington, MA, USA) stock solution was prepared
in dimethyl sulfoxide (DMSO) and then diluted to a final working solution (20 mg/L) in
aerated tap water. Tilapia larvae were treated with cortisol media immediately after
hatching. Newly hatched tilapia larvae were randomly divided into the control and drug
treatment groups for the drug treatment experiments. The timing of the drug treatment was
based on previous studies of glycogen metabolism in Mozambique tilapia [27,28]. After
the experiments, three tilapia larvae were collected as a sample and five or six replicates
(N = 5 or 6) were performed. Each experiment was performed with three replicates. The
incubation media were refreshed daily to ensure consistent cortisol levels were maintained.
The GR antagonists dosage were determined according to previous studies [38–40]. Tilapia
larvae were grown in 10 µg/mL RU486 (GR antagonist, Sigma-Aldrich, Burlington, MA,
USA) with 20 mg/L cortisol and then incubated in an incubator at 28 ◦C, and the medium
was changed every day. In this study, higher dosages of cortisol and antagonists were
employed as compared to some previous studies. Nonetheless, no significant mortality
or aberrant behavior was noted. The used dosages of cortisol and antagonists had been
proven to work in cultured gills and fish larvae in previous studies [33,35–38,38–40]. After
the experiments, the tilapia larvae were anesthetized with buffered 0.03% MS-222 (Tricaine,
Sigma-Aldrich, Burlington, MA, USA) for further analysis.

2.3. Total RNA Extraction

To extract the total RNA, the samples were homogenized in 1 ml of TRIzol reagent
(Thermo Fisher Scientific, Waltham, MA, USA) and mixed with 0.2 ml of chloroform. The
mixture was shaken thoroughly and centrifuged at 12,000× g at 4 ◦C for 45 min. An equal
volume of isopropanol was added to the sample, and the mixture was then centrifuged
at 12,000× g (4 ◦C, 30 min) to precipitate total RNA pellets. The pellets were washed
twice with 70% alcohol via centrifugation at 12,000× g (4 ◦C, 30 min). The quantity and
quality of the total RNA were assessed by the absorbance at 260 and 280 nm and by gel
electrophoresis, and the samples were then stored at −20 ◦C until use.

2.4. Real-Time PCR

Next, we synthesized cDNA from the tilapia samples using the GoScript™ Reverse
Transcription System (Promega, Madison, WI, USA) and poly(dT) primers. A StepOne Plus
Real-Time PCR System (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA)
was used to perform the real-time PCR in a final reaction volume of 20 µL, containing 10 µL
of Fast SYBR™ Green Master Mix (Applied Biosystems, Thermo Fisher Scientific), 300 nM of
the forward and reverse primers, 20–30 ng of cDNA, and nuclease-free water. The following
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primer sequences were used: GPGG forward (5′-CGAGCCCAGGGAAGCCATCGAA-3′)
and reverse (5′-TGAAGGCTTAAACCAAACAGGAA-3′), a 105 bp fragment (accession
no. DQ010415.1), GS forward (5′-TGGGATACTGCTCAGACTGTGA-3′) and reverse
(5′-TGTCCTCCAGCATGTTGTGAGT-3′), a 187 bp fragment (accession no. EF565371.1),
and β-actin forward (5′-CGGAATCCACGAAACCACCTA-3′) and reverse (5′-ATCTCCTG-
CATCCTGTCA-3′), a 135 bp fragment. The primers were obtained from previous stud-
ies [27,28]. β-actin was used as an internal control to normalize the mRNA expression, as
described previously [28].

2.5. RNA Probe Synthesis

The RNA probe synthesis for in situ hybridization was performed as per previous stud-
ies [28,38,41]. Fragments of tilapia GR obtained via PCR were inserted into a pGEM-T easy vector
(Promega). The primer set for GR included the forward (5′-TGATGGCAGGCATGAATCT-3′)
and reverse (5′- =GACAAACTCGCTGCAAATC-3′) sequences, a 518 bp fragment (acces-
sion no. AB771724.1). For the in situ hybridization, RNA probes were synthesized using
the DIG RNA Labeling Mix via in vitro transcription with T7 and M13 RNA polymerases
(Promega). The labeled RNA probes were examined using RNA gels and dot-blot assays to
confirm their quality and concentration.

2.6. In Situ Hybridization

The in situ hybridization was performed as per previous studies [41,42]. Briefly,
the excised gills were fixed overnight with 4% paraformaldehyde in PBS. The fixed gills
were washed with PBS and cryoprotected in 30% sucrose before being embedded in OCT
compound embedding medium (Sakura, Tokyo, Japan) at −20 ◦C. Cross-sections of 10 µm
were cut from the frozen tissue blocks using a CM 3050S rapid sectioning cryostat (Leica,
Heidelberg, Germany) and mounted onto hydrophilic adhesion slides (PLATINUM PRO,
MATSUNAMI, Osaka, Japan). Before the in situ hybridization, the slide-mounted gill
sections were air-dried and rehydrated using a series of methanol and PBST (PBS with 0.1%
Tween-20) mixtures.

The hybridization mix (HM) contained 50% formamide, 5 × saline sodium citrate
(SSC), 9.2 mM citric acid, and 0.1% Tween-20. The slides were washed with PBST several
times and then incubated in the pre-hybridization mix (HM+; HM with 500 ng/mL yeast
tRNA and 50 µg/mL heparin) for two hours before being hybridized with the RNA
probes (200 µL HM+ containing 30~50 ng DIG-labeled/fluorescein-labeled RNA probe) at
70 ◦C overnight.

Next, the hybridized slides were washed at 70 ◦C for 10 min in 100% HM (without
tRNA and heparin), 10 min in 75% HM and 25% 2 × saline sodium citrate (SSC), 10 min in
50% HM and 50% 2 × SSC, 10 min in 25% HM and 75% 2 × SSC, 10 min in 2 × SSC, and
finally, 30 min in 0.2 × SSC (this final step was repeated twice). The hybridized slides were
then washed at room temperature for 10 min in 75% 0.2 × SSC and 25% PBST, 10 min in
50% 0.2 × SSC and 50% PBST, 10 min in 25% 0.2 × SSC and 75% PBST, and 10 min in PBST.

The washed slides were incubated for two hours in blocking buffer containing 5%
sheep serum and 2 mg/mL bovine serum albumin (BSA) in PBST and then transferred
into alkaline phosphatase-conjugated anti-DIG antibody (1:5000 dilution; Roche, Basel,
Switzerland) and incubated overnight at 4 ◦C. Finally, the sections were washed with PBST
six times for 15 min each and then transferred into alkaline Tris buffer containing 0.1 M
Tris HCl (pH 9.5, 0.05 M MgCl2, 0.1 M NaCl, and 0.1% Tween 20). The tissues were stained
with a mixture of 225 µg/mL NBT (Nitro Blue Tetrazolium) and 175 µg/mL BCIP (5-Bromo
4-Chloro 3-indolyl Phosphate) in alkaline Tris buffer. The labeling reaction was stopped
with stop solution (containing 1 mM EDTA and 0.1% Tween 20 in 1 × PBS, pH 5.5) once
the signal was strong enough for analysis.
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2.7. Immunohistochemistry (IHC) of Gill Sections

After the in situ hybridization, the sections were sequentially washed at room temper-
ature for 10 min each in 25% PBST, 75% methanol, 50% PBST, 50% methanol, 75% PBST, 25%
methanol, and PBST. The sections were then incubated with 3% BSA in PBST for 2 h at room
temperature. The samples were subsequently treated with anti-human glycogen synthase
polyclonal antibody (diluted 1:200; Rockland Immunochemicals, Pottstown, PA, USA) and
incubated overnight at 4 ◦C. Subsequently, the samples were washed six times with PBST
for 10 min each and incubated with Alexa Fluor 488 goat anti-rabbit IgG antibodies (Thermo
Fisher Scientific, diluted 1:400 with PBS) for 2 h at room temperature. The stained sections
were mounted using Fluoromount-G mounting medium (Southern Biotech, Birmingham,
AL, USA) and visualized using a Zeiss LSM 780 confocal microscope.

2.8. Statistical Analysis

Data were presented as the mean ± SD and were analyzed via a one-way analysis of
variance (ANOVA) with Tukey’s comparisons (p < 0.05) and Student’s t test.

3. Results
3.1. GPGG and GS mRNA Expression after Exogenous Cortisol Exposure

Tilapia larvae were treated with 20 mg/L cortisol to determine whether cortisol
regulates glycogen metabolism [38]. Real-time PCR was performed to measure the GPGG
and GS mRNA levels after cortisol treatment. Primers for GPGG and GS were designed
based on previous studies [27,28]. The results showed that the expression of GPGG mRNA
in the tilapia larvae was significantly upregulated after one day of exposure to cortisol
(t = 6.171, df = 10, p < 0.0001), whereas the expression of GS was significantly suppressed
(t = 3.161, df = 10, p = 0.0051) (Figure 1). This indicates that cortisol may be involved in
glycogen metabolism in tilapia gills by promoting GPGG gene expression.
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Figure 1. Effects of exogenous cortisol on the gill glycogen phosphorylase isoform (GPGG) and
glycogen synthase (GS) mRNA expression in tilapia larvae. Tilapia (Oreochromis mossambicus) larvae
were immersed in exogenous cortisol (20 mg/L) immediately after hatching for 1 day. Three tilapia
larvae were collected as one sample, and six replicates were performed (N = 6). The mRNA expression
was analyzed using real-time PCR, and the values were normalized to β-actin. * Indicates a significant
difference (p < 0.05) using Student’s t-test. Values indicate the mean ± SD (N = 6).

3.2. GPGG and GS mRNA Expression after Exogenous Cortisol Exposure from 12 to 18 h

A previous study has suggested that cortisol affects glycogen metabolism via GPGG
and GS in tilapia larvae. However, according to Chang et al. [27], GP activity rapidly
increased within 24 h in tilapia when faced with environmental stress from salinity. There-
fore, we investigated whether cortisol alters the gene expression of GPGG and GS within
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a shorter timeframe. We collected tilapia larvae treated with 20 mg/L cortisol for 12 and
18 h as experimental samples and conducted real-time PCR to measure the mRNA levels of
GPGG and GS after the cortisol treatment. The results showed that the mRNA expression
levels of GPGG were significantly upregulated (12HR Group: t = 2.844, df = 10, p = 0.0087;
18HR Group: t = 2.487, df = 10, p = 0.0161) (Figure 2A), whereas there was no significant
difference in the expression levels of GS (12HR Group: t = 1.093, df = 10, p = 0.15; 18HR
Group: t = 1.48, df = 10, p = 0.0848) (Figure 2B). This result demonstrates that cortisol
promotes GPGG gene expression from 12 h post-treatment but does not affect that of GS.
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Figure 2. Effects of exogenous cortisol on the GPGG (A) and GS (B) mRNA expression in tilapia
larvae from 12 to 18 h. Tilapia (Oreochromis mossambicus) larvae were immersed in exogenous cortisol
(20 mg/L) immediately after hatching from 12 to 18 h. Three tilapia larvae were collected as one
sample, and six replicates were performed (N = 6). The mRNA expression was analyzed using real-
time PCR, and the values were normalized to β-actin. * Indicates a significant difference (p < 0.05)
using Student’s t-test. Values indicate the mean ± SD (N = 6).

3.3. GPGG and GS mRNA Expression after Exogenous Cortisol Exposure from 3 to 9 h

The above results indicate that the gene expression of GPGG in the tilapia significantly
increased starting from 12 h after treatment with exogenous cortisol, and this increase
persisted until 24 h. However, according to previous studies, the plasma cortisol levels in
tilapia rapidly increased within a very short time in response to environmental stressors,
such as salinity or cadmium exposure [5,24,25,43]. Therefore, we investigated whether
cortisol is involved in GPGG and GS gene expression within 12 h. To test this hypothesis,
we collected tilapia larvae treated with 20 mg/L cortisol for 3 to 9 h as experimental
samples and performed real-time PCR to measure the mRNA levels of GPGG and GS
after the cortisol treatment. The results showed that there was no significant difference in
the expression levels of GPGG (3HR Group: t = 0.6172, df = 10, p = 0.2755; 6HR Group:
t = 0.7614, df = 10, p = 0.2320; 9HR Group: t = 1.035, df = 10, p = 0.1626) (Figure 3A) and GS
(3HR Group: t =0.3483, df = 10, p = 0.3674; 6HR Group: t = 0.4969, df = 10, p = 0.3150; 9HR
Group: t = 0.7236, df = 10, p = 0.2429) (Figure 3B) mRNA in the tilapia larvae exposed to
cortisol for 3, 6, or 9 h.

3.4. Localization of GR mRNA and Glycogen-Rich Cells in Adult Tilapia Gill Sections

Our results indicate that cortisol affects glycogen metabolism by promoting gene
expression. However, there is no evidence to suggest that cortisol directly participates in
glycogen metabolism in the gills of tilapia, and no studies have proposed a relationship
between the GR and glycogen-rich cells. We speculated that cortisol may act directly
on glycogen-rich cells. To test this hypothesis, we examined the expression of the GR
and GS proteins in cryosections of adult tilapia gills. Double staining was performed to
label the GR mRNA (black) using in situ hybridization (Figure 4A) and the GS protein
(glycogen-rich cell marker, green) using immunostaining (Figure 4B). We found that the
GR mRNA colocalized with glycogen-rich cells (Figure 4C). This result suggests that GR
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is expressed in glycogen-rich cells and that cortisol acts directly on these cells to regulate
glycogen metabolism.
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(20 mg/L) immediately after hatching from 3 to 9 h. Three tilapia larvae were collected as one sample,
and six replicates were performed (N = 6). The mRNA expression was analyzed using real-time PCR,
and the values were normalized to β-actin. Values indicate the mean ± SD (N = 6).
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colocalized with GS (white arrows) in the glycogen-rich cells. Scale bar: 20 µm.

3.5. GPGG mRNA Expression after GR Antagonist Exposure

Based on information from the previous experiment, we hypothesized that cortisol
may activate glycogen metabolism via GR signaling by promoting GPGG gene expression.
To support this hypothesis, we conducted real-time PCR to measure the GPGG and GS
mRNA levels after treatment with cortisol and a GR antagonist. Initially, we exposed
20 mg/L cortisol-treated tilapia larvae to RU486. After exposure for one or three days, the
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tilapia larvae were subjected to real-time PCR for the mRNA expression measurements. The
results demonstrated that the GPGG mRNA expression levels were sharply upregulated
in the tilapia larvae after cortisol exposure, and this upregulation was abolished after co-
treatment with GR antagonists after one day of exposure (Figure 5A). This further confirms
our hypothesis that cortisol acts directly on glycogen-rich cells in the gills of tilapia and
regulates glycogen metabolism by promoting GPGG mRNA expression.
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Figure 5. Effects of exogenous cortisol and GR antagonists on the GPGG and GS mRNA expression
in tilapia larvae. Tilapia (Oreochromis mossambicus) larvae were immersed in exogenous cortisol
(20 mg/L) and GR antagonist (RU-486) (10 µg/mL) immediately after hatching. Three tilapia larvae
were collected as one sample, and five replicates were performed (N = 5). The experimental samples
were treated with the drug for 1 day post-hatching (1 dph) (A,B) and 3 days (3 dph) (C,D). The
mRNA expression was analyzed using real-time PCR, and the values were normalized to β-actin).
ab Indicate a significant difference (p < 0.05) using Tukey’s multiple comparison test following a
one-way ANOVA. For the letters on each data bar, if no same letter can be found on two data bars,
the difference between the two data is statistically significant (p < 0.05); otherwise, the difference
between two compared data is not statically significant. Values indicate the mean ± SD (N = 5).

4. Discussion

We found that treatment with exogenous cortisol significantly increased the GPGG
mRNA expression in larval tilapia. We used RNA probes specific to the tilapia GR gene to
demonstrate that GR was present in glycogen-rich gill cells. We also provided pharmaco-
logical evidence that cortisol mediates glycogen metabolism by promoting GPGG mRNA
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expression through the GR. The GPGG expression increased significantly after 12 h of
exogenous cortisol treatment and continued until 24 h of treatment. These results suggest
that cortisol acts directly on glycogen-rich cells and regulates hepatic glucose metabolism
by promoting GPGG gene expression. In contrast, cortisol did not appear to directly affect
GS gene expression.

Glycogen metabolism is the primary pathway for energy acquisition in both ver-
tebrates and invertebrates, particularly under environmental stress [3,4,44,45]. Teleosts
require energy to cope with physiological regulation and environmental acclimation dur-
ing stress responses. Under cadmium exposure, tilapia (Oreochromis mossambicus) used
glycogen to produce energy to combat adversity in the gills [5]. When exposed to low-
temperature environments, seawater-acclimated milkfish (Chanos chanos) used gill glycogen
and lactate to meet the energy demands of aerobic ionocyte metabolism [46]. In a salinity
challenge, glycogen utilization was observed in the gills of tilapia (Oreochromis mossambicus)
and blue-spotted mudskippers (Boleophthalmus pectinirostris) to meet the energy demand for
osmoregulation [27,28,47]. Glycogen is primarily stored in the skeletal muscles and liver
of vertebrates as the primary carbohydrate reserve, providing tissues with an available
source of glucose. Research has shown that this mechanism is similar to that in the gills.
Glycogen-rich cells, a group of cells with glycogen deposits adjacent to the ionocytes,
express a specific gill glycogen phosphorylase isoform (GPGG) [27,28]. The GP activity and
protein expression in the gills of tilapia increased rapidly after transfer from freshwater
to seawater, whereas the glycogen levels in the gills and liver decreased significantly after
transfer to seawater. These results suggest that changes in salinity promote the rapid energy
supply from the ionocytes adjacent to glycogen-rich cells, triggering an osmoregulatory
mechanism [27,28].

Cortisol, the primary corticosteroid hormone, exerts its effects through the GR and/or
MR in fish. Numerous studies have demonstrated that teleosts exhibit a rapid elevation
in plasma cortisol levels in response to environmental stressors [5,19–25,43,48]. Prior
investigations have revealed that cortisol is involved in the adaptive responses of freshwater
and seawater fish, with the ionocytes in the skin and gills serving as crucial mediators
of osmoregulation and ion regulation [17,18,43,49–52]. In previous studies conducted by
Lin et al., cortisol was administered to tilapia larvae to examine the influx of Ca2+ and
the expression of relevant ion transporters, such as the epithelial Ca2+ channel (ECaC),
during embryonic development. These findings demonstrate that cortisol can elevate
the Ca2+ levels in tilapia larvae by upregulating the expression of ECaC proteins [38].
Some studies have indicated that changes in the proportion and morphology of ionocytes
during environmental acclimation in teleost fish are associated with cortisol-induced cell
differentiation and proliferation [33,53–65]. However, these mechanisms require significant
energy. To date, only a few studies have investigated the mechanisms of cortisol and
glycogen in the liver and muscles of teleosts [25,48], and there is no direct evidence to
suggest that the glycogen-rich cells in fish gills have a similar mechanism.

Herein, we treated tilapia larvae with exogenous cortisol and measured the gene
expression of GPGG and GS using real-time PCR. The gene expression of GPGG increased
significantly from 12 h post-treatment (Figure 2A) and continued until 24 h post-treatment
(Figure 1). The cortisol treatment appeared to have inconsistent effects on GS gene expres-
sion, with little to no significant effects, which may be due to GPGG being a specific form
expressed in the gills [28], while GS is widely distributed in fish tissues [27]. It is also possi-
ble that the GS gene expression in tilapia is not regulated by a single signaling pathway,
and there may be other or multiple mechanisms regulating the expression of GS. To further
confirm the experimental results mentioned above, we conducted in situ hybridization to
determine the GR expression in the gill tissues of tilapia. We found that the GR mRNA
colocalized with glycogen-rich cells (Figure 4C). We also provide pharmacological evidence
to further validate our hypotheses. We exposed the cortisol-treated tilapia larvae to RU-486
(a GR antagonist) and discovered that RU-486 significantly blocked the cortisol-induced
expression of GPGG mRNA, and this upregulation effect was abolished after co-treatment
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with RU-486 (a GR antagonist) after one day (Figure 5A) of exposure. These results suggest
that cortisol regulates glycogen metabolism in the glycogen-rich cells in tilapia gills via the
GR signaling pathway.

Ionocytes, which enclose the embryonic skin, are responsible for maintaining the
osmoregulation of internal fluid homeostasis [66]. As development progresses, ionocytes
emerge in functional organs, such as the gills of adult fish, and eventually become the
primary regulators of osmotic pressure and ion regulation [14,51,52,66–68]. Therefore, the
physiological mechanisms of the skin of tilapia larvae and the gills of adult tilapia are
expected to be similar. In the present study, at least 72 h of cortisol treatment was required
to significantly increase the number of ionocytes in the tilapia larvae. This finding reflects
the fact that approximately 12 h of cortisol treatment is required to significantly increase the
gene expression of GPGG. Although the plasma cortisol levels in tilapia increase rapidly
under salinity challenge [25,43], it is possible that the increase in enzyme activity promotes
glycogen degradation shortly before stimulating gene expression. After three days of
cortisol treatment, the expression of the GS gene in the tilapia significantly increased, which
may be a feedback effect due to liver glycogen depletion. Similar results have been reported
in studies of muscle glycogen metabolism in rainbow trout (Oncorhynchus mykiss) [48],
although the underlying mechanisms remain unclear.

The physiological response of fish to environmental stressors is a complex process,
and energy regulation plays a critical role. In this study, we confirmed that cortisol, as
a stress hormone, regulates glycogen metabolism in the glycogen-rich cells of fish gills
via the GR. Our findings provide initial evidence of cortisol regulation of GPGG gene
expression. However, cortisol may also participate in regulation through other aspects,
such as protein expression, enzyme activity, and transcription or translation regulation
of related genes. In order to gain a deeper understanding of this issue, it is necessary to
explore it from multiple perspectives and employ more meticulous experimental designs.
Transcriptomics has become a mature tool for physiological research, and it could be consid-
ered in the future to further explore the mechanism by which cortisol regulates gill energy
utilization in fish.

5. Conclusions

Extensive research has shown that environmental stressors increase the plasma cortisol
concentration in teleosts, and they also promote GP activity and gene expression to provide
energy for glycogenolysis. However, there is no evidence that cortisol participates in
glycogen metabolism in the glycogen-rich cells in fish gills. Here, we provide compelling
molecular evidence that cortisol participates in the metabolism of glycogen-rich cells in
the gills of tilapia. Exogenous cortisol treatment promotes GPGG gene expression. Co-
treatment with exogenous RU-486 confirmed that cortisol participates in glycogenolysis
in glycogen-rich cells via the GR. In slice experiments, we found that GR colocalized with
glycogen-rich cells, supporting our previous experimental finding that cortisol regulates
glycogen metabolism via the GR. In summary, our study provides the first evidence that
cortisol participates in glycogen metabolism in the glycogen-rich cells of tilapia gills.
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