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Abstract: Examining temporal changes in the growth and generation time of fish species can be valu-
able for understanding population responses to different management measures and environmental
conditions. Atlantic herring (Clupea harengus-Linnaeus, 1758) is an ecologically and commercially
important pelagic forage fish species that occupies the southern Gulf of St. Lawrence. Here, we
developed von Bertalanffy growth curves and estimated yearly values of generation time for NAFO
Division 4TVn Atlantic herring for the years from 1988 to 2021. The results indicate a temporal
reduction in the growth and generation time of both spring and fall spawning herring. Over the
time series, the generation time of spring and fall spawners reduced by approximately 1 and 2 years,
respectively. Furthermore, the average generation time of spring spawners across the time series
(6.23 years (95% CI: 5.78–6.85 years)) was approximately 1 year lower than that of fall spawners
(7.52 years (6.82–8.34 years)). Overall, the findings of this study can be used to better inform stock
assessments and rebuilding plans for 4TVn spring and fall spawning Atlantic herring and highlight
the importance of examining temporal trends in growth and generation time for more effective
management of fish stocks.

Keywords: Atlantic herring; life history; growth; generation time; stock assessment

Key Contribution: The growth and generation time of Atlantic herring from the southern Gulf of
St. Lawrence has been estimated to decline over time. Over 34 years, the generation time of spring
and fall spawners has been reduced by approximately 1 and 2 years, respectively, while the average
generation time of spring spawner (6.23 years) has been found to be approximately 1 year lower than
that of fall spawners (7.52 years).

1. Introduction

Atlantic herring (Clupea harengus-Linnaeus, 1758) is an ecologically and commercially
important pelagic forage fish species that occupies the southern Gulf of St. Lawrence from
the north shore of the Gaspe Peninsula down to the northern tip of Cape Breton Island,
Nova Scotia, Canada (Northwest Atlantic Fisheries Organization (NAFO) Division 4T; see
Figure 1) [1,2]. Within the southern Gulf of St. Lawrence, Atlantic herring consist of two
genetically distinct stocks, a spring spawning and fall spawning stock [3], which generally
spawn from April to May and mid-August to mid-October, respectively [4]. Individuals
are known to overwinter along the north and east coasts of Cape Breton Island in NAFO
Division 4T and 4Vn [5]; therefore, the stocks are referred to and assessed as 4TVn spring
and fall spawning Atlantic herring [1,6].

The population dynamics and life history of exploited stocks are important to evaluate
to better understand how stocks respond to variations in abiotic and biotic factors (e.g.,
environmental conditions, fishing pressure) and to conceptualize the current state of a stock
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with respect to previous states [7]. One key aspect of population dynamics is growth, as it
has implications for survival, length-at-age, reproduction, generation time, and various
other population processes [8]. The von Bertalanffy growth curve [9] is commonly used to
describe the growth of fish and is a staple in fisheries science. Examining changes in growth
through time can be valuable for identifying responses to different management measures
and environmental conditions. Furthermore, parameters from growth curves can be used
to compute other ecologically important population parameters such as generation time.
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Figure 1. Map of the southern Gulf of St. Lawrence showing NAFO Divisions 4T and 4Vn.

Generation time is the average age of parents when their offspring are born, and is a
valuable measure to estimate when examining the life history and population dynamics
of a species [10]. For iteroparous fish species, generation time is typically greater than the
age-at-maturity, but smaller than a species maximum observed age. Generation time allows
researchers and managers to understand the turnover of individuals in a population and
can help identify reproductive changes in response to various stressors. Recent evidence
suggests the length- and age-at-maturity of Atlantic herring in the Gulf of St. Lawrence
has undergone combined environmental- and fishing-induced changes through time [11].
Therefore, it is expected that generation time has also been impacted. Generation time is a
valuable measure for the development of rebuilding plans and can be incorporated in stock
assessments; yet, to the best of our knowledge, no generation time estimates exist for 4TVn
Atlantic herring.

Accordingly, we aim to generate annual and overall von Bertalanffy growth curves
and derive associated annual and overall estimates of generation time for both spring and
fall spawning 4TVn Atlantic herring stocks to help better inform stock assessments and
rebuilding plans for the stocks.

2. Materials and Methods

Atlantic herring length, age (derived from otolith reading), and spawning component
assignment (i.e., spring or fall spawner) were obtained from the commercial fishery and
scientific sampling activities routinely performed for the stock assessments for 4TVn spring
and fall spawning Atlantic herring [1]. All details relating to sample collection, ageing,
and spawning component assignment are outlined in the most recent 4TVn spring and
fall spawning Atlantic herring stock assessment [1]. Length-at-age von Bertalanffy growth
curves [9] were fitted to spring and fall spawning herring length and age data for Atlantic
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herring captured between 1988 and 2021 in the southern Gulf of St. Lawrence. Von
Bertalanffy growth curves were fitted using non-linear regression [9] as follows:

La = L∞

(
1 − e−K(a−t0)

)
(1)

where La is the length-at-age a, L∞ is the asymptotic length in mm, K is the growth co-
efficient, which describes the rate at which growth slows as the asymptotic length is
approached, and t0 is the theoretical age that fish length would be zero. Starting values
were selected and model fitting was conducted following Ogle et al. [12] using the FSA
package [13] in R version 4.2.2 [14].

Von Bertalanffy growth curves were also fitted to spring and fall spawning herring
length and age data in each year to allow the examinations of changes in growth and
generation time across the time series. Year-specific growth curves were developed using
non-linear regression with the equation:

La,y = L∞,y

(
1 − e−Ky(a−t0,y)

)
(2)

where La,y is the length at age a for year y, L∞,y is the asymptotic length (mm) in year y, Ky
is the growth coefficient in year y, and t0,y is the theoretical time that fish length would
be zero for year y. The asymptotic length was plotted through time for spring and fall
spawning herring to examine temporal changes in asymptotic length and determine if
herring are getting larger or smaller through time.

In order to generate estimates of generation time, we first derived estimates of the
length class that would theoretically have the highest biomass in an unfished population
(Lopt) for each year following Beverton [15] and Froese et al. [16] using the equation:

Lopt,y = L∞,y

(
3(

3 + My/Ky
)) (3)

where L∞,y is the asymptotic length in mm from the von Bertalanffy growth curve in year
y, Ky is the growth coefficient from the von Bertalanffy growth curve in year y, and My
is the natural mortality of the population in year y. Estimates of natural mortality for
spring and fall spawning herring were extracted from the most recent stock assessment
for 4TVn Atlantic herring [1]. Within the stock assessment, estimates of natural mortality
are presented for young (ages 2–6) and older (ages 7–11+) herring; therefore, here we
utilize biomass-weighted average natural mortality estimates of young and older herring
to provide an estimate of natural mortality across age classes.

Generation time of spring and fall spawning herring was then estimated following
Froese et al. [16] using the equation:

GTy = t0e,y −
ln
(

1 − Lopt,y
L∞,y

)
Ky

(4)

Typically, t0 obtained directly from the fitted von Bertalanffy growth curve that is
estimated from length and age data is unrealistic as growth in early life history stages (i.e.,
larval stages) differs from growth after metamorphosis. Therefore, in order to provide more
realistic estimates of generation time, we used a previously developed empirical equation
9to compute t0e,y from L∞,y and Ky, for use in the generation time estimate following Froese
et al. [16]. The empirical equation for t0e,y was computed as follows:

log
(
−t0e,y

)
= −0.3922 − 0.2752logL∞,y − 1.038logKy (5)

where L∞,y is the asymptotic length in mm from the von Bertalanffy growth curve in year y,
Ky is the growth coefficient from the von Bertalanffy growth curve in year y. Generation
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time estimates were plotted across the time series for spring and fall spawning herring to
evaluate how generation time has varied temporally. Average generation time was also
computed to provide a general estimate of generation time across the time series. All
analysis was conducted in R version 4.2.2 [14].

3. Results
3.1. Von Bertalanffy Growth Curves

For spring spawning herring, a von Bertalanffy curve fitted across all years of data
was described by the equation:

La = 330.86
(

1 − e−0.34(a+1.42)
)

(6)

(Non-linear regression, df = 66047, RSE = 19.1, p < 0.0001.)
The growth of spring spawning herring shifted through time as indicated by the yearly

von Bertalanffy growth curves (Table 1; Figures 2 and 3, all p < 0.0001). The asymptotic
length of spring spawning herring von Bertalanffy models (L∞) generally decreased across
the time series (Figure 4) and showed substantial inter-annual variation with a maximum
value of 363.22 mm (95 % CI: 360.81–365.58 mm) in 1992 and a minimum of 291.87 mm
(288.47–295.81 mm) in 2015.
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the dotted portion of lines are extrapolated to ages not observed.
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Table 1. The von Bertalanffy parameter estimates of asymptotic length (L∞; mm), the growth
coefficient (K), and the theoretical time fish length would be zero (t0; years) for spring spawning
herring. Parameter estimates are shown for the von Bertalanffy growth curve fitted for each year
and for all data combined. The lower (LCI) and upper (UCI) 95% CI for each parameter estimate are
also reported.

Year L∞ K t0 L∞LCI L∞UCI KLCI KUCI t0LCI t0UCI

1988 345.55 0.36 −1.10 342.47 348.68 0.35 0.38 −1.14 −1.06
1989 347.90 0.35 −1.34 345.67 349.92 0.33 0.36 −1.40 −1.29
1990 362.26 0.29 −1.59 359.10 365.62 0.28 0.30 −1.65 −1.54
1991 354.63 0.32 −1.39 352.79 356.73 0.31 0.33 −1.44 −1.35
1992 363.22 0.26 −1.98 360.81 365.58 0.25 0.26 −2.06 −1.90
1993 341.90 0.33 −1.36 339.50 344.54 0.31 0.34 −1.44 −1.28
1994 346.28 0.27 −1.63 343.41 349.38 0.26 0.28 −1.70 −1.57
1995 345.92 0.28 −1.63 341.55 350.42 0.27 0.29 −1.71 −1.57
1996 332.04 0.32 −1.37 328.49 335.87 0.31 0.34 −1.45 −1.29
1997 331.74 0.34 −1.31 329.41 334.13 0.33 0.35 −1.37 −1.24
1998 332.23 0.34 −1.47 330.42 334.06 0.33 0.35 −1.56 −1.39
1999 335.17 0.31 −1.56 333.41 337.17 0.30 0.32 −1.65 −1.50
2000 337.84 0.30 −1.71 335.77 339.71 0.29 0.31 −1.82 −1.62
2001 339.13 0.29 −1.83 337.57 340.73 0.29 0.30 −1.90 −1.77
2002 332.97 0.34 −1.39 331.04 335.00 0.33 0.35 −1.46 −1.32
2003 337.35 0.29 −2.08 334.21 340.75 0.27 0.30 −2.28 −1.90
2004 330.85 0.34 −1.35 328.41 333.43 0.33 0.35 −1.43 −1.29
2005 326.96 0.33 −1.41 323.63 330.23 0.32 0.35 −1.49 −1.34
2006 315.97 0.39 −1.33 311.79 320.62 0.36 0.42 −1.46 −1.19
2007 311.77 0.42 −1.13 308.20 315.47 0.39 0.44 −1.23 −1.04
2008 313.99 0.40 −1.14 310.94 317.14 0.38 0.43 −1.22 −1.07
2009 311.23 0.42 −1.10 307.77 314.71 0.40 0.45 −1.17 −1.03
2010 314.96 0.35 −1.31 311.86 317.98 0.33 0.37 −1.39 −1.23
2011 308.48 0.34 −1.43 305.19 312.11 0.32 0.36 −1.55 −1.31
2012 303.39 0.37 −1.20 298.77 308.88 0.34 0.40 −1.34 −1.08
2013 311.40 0.33 −1.30 307.87 314.55 0.32 0.35 −1.41 −1.21
2014 307.74 0.34 −1.41 303.30 312.23 0.31 0.36 −1.53 −1.30
2015 291.87 0.44 −1.20 288.47 295.81 0.41 0.47 −1.33 −1.08
2016 311.61 0.33 −1.39 307.83 315.94 0.31 0.36 −1.51 −1.26
2017 312.21 0.32 −1.70 307.66 317.16 0.29 0.36 −2.14 −1.39
2018 312.92 0.32 −1.46 308.99 316.94 0.30 0.34 −1.56 −1.37
2019 313.94 0.30 −1.76 309.72 319.20 0.28 0.32 −1.91 −1.60
2020 319.94 0.25 −2.32 313.12 330.72 0.21 0.29 −2.98 −1.96
2021 311.04 0.33 −1.37 307.96 314.41 0.31 0.34 −1.44 −1.30
All 330.86 0.34 −1.42 330.36 331.37 0.33 0.34 −1.43 −1.41

For fall spawning herring, a von Bertalanffy growth curve fitted across all years of
data was described by the equation:

La = 345.83
(

1 − e−0.30(a+1.10)
)

(7)

(Non-linear regression, df = 123894, RSE = 19.3, p < 0.0001.)
The growth of fall spawning herring shifted through time as indicated by the yearly

von Bertalanffy growth curves (Table 2; Figures 5 and 6, all p < 0.0001). The asymp-
totic length in the von Bertalanffy models (L∞) generally decreased across the time series
(Figure 7) and showed considerable interannual variations with a maximum of 380.62 mm
(378.57–382.57 mm) in 1994 and a minimum of 310.30 mm (307.805–313.46 mm) in 2014.
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Table 2. The von Bertalanffy parameter estimates of asymptotic length (L∞; mm), the growth
coefficient (K), and the theoretical time fish length would be zero (t0; years) for fall spawning
herring. Parameter estimates are shown for the von Bertalanffy growth curve fitted for each year
and for all data combined. The lower (LCI) and upper (UCI) 95% CI for each parameter estimate are
also reported.

Year L∞ K t0 L∞LCI L∞UCI KLCI KUCI t0LCI t0UCI

1988 363.45 0.35 −0.70 361.01 365.91 0.33 0.36 −0.82 −0.59
1989 365.33 0.37 −0.40 363.43 367.01 0.36 0.39 −0.48 −0.32
1990 371.50 0.34 −0.74 370.17 372.91 0.33 0.35 −0.84 −0.67
1991 369.54 0.34 −0.68 367.93 371.28 0.33 0.36 −0.85 −0.51
1992 372.15 0.31 −0.55 370.18 374.06 0.30 0.32 −0.66 −0.43
1993 377.70 0.27 −0.95 375.33 380.25 0.26 0.28 −1.08 −0.85
1994 380.62 0.25 −0.91 378.63 382.57 0.24 0.25 −0.96 −0.86
1995 374.69 0.24 −1.23 372.36 377.17 0.23 0.25 −1.30 −1.16
1996 363.84 0.28 −0.85 361.68 365.97 0.28 0.29 −0.90 −0.79
1997 363.05 0.28 −1.08 361.33 364.97 0.27 0.29 −1.19 −0.99
1998 368.06 0.23 −1.85 365.44 371.01 0.22 0.24 −2.05 −1.69
1999 346.28 0.33 −0.76 344.50 348.22 0.32 0.34 −0.85 −0.68
2000 343.57 0.35 −0.71 341.88 345.20 0.34 0.36 −0.78 −0.64
2001 339.88 0.35 −0.83 338.08 341.72 0.34 0.36 −0.92 −0.74
2002 335.88 0.36 −0.83 334.19 338.09 0.34 0.37 −0.95 −0.75
2003 354.39 0.23 −2.43 351.00 357.48 0.22 0.25 −2.68 −2.15
2004 335.27 0.36 −0.73 334.19 336.51 0.36 0.37 −0.78 −0.69
2005 336.25 0.32 −1.14 334.31 339.00 0.30 0.33 −1.32 −1.02
2006 335.03 0.34 −0.97 333.23 336.91 0.32 0.35 −1.10 −0.87
2007 337.02 0.31 −1.31 334.45 341.10 0.28 0.33 −1.63 −1.12
2008 328.39 0.37 −0.83 327.16 329.66 0.35 0.37 −0.90 −0.77
2009 333.42 0.33 −1.08 331.55 335.64 0.31 0.34 −1.24 −0.97
2010 328.71 0.31 −1.04 326.98 330.64 0.30 0.32 −1.15 −0.97
2011 338.68 0.24 −1.69 335.19 343.30 0.22 0.25 −1.94 −1.50
2012 340.48 0.23 −1.97 334.21 350.55 0.19 0.25 −2.58 −1.59
2013 317.13 0.33 −1.01 315.06 320.29 0.31 0.34 −1.24 −0.89
2014 310.30 0.34 −1.10 307.80 313.46 0.32 0.36 −1.30 −0.96
2015 321.12 0.30 −1.41 317.59 325.38 0.27 0.32 −1.71 −1.15
2016 318.31 0.35 −0.89 316.63 320.16 0.34 0.36 −1.03 −0.81
2017 335.18 0.23 −2.42 327.32 344.90 0.20 0.27 −3.07 −1.83
2018 328.60 0.27 −1.28 325.28 332.93 0.25 0.28 −1.54 −1.11
2019 326.44 0.28 −1.30 323.54 330.12 0.26 0.29 −1.55 −1.10
2020 326.04 0.28 −1.13 321.26 331.18 0.25 0.32 −1.67 −0.62
2021 324.84 0.31 −0.99 322.91 327.36 0.30 0.33 −1.14 −0.90
All 345.83 0.30 −1.10 345.36 346.30 0.30 0.30 −1.12 −1.08
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portion of lines are extrapolated to ages not observed.
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1988 363.45 0.35 −0.70 361.01 365.91 0.33 0.36 −0.82 −0.59 

1989 365.33 0.37 −0.40 363.43 367.01 0.36 0.39 −0.48 −0.32 

1990 371.50 0.34 −0.74 370.17 372.91 0.33 0.35 −0.84 −0.67 

1991 369.54 0.34 −0.68 367.93 371.28 0.33 0.36 −0.85 −0.51 

1992 372.15 0.31 −0.55 370.18 374.06 0.30 0.32 −0.66 −0.43 

1993 377.70 0.27 −0.95 375.33 380.25 0.26 0.28 −1.08 −0.85 

1994 380.62 0.25 −0.91 378.63 382.57 0.24 0.25 −0.96 −0.86 

Figure 7. The asymptotic length (L∞; line) and associated 95% CI (shaded area) by year estimated
from the yearly von Bertalanffy growth curves for fall spawning Atlantic herring.

3.2. Generation Time

Overall, the average generation time for spring spawning herring from 1988 to 2021
was 6.23 years (95% CI: 5.78–6.85 years). Generation time estimates for spring spawning
herring (Figure 8) reached a maximum of 6.99 years (6.31–8.01 years) in 1990 and then
consistently declined to a minimum of 5.66 years (5.18–6.34 years) in 2003. Following 2003,
the generation time estimates for spring spawning herring fluctuated around 6 years.

Overall, the average generation time for fall spawning herring from 1988–2021 was
7.52 years (6.82–8.34 years). Generation time estimates for fall spawning herring (Figure 9)
gradually rose from 1988 to 2003 and reached a maximum of 9.28 years (7.89–10.97 years)
in 2003. Following 2003, generation time estimates of fall spawning herring experienced
declines, with a major decline around 2011 (~24.5 % decline), and reached a minimum of
6.09 years (5.71–6.76 years) in 2020.
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4. Discussion

We determined that both the asymptotic length and generation time of spring and
fall spawning herring have generally decreased through time when examining length and
age data from 1988 to 2021. Therefore, the use of growth and generation time estimates
averaged across the time series would be inappropriate and misleading when conducting
stock assessments and developing rebuilding plans for 4TVn Atlantic herring. Rather,
incorporating temporally variable estimates of growth and generation time are essential to
provide a more robust understanding of the population dynamics of the species, and to
effectively evaluate changes in population dynamics in response to various stressors.

Based on our results, it appears that across the years, fall spawning herring exhibit
a longer asymptotic length than spring spawning herring, implying fall spawners have
the capacity to grow to a greater length than their spring spawning counterparts. Spring
spawning 4TVn herring have been in the critical zone of the Fisheries and Oceans Precau-
tionary Approach [17] since approximately 2002 [1], which coincides with the reduction
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in the asymptotic length of spring spawners (Figure 6). Alternatively, for fall spawners,
spawning stock biomass (SSB) increased in the early 2000s despite a relatively consistent
asymptotic length that was lower compared to the 1990s. However, around 2011, SSB
declined rapidly [1] and coincided with drops in asymptotic length. Interestingly, the
asymptotic length of Atlantic herring has undergone substantial shifts across the time
series, with general reductions, suggesting both spring and fall spawning herring are not
growing to as large a size as they have historically. This corroborates observations that
size-at-age has generally been decreasing over the last decades across eastern Canada
Atlantic herring spring and fall stocks (4VWX [18], 4R [19], 4S [20]; Newfoundland East
and South coast [21,22]).

A decrease in the sizes of fishes can have wide-ranging negative implications, includ-
ing reduced fecundity and reduced lifetime reproductive output [23,24], which in turn
can negatively impact population productivity and population abundance. Therefore, it
is important to evaluate and account for temporal changes in growth when developing
management and rebuilding strategies for fishes. Furthermore, incorporating temporal
changes in size can facilitate a deeper understanding of the population level implications
of reduced growth [22].

Similar to the observed trends of asymptotic length, the generation times of both
spring and fall spawning 4TVn herring have undergone overall declines across the time
series. Furthermore, results suggest the generation time of spring spawners is on aver-
age approximately 1 year younger than fall spawners. Spring and fall spawners have
experienced a reduction in generation time of greater than 1 and 2 years, respectively.
Specifically, the reduction in the generation of spring spawners in the mid-1990s to early
2000s corresponded with declines in SSB, and a reduction in fall spawning generation
time of approximately 25% occurred around 2010–2012, which coincided with a large
reduction in SSB observed for the stock [1]. A shorter generation time has implications for
population dynamics. A reduced generation time indicates that the age class contributing
most to reproduction is lower; thus, smaller fish are contributing more to reproduction. As
size is exponentially related to reproduction [23,25,26], a reduction in generation time in
conjunction with a reduction in length-at-age would lead to lower fecundity and lower
overall reproductive output, which would negatively impact recruitment and population
abundance. Additionally, recently, Barret et al. [23] found fecundity-at-age and fecundity-
at-size of Atlantic herring has also decreased through time, which would further exacerbate
reductions in overall reproductive output. Egg size is also related to the size of parents,
with smaller females typically producing smaller eggs [27]. Smaller eggs correlate with a
smaller length at hatch, shorter yolk sac duration, and reduced growth rate of early-stage
larvae, all of which could negatively impact larval survival and recruitment [28–30]. Such
a finding further highlights the importance of examining temporal changes in generation
time for effectively understanding past and future population trajectories.

As growth declined while the natural mortality of older herring increased over time,
a decline in generation time was expected. The factors affecting fish somatic growth can
arise from both environmental factors [31] and population dynamics through density
dependence [32]. In Norwegian spring spawning herring, Stenevik et al. [33] found a
significant negative correlation between estimated asymptotic length and fish density.
Investigating 70 fish populations from the northeast Atlantic, Zimmerman et al. [34] found
evidence for density dependence in both recruitment and growth. As seen in the sGSL for
spring spawning herring, food availability affects recruitment [35] and could also explain
some of the variation in the observed growth. The increased natural mortality in older
sGSL herring is assumed to be driven by increased predation [36]. The result is a truncated
age composition, where the populations are now composed of younger fish as adults
were removed by natural mortality. Hence, the length classes that contribute most to
population biomass are from younger fish. When combined with reduced growth, the
yearly generation time estimates can only decline.
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Three main uncertainties are associated with the analysis. First, it is assumed that age
classes and length ranges in each age class are representative of the true population. In
reality, certain age classes have a low sample size in some years (especially ages zero to 2),
and consequently, the range of lengths sampled in each age class may not be inclusive of the
full range. However, the estimation of Linf and K parameters of the von Bertalanffy growth
curves is well informed by the high sample size of ages 3+. Furthermore, the use of t0e,y in
the calculation of generation time likely reduces a potential effect of the low sample size of
ages 0 to 2. A second uncertainty resides in the use of natural mortality estimates for the
Lopt,y calculation, which are derived from a statistical catch-at-age population model that
incorporates time-varying natural mortality [36]. The natural mortality estimates are model
dependent, and thus, values change with each assessment cycle when the population model
is run using more years of data. Therefore, similar analyses conducted in the future will
need to incorporate contemporary estimates of natural mortality. Lastly, von Bertalanffy
growth curves only describe the average growth trajectory, not growth trajectories of each
individual fish; thus, conclusions regarding growth and generation time are averaged
across the stock and are subject to uncertainty, which we have attempted to incorporate
through the propagation of uncertainty and presentation of associated confidence intervals
at each stage of the analysis.

5. Conclusions

Here, we identified temporal trends in the growth and generation time of Atlantic
herring from the southern Gulf of St. Lawrence. Over the time series, the generation time of
spring and fall spawners reduced by approximately 1 and 2 years, respectively. The average
generation time of spring spawner across the time series (6.23 years) was approximately
1 year lower than that of fall spawners (7.52 years). The mechanisms by which reductions
in growth and generation time occur must be investigated in future studies. Overall, the
current study provides valuable temporal estimates of growth and generation time that
can be incorporated into stock assessments and rebuilding plans for 4TVn Atlantic herring.
Furthermore, this analysis provides a useful framework that can be applied to evaluate
changes in growth and generation time of other ecologically or commercially important
fish species.
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