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Abstract: We previously reported on the comparison of proteomic data between seven tissue types
of a novel “iron prawn” species. However, no transcripts or metabolic information are available for
this species. We therefore performed shotgun LC–MS/MS metabonomic and RNA-seq analyses of
the total protein from “iron prawns”. KEGG analysis revealed that the largest group consisted of
a total of 114 KEGG pathway proteins, comparing the “iron prawns” with the normal prawns. A
total of 423 peptides, corresponding to metabolic pathways, ABC transporters, starch and sucrose
metabolism, insulin resistance/secretion, fatty digestion and absorption, and lipid metabolism, were
identified. The pathways of carbohydrate and amino acid metabolism decreased in female iron
prawns, while organic acid and its derivatives increased. However, the pathway of organic acid and
its derivatives decreased and lipid metabolism increased in the male iron prawns. The pathways
of choline metabolism in cancer and glycerophospholipid/histidine/propanoate metabolism have
been significantly affected in iron prawns. Our work provides insight into the understanding of the
formation mechanism of the “iron prawn”.

Keywords: Macrobrachium rosenbergii; metabonomic; transcriptome; LC–MS/MS; iron prawn syndrome

1. Introduction

Iron prawn syndrome (IPS) is a serious disease that endangers the development of
Macrobrachium rosenbergii, with typical symptoms being sexual precocity and slow growth,
resulting in substantial production losses. We previously reported proteomic data on the
“iron prawn”; the results showed that the differentially expressed proteins are involved
in metabolic processes, namely in muscle contraction, digestive system metabolism, cell
differentiation, migration, and apoptosis [1]. Proteomics has only characterized the differ-
entially expressed proteins among different tissues previously; as a technique to a mutually
complement genomics, transcriptomics, and proteomics, metabolomics has been used to in-
vestigate the metabolic responses to environmental stresses in fish, such as in crucian carps
infected by Edwardsiella tarda [2], Perna canaliculus [3], Coilia nasus [4], Eriocheir sinensis [5],
Pseudosciaena crocea [6], Ctenopharyngodon idellus [7], Cynoglossus semilaevis [8], Litopenaeus
vannamei [9], Danio rerio [10], and M. rosenbergii [11], among others.

Gas chromatography–mass spectrometry (GC–MS), liquid chromatography–mass spec-
trometry (LC–MS) and nuclear magnetic resonance (NMR) are the analytical technologies
most frequently used in metabolomics investigations [12,13]. The characteristic benefi-
cial metabolomics in the majority of metabolite structures are not species-specific [14,15].
However, fishes’ metabolic strategy for bacterial infections is largely unknown. In addi-
tion, in crustaceans, especially M. rosenbergii, researchers aim to identify the underlying
pathways through which the animals are exposed to exogenous substances, such as the
hepatopancreatic responses to starvation stress [16].

It appears that the differentially expressed metabolites and genes could be responsible
for growth retardation in the “iron prawn”, but not for the prolonged molt cycle [17].

Fishes 2023, 8, 196. https://doi.org/10.3390/fishes8040196 https://www.mdpi.com/journal/fishes

https://doi.org/10.3390/fishes8040196
https://doi.org/10.3390/fishes8040196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fishes
https://www.mdpi.com
https://doi.org/10.3390/fishes8040196
https://www.mdpi.com/journal/fishes
https://www.mdpi.com/article/10.3390/fishes8040196?type=check_update&version=2


Fishes 2023, 8, 196 2 of 15

However, few studies of the transcriptomics and metabolomics of the “iron prawn” have
previously been conducted. To the best of our knowledge, our report is the first to present
transcriptomic and metabolomic data for M. rosenbergii. In this study, these data were
obtained using shotgun LC–MS/MS (two-dimensional liquid chromatography–mass spec-
trometry) metabolomics strategies and RNA-seq, and the potential pathway and its relative
metabolites have been reported. We report on the identification of a wide range of primitive
metabolite components and genes, and provide an in-depth description of the transcrip-
tomic and metabolomic data from M. rosenbergii.

2. Materials and Methods
2.1. Experimental Sample

This study was approved by Animal Experiment Ethics Committee of Applied Aquatic
Genomics Center, Freshwater Fisheries Research Institute of Zhejiang Province. The body
weights and lengths of the stunted individuals, obtained from a breeding farm in Gaoyou,
Jiangsu Province, were (5.09 ± 0.69) g and (5.27 ± 0.46) cm. Iron and normal prawns
(M. rosenbergii) both cultured in ponds for 40 days were selected (for the difference, see [1]),
and the shrimp were temporarily raised in a 200 L plastic bucket at a temperature of
25 ± 1 ◦C for a photoperiod cycle of 12 h:12 h. The test water was chlorinated tap water,
and pellet feed was supplied daily.

After the shrimp were killed, muscle tissue was collected on ice. In this study, female
iron prawn (MA), male iron prawn (MB), female normal prawn (MC) and male normal
prawn (MD) were sampled (n = 6 per group). Further comparisons (MA vs. MB, MC vs.
MA, MC vs. MD, MD vs. MB) have been performed between different genders, normal and
ion prawns. All muscle tissues were stored in a freezer at −80 ◦C until additional processing
was conducted. The muscle was ultrasonically dismembered in 1 mL acidified methanol,
and the extract was centrifuged (4 ◦C, 18,000× g, 20 min) to collect the supernatant, which
was further processed for metabolomics analysis by shotgun LC–MS/MS. The samples
were taken out from the −80 ◦C freezer and thawed on the ice. To 50 mg of sample,
we added 1000 µL of precooled extractant (70% methanol aqueous solution, containing
1 µg/mL of 2-chlorophenylalanine as internal standard) as well as precooled steel balls.
Homogenization was then conducted for 3 min at 30 Hz. The steel balls were removed
before vortexing the solution for 1 min, which was then left to stand on ice for 15 min.
Centrifuging was conducted for 10 min, 4 ◦C, 12,000 r/min, and the supernatant was
transferred into the inner liner of an injection bottle for LC–MS/MS analysis.

2.2. Metabonomic Analysis
2.2.1. Total Protein Extraction and Peptide Digestion

The sample was ground into a fine powder, resuspended in a 1:3 ratio of BPP (triphenol
protein extraction) solution and swirled at 4 ◦C for 4 min. Saturated phenol solution, am-
monium acetate/methanol solution, pre-cooled acetone, and buffer solution (1% SDS, 8 M
urea, protease inhibitor cocktail) were added. The protein concentration was determined
using a BCA protein assay kit (Beyotime Biotechnology Co., Shanghai, China) in accordance
with the manufacturer’s instructions. The samples were freeze-dried and resuspended in
40 µL trypsin buffer and incubated at 37 ◦C for 16–18 h.

2.2.2. Chromatographic Separation and Mass Spectrometry Identification

The mobile phase A was 0.1% formic acid (H2O) and the mobile phase B was 0.1%
formic acid (ACN). For chromatographic separation, a column filled with C18 material
(1.8 µm, 2.1 mm × 100 mm) from a Waters UPLC column was used. The samples were
transferred to a Zorbax 300 sb-c18 peptide trap (Agilent Technologies, Wilmington, DE,
USA) and then separated with a chromatographic column. The corresponding liquid
gradient was set as 0 to 50 min, and the B-phase gradient was 4–50%. From 50 min to
54 min, the B-phase linear gradient was 50% to 100%. From 54 min to 60 min, the B
phase remained at 100%. The hydrolysates were separated by capillary high-performance
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liquid chromatography and analyzed using a Q-extraction mass spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA). The analysis time was 60 min, and the positive-ion-
detection method was used. Mass/charge (m/z) ratios of peptides and peptide fragments
were collected according to the following purposes. Some 10 fragment maps (MS2 scan)
were obtained after each full scan (m/z 400–1800). Mascot 2.2 software was used to search the
Mascot database and obtain the protein identification results. Mascot is a free online search
engine, and the following search parameters were used: enzyme digestion, trypsin /P;
maximum allowable number of missing sites, 2; fixed modification type, urea methylation
(c); variable modification type, oxidation (m); decoy database model, reverse; primary
ion mass tolerance, ±20 ppm; secondary ion mass tolerance, 0.1 Da; and final filtration
standard, ≥20.

2.2.3. Non-labeling Quantitation of the Metabonomics

Label-free quantification was used for semi-quantitative analysis of differences in total
proteins in any sample and is suitable for semi-quantitative comparison of large sample
sizes; instead of metabolites’ abundance and concentration, the SWATH technique was
used for unlabeled semi-quantitative metabolomics, and significantly different results were
obtained in the comparison. Peptide identification was performed using Proteome Discov-
ererTM (version 2.2, Thermo Scientific) and integrated error discovery rate (FDR) analysis.
Search data in the metabolite sequence database were downloaded from UniProt in June
2020 (total: 562,755 entries). The MS/MS spectra were obtained by searching using the
following custom search parameters: sample type, identified; cysteine alkylation, MMTS;
digestion, trypsin; instrument, Q-Exactive MS; special factors, none; species, none; ID key,
biological modification; database, 2020_june_uniprot-zebrafish.fasta; search intensity, thor-
ough; and Roosevelt analysis, yes. Decoy databases were searched using MS/MS spectra to
estimate the FDR of peptide identification. The bait database consists of reverse-translated
protein sequences from the UniProt Zebrafish database. The FDR analysis was performed
on the dataset considering peptides with confidence intervals of ≥95%.

The data acquisition instrument system mainly uses ultra-performance liquid chro-
matography (UPLC, shim pack UFLC Shimadzu CBM30A, https://www.shimadzu.com/,
accessed on 1 January 2020) and tandem mass spectrometry (MS/MS) (QTRAP®, https:
//sciex.com/, accessed on 1 January 2020). Chromatographic column: Waters Acquity
UPLC HSS T3 C18 1.8 µm, 2.1 mm × 100 mm. Mobile phase: phase A is ultra-pure wa-
ter (0.04% acetic acid) and phase B is acetonitrile (0.04% acetic acid). Elution gradient:
0 min water/acetonitrile (95:5 v/v), 11.0 min 5:95 v/v, 12.0 min 5:95 v/v, 12.1 min 95:5 v/v,
14.0 min 95:5 v/v. Flow rate: 0.4 mL/min. Column temperature: 40 ◦C. Injection volume:
2 µL. The main mass spectrum conditions were as follows: electrospray ion source (ESI)
temperature of 500 ◦C, mass spectrum voltages of 5500 V (positive) and −4500 V (negative),
ion source gas I (GSI) at 55 psi, gas II (GS II) at 60 psi, and curtain gas (cur) at 25 psi; the
collision-activated ionization (CAD) parameter was set to extreme. In the triple quadrupole
(qtrap), each ion pair was scanned and detected according to the optimized clustering
potential (DP) and collision energy (CE) [18].

Based on the self-built targeted standard database MWDB (hardware database), the
information and secondary spectrum data were qualitatively analyzed according to the
retention time RT (retention time) of the detected substance and the parent and daughter
ions. Metabolite quantification was completed by multiple reaction monitoring (MRM)
of triple-quadrupole mass spectrometry. In MRM mode, the first quadrupole screens
the precursor ions (mother ions) of the target substance and excludes the precursor ions
corresponding to other substances to preliminarily eliminate interference; after collision-
induced ionization in the second quadrupole, the precursor ions are broken, and a series of
distinct fragment ions of the substance are formed according to the structural characteristics
of the substance itself. Next, the fragment ions are filtered through the third quadrupole
to select a typical characteristic fragment ion. Unless the interference of the target ions
is eliminated, the quantification is more accurate, and the repeatability is superior. After
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obtaining the data from different samples, the extracted ion chromatographic peaks of all
metabolites are integrated under the peak area, and the chromatographic peaks of the same
metabolite in different samples are integrated and corrected [19].

2.3. Transcriptomic Analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) Pathway Annotation

After the qualitative and semi-quantitative analysis of the detected significant different
expression genes (DEGs) based on the data from RNA-seq (the parameter, see [4], and the
log2

fold change and FDR set at ≥2 and ≥95%), we compared the different multiple changes
in the semi-quantitative information of DEGs in each group according to the grouping
of specific samples. A volcano plot can be used to quickly view the differences in the
expression levels of DEGs in two groups of samples, and the statistical significance of these
differences. The relationship between different DEGs in each group is displayed in the form
of a Venn diagram. By using the GO database, DEGs can be classified by their participation
in biological processes (BPs), cellular components (CFs), and molecular functions (MFs).
Blast2go software (http://www.blast2go.com/b2ghome, accessed on 10 June 2020) was
used to transform the identified IDs from the UniProt accession number to GO IDs [4,16].
The GO IDs were submitted to the database for GO annotation. Using the KEGG database,
genes can be classified by a participating pathway or function. The UniProt accession of
each identified DEG was transformed into the KO ID, according to the ID mapping results
of the UniProt database (http://www.uniprot.org/, accessed on 1 January 2019). Then, we
annotated the DEGs in the KEGG database using the KO ID [4,16].

2.4. The Combined Analysis of Metabonomic and Transcriptomic Data

The combined analysis of metabolites and transcriptomes was performed via redun-
dancy analysis (RDA) [4,7,15]. Integrative techniques are crucial for finding associations
between distinct data types and filling mechanistic gaps. The KEGG paths enriched by
the two genomics were used to draw bubble maps. Difference multiples for substances
with Pearson correlation coefficients greater than 0.80 and p-values less than 0.05 in each
difference group are shown by the nine quadrant plots [4,7,15,16]. The results of the
correlation calculations for all differentially expressed genes and metabolites are plotted
in the correlation-clustering heatmap. Correlations between metabolites and genes are
represented by a network, and the results of correlations between differential genes and
differential metabolites in each pathway with a Pearson correlation coefficient greater than
0.80 and corrected p-value less than 0.05 are selected for mapping. The O2PLS model
was used to perform ensemble analysis between two datasets, including to determine
the association between systems bionomics, the association between molecular regulatory
mechanisms and phenotypes, and additional intrinsic relationships across a variety of large
datasets [4,15]. All differentially expressed genes and metabolites were selected to build the
O2PLS model, and variables with strong correlations and weights in different data groups
were tentatively judged through load maps to screen out essential variables that influenced
alternative omics [4,15].

2.5. Data Analysis

The number of metabolites, that is, the number of hits matched to the database, was
expressed as mean ± standard deviation (SD). Statistically significant differences were
determined using a one-way ANOVA and Duncan’s multiple range test, with a significance
level of p < 0.05 [1,4,15,16].

3. Results and Discussion

The mass spectrometry data were processed using Software Analyst 1.6.3, and the
results for the mixed QC sample are presented in Figure S1. Based on the local metabolic
database, the metabolites in the samples were analyzed qualitatively and semi-quantitatively
by mass spectrometry (Table S1). Figure S2a shows the semi-quantitative analysis of inte-

http://www.blast2go.com/b2ghome
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gral correction results for randomly selected metabolites in different samples [20]. The PCA
results show the trend of metabolome separation among the groups, indicating whether
there were fewer differences in the metabolome between the sample groups (Figure S2b–d),
and whether the metabolites were adequately separated (Figure S2e). A total of 423 metabo-
lites were found, as shown in Figure 1a; the results of the highest-ranked metabolites after
differential multivariate log 2 processing in the group comparison are shown in Figure 1b.
Overall, there were 35 and 34 significantly increased and decreased metabolites, respec-
tively, when comparing between the MA and MC groups (Table 1); the volcano plot is
shown in Figure 1c. The MEDN049 (L-saccharopine), MEDN049 (O-phospho-L-serine) and
MEDN049 (P–hydroxyphenyl acetic acid) were more abundant in iron prawns, while the
MEDN009 (L-aspartic acid), etc., were less abundant (Table 2); the violin chart is shown in
Figure S3. The bubble diagram based on the KEGG signaling pathway between the two
comparisons is shown in Figure 2. For both genders, vascular smooth muscle contraction,
salivary/renin secretion, oxytocin/cGMP-PKG signaling and pathways in cancer, especially
choline metabolism, are different. Regarding the differences between the iron and normal
prawns, the pathways for histidine metabolism, neuroactive ligand–receptor interactions,
and HIF-1 signaling were affected. The shared metabolites and DEGs in the comparisons
for the female (with the same health status) gender and iron (with the same gender) were
higher than those in the male and normal prawns (Figure 3). The reverse tendency was
found in the correlation-clustering heat map (Figure 4), which was supported by the cor-
relation network and the metabolite/DEG-loading diagram presented in Figures 5 and 6.
A previous study showed that choline metabolism in cancer and glycerophospholipid
metabolism are significantly upregulated in three-year-old fish when compared with five-
year-old fish after viral infection [21], which may be related to intestinal trimethylamine
N-oxide release [22] and acetylcholinesterase/butyrylcholinesterase [23]. The hypoxia-
inducible factor 1 signaling pathway, biosynthesis of amino acids, glycerophospholipid
metabolism, and choline metabolism in cancer were enriched, and were found to be notable
metabolic pathways that are closely related to temperature shifts in flounder metabolomic
and lipidomic analyses [16]. The present study demonstrates that temperature shifts may
shape energy metabolism and intestinal health, and alert the HIF-1 signaling pathway;
finally, they may result in cancer pathways attributable to iron prawn formation [24].

Table 1. Function annotation and analysis of the “iron prawn” M. rosenbergii.

Group Comparison Total Sig Metabolites Down-Regulated Up-Regulated

MC_vs_MA 69 34 35
MD_vs_MB 101 56 45
MA_vs_MB 66 39 27
MC_vs_MD 58 33 25

Table 2. The selected up- and down-regulated metabolites.

Index Compounds Type cpd_ID

MEDN049 L-Saccharopine up C00449
MEDN065 O-Phospho-L-Serine up C01005
MEDN097 P–Hydroxyphenyl Acetic Acid up C00642
MEDN009 L-Aspartic Acid down C00049
MEDN011 L-Glutamic Acid down C00025
MEDN070 Sarcosine down C00213
MEDN082 P-Coumaryl Alcohol down C02646
MEDN098 2-Picolinic Acid down C10164
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Table 2. Cont.

Index Compounds Type cpd_ID

MEDN120 Dulcitol down C01697
MEDN200 L-Malic Acid down C00149

Note: The method of combining fold change and VIP value of the opls-da model is adopted to screen differential
metabolites. Screening criteria: (1) the metabolites with fold change ≥2 and fold change ≤0.5 were selected.
If the difference of metabolites between the control group and the experimental group is more than 2 times or
less than 0.5, the difference is considered significant; (2) if there is biological duplication in sample grouping,
select metabolites with VIP ≥1 on the basis of the above. The VIP value indicates the influence intensity of the
inter-group difference of corresponding metabolites in the classification and discrimination of samples in each
group in the model. It is generally considered that the metabolites with VIP ≥1 have significant difference.
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Figure 1. The significant different metabolites in the “iron prawn” M. rosenbergii. (a): heatmap
analysis was performed on all samples based on normalized data and clustering using R program
scripts. (b): metabolite results at the top of the change list. In the (c) volcano plot, abscissa denotes
the logarithm of the semi-quantitative difference multiple of a metabolite in the two samples; the
ordinate indicates the VIP value. The green dots represent the down-regulated differential expression
metabolite, the red dots represent the up-regulated differential expression metabolite, and the dots
represent the metabolite detected with negligible differences. (d): Venn diagram for the shared and
differing metabolites among the two comparisons (MC vs. MA, MD vs. MB). The richness factor
is the ratio of the number of metabolites differentially expressed in the corresponding pathway to
the total number of metabolites detected and annotated in the pathway. The larger the value, the
greater the enrichment. The closer the p-value is to 0, the more significant the enrichment. The size
of the points in Figure 1 indicates the number of significantly different metabolites enriched in the
corresponding pathway.
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Figure 2. Bubble diagram based on KEGG signaling pathways among the two comparisons of (a) MA
vs. MB, (b) MC vs. MA, (c) MC vs. MD, and (d) MD vs. MB. The bubble diagram is a five dimensional
diagram, that is, the KEGG path enriched by different assemblages is reflected through horizontal and
vertical coordinates, bubble color gradient, shape and size. When the total number of KEGG paths
exceeds 25, the transcriptome will prevail, and only the top 25 p-value pathways will be displayed.
The abscissa represents the enrichment factor (Diff/Background) of the pathway in different omics,
and the ordinate represents the name of the KEGG path; The gradual change of red yellow green
represents that the significance of enrichment changes from high to medium to low, expressed by
p-value; The shape of bubbles represents different genomics, and the size of bubbles represents the
number of different metabolites or genes. The larger the number, the larger the point.

The categorized KEGG pathways and the hit numbers (Figure S4) show that metabolic
pathways were heavily enriched, as presented in Table 3. A search of the KEGG database
revealed that these metabolites are distributed in 114 KEGG pathways. These pathways in-
clude metabolic pathways, biosynthesis of secondary metabolites, ABC transporters, glycine,
serine and threonine metabolism, biosynthesis of unsaturated fatty acids, carbohydrate di-
gestion and absorption, glucosinolate biosynthesis, fat digestion and absorption, insulin
resistance/secretion, protein digestion and absorption, regulation of lipolysis in adipocytes,
choline metabolism in cancer, central carbon metabolism in cancer, biosynthesis of amino
acids, glycerophospholipid/carbon/glutathione/glycerolipid/glyoxylate and dicarboxylate
metabolism, the glucagon/cAMP signaling pathway, glycolysis/gluconeogenesis, and vita-
min digestion and absorption. The most heavily affected KEGG pathways are presented in
Table 4, and the shared and specific metabolites between the two comparisons (MC vs. MA,
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MD vs. MB) are shown in Figure 1d. The shared and specific metabolite details of the “iron
prawn”, M. rosenbergii (Table S2), included some metabolites associated with carbohydrate
and amino acid metabolism that were decreased in the female iron prawns, while the or-
ganic acid and its derivatives increased. Metabolic pathways, ABC transporters, starch and
sucrose metabolism, insulin resistance/secretion, fatty digestion and absorption, and lipid
metabolism were enriched. These metabolic pathways have been reported in prawns with
starvation [16], low pH [25], and salinity [26] stress. The pathways of starch and sucrose
metabolism are enriched in Exopalaemon carinicauda under thermal stress [27]. The pathways
of carbon/lipid/glycerolipid metabolism were reported in ammonia–nitrogen stress [28] and
chronic lead exposure [29]. Among them, MEDP174 (purine) has been previously reported in
ammonia–N-exposed prawn [28], fish species and other vertebrate animals [30], for example,
MEDN201 (succinic Acid) in Litopenaeus vannamei [31], and MEDN588 (Glycerol 3-phosphate)
in rainbow [32].
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Figure 3. Nine quadrant diagram of correlation analysis of (a) MA vs. MB, (b) MC vs. MA, (c) MC
vs. MD, and (d) MD vs. MB). The nine quadrant diagram, which is divided into 1–9 quadrants
from left to right and from top to bottom with black dotted line. The abscissa represents log2FC
of gene, and the ordinate represents log2FC of metabolite. Quadrant 5 shows that the differential
grouping gene and metabolite are not differentially expressed. Quadrant 3, 7 show that the gene and
metabolite are consistent with the differential expression mode of the metabolite. The expression
change in the metabolite may be positively regulated by the gene. Quadrant 1.9 shows that contrary
to the differential expression pattern of quadrant genes and metabolites, genes and metabolites with
inconsistent regulation trends may be negatively regulated by genes. The expression of metabolites
in quadrants 2.4, 6, and 8 remains unchanged, the genes are up and down or the gene expression
remains unchanged, and the metabolites are up and down.
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Figure 4. Correlation clustering heat map of (a) MA vs. MB, (b) MC vs. MA, (c) MC vs. MD, and
(d) MD vs. MB. Each line in the figure is a gene, and each column is a metabolite. Red represents
a positive correlation between genes and metabolites, and green represents a negative correlation
between genes and metabolites.

With respect to the male iron prawn, the pathway for organic acids and their derivatives de-
creased and lipid metabolism increased. The pathways of starch, and sucrose/carbon/galactose
metabolism were enriched (Figure 1d). The choline metabolism pathways in cancer and glyc-
erophospholipid/histidine/propanoate metabolism were affected in the iron prawns. A recent
study showed self-regulating mechanisms might be the factor preventing prawn from the
lethality by obalt-60 gamma radiation, thanks to the existence of the choline metabolism [33].
The glycerophospholipid metabolism has been reported in Jiang et al. [17]; the histidine domain
may be related to the activation of caspase-1 [34]. The glycerophospholipid metabolism has
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been reported in tilapia following microplastic exposure [35]. In the PM groups in our previ-
ous study, the voltage-dependent L-type calcium channel subunit alpha-1C was differentially
expressed [1]. These metabolites are expressed differentially in the muscles of M. rosenbergii,
indicating differences in the digestive system, energy usage, and lipid metabolism in the severe
growth retardation of the “iron prawn”. The O2PLS model can be used to more accurately
identify key regulatory phenomena based on reflecting the overall impact and variable shifts
between different data groups, in addition to flexibly conducting omics data-mining to dis-
cover regulatory information at different levels, as well as help in establishing systems biology
regulatory networks [36,37].
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Figure 6. DGEs (a) and Metabolite (b) loadings diagram. The distance from each point to the origin
or the height of the histogram in the figure represents the magnitude of the correlation between the
substance and another omics, and the darker the color is, the greater the correlation is. The figure
shows the top ten substances that have a greater impact on the other omics.

Table 3. The selected pathways among the comparisons.

Comparison Group Pathway ko_ID Unique Compound

MA vs. MB Metabolic pathways ko01100 28
� Choline metabolism in cancer ko05231 11

�
Glycerophospholipid

metabolism ko00564 11

� Bile secretion ko04976 4
� Cortisol synthesis and secretion ko04927 1
� Dopaminergic synapse ko04728 1

�
Endocrine and other

factor-regulated
calcium reabsorption

ko04961 1

� Endocrine resistance ko01522 1
� Estrogen-signaling pathway ko04915 1
� GnRH-signaling pathway ko04912 2
� Oocyte meiosis ko04114 1
� Ovarian steroidogenesis ko04913 1

�
Thyroid hormone-signaling

pathway ko04919 1

� Thyroid hormone synthesis ko04918 1

�
Vascular smooth

muscle contraction ko04270 2

MC vs. MA Metabolic pathways ko01100 37

�
Biosynthesis of

secondary metabolites ko01110 11

� ABC transporters ko02010 9

�
Central carbon metabolism

in cancer ko05230 6

� Histidine metabolism ko00340 5
� Carbon metabolism ko01200 5

�
Neuroactive ligand—receptor

interaction ko04080 5
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Table 3. Cont.

Comparison Group Pathway ko_ID Unique Compound

� Bile secretion ko04976 1
� Glucagon-signaling pathway ko04922 3
� Glutamatergic synapse ko04724 1
� Glutathione metabolism ko00480 3
� Glycerolipid metabolism ko00561 1
� Glycerophospholipid metabolism ko00564 1

�
Glycine, serine and

threonine metabolism ko00260 3

� Glycolysis / Gluconeogenesis ko00010 1

�
Glyoxylate and

dicarboxylate metabolism ko00630 3

� Insulin resistance ko04931 1
� Insulin secretion ko04911 1
� Starch and sucrose metabolism ko00500 3
� Vitamin digestion and absorption ko04977 1

MC vs. MD Metabolic pathways ko01100 21
� Glycerophospholipid metabolism ko00564 9
� Choline metabolism in cancer ko05231 9
� ABC transporters ko02010 6

�
Biosynthesis of

secondary metabolites ko01110 5

� cAMP-signaling pathway ko04024 2
� Fat digestion and absorption ko04975 1
� Fatty acid degradation ko00071 1
� GnRH-signaling pathway ko04912 1

�
Regulation of lipolysis

in adipocytes ko04923 1

MD vs. MB Metabolic pathways ko01100 35

�
Biosynthesis of

secondary metabolites ko01110 13

� Glycerophospholipid metabolism ko00564 13
� Choline metabolism in cancer ko05231 13

�
Central carbon metabolism

in cancer ko05230 6

� Biosynthesis of amino acids ko01230 5
� ABC transporters ko02010 5

�
Glycine, serine and

threonine metabolism ko00260 4

�
Biosynthesis of unsaturated

fatty acids ko01040 1

� cAMP-signaling pathway ko04024 4

�
Carbohydrate digestion

and absorption ko04973 1

� Carbon metabolism ko01200 3
� Fat digestion and absorption ko04975 1
� Glucagon-signaling pathway ko04922 3
� Glucosinolate biosynthesis ko00966 1
� Glutathione metabolism ko00480 2
� Glycerolipid metabolism ko00561 2
� Glycolysis / Gluconeogenesis ko00010 1

�
Glyoxylate and

dicarboxylate metabolism ko00630 2

� Insulin resistance ko04931 1
� Insulin secretion ko04911 1
� Protein digestion and absorption ko04974 2

�
Regulation of lipolysis

in adipocytes ko04923 1

� Vitamin digestion and absorption ko04977 2
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Table 4. The enriched KEGG pathway among the comparisons.

Comparison
Group Kegg_Pathway ko_id Cluter_Frequency Corrected_p-Value

MA vs. MB Choline metabolism in cancer ko05231 11 0.0001
Glycerophospholipid

metabolism ko00564 11 0.0004

MC vs. MA Propanoate metabolism ko00640 4 0.3173
Histidine metabolism ko00340 5 0.8170

MC vs. MD Choline metabolism in cancer ko05231 9 0.0007
Glycerophospholipid

metabolism ko00564 9 0.0027

MD vs. MB Choline metabolism in cancer ko05231 13 0.0000
Glycerophospholipid

metabolism ko00564 13 0.0001

4. Conclusions

According to the GO and KEGG analysis results, 423 differentially expressed metabo-
lites and genes were mainly distributed in metabolic pathways, ABC transporters, the
starch and sucrose metabolism, insulin resistance/secretion, fat digestion and absorption,
and lipid metabolism. Overall, 35 and 34 metabolites were significantly increased and
decreased, respectively, in the comparison between the MA and MC groups. Compared
with male iron prawns, the representations of the carbohydrate and amino acid metabolism
pathways were lower, and organic acids and their derivatives were higher in female iron
prawns. The pathways of starch and sucrose/carbon/galactose metabolism were enriched
among different genders of normal and iron prawns. The pathways of choline metabolism
in cancer, neuroactive ligand–receptor interactions, the HIF-1 signaling pathway and glyc-
erophospholipid/histidine/propanoate metabolism were also distinguished in iron and
normal prawns.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fishes8040196/s1, Figure S1: Superposition diagram of total ion
flow diagram (TIC diagram, a) detected by mass spectrometry, MRM metabolite detection multi peak
(b) and Tic overlap diagram (c) of the mixed QC sample; Figure S2: The integral correction chart
and variability for metabolite semi-quantitative analysis; Figure S3: The data distribution and its
probability density via the violin diagram. Figure S4: A metabolite with significant difference, the
classification diagram is made according to the types of pathways in KEGG according to the annota-
tion results of KEGG; Table S1: The numbers of the significant expression metabolites and partial
calculation results of orthogonal partial least squares discriminant analysis (OPLS-DA) metabolite
database mapping table; Table S2: The shared and specific proteins in the detected tissues of the ‘iron
prawn” M. rosenbergii.
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