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Abstract: Tilapia is a widely cultured species native to Africa; these fish are prolific breeders and
constitute an economically important fish species supplying higher-quality protein. To meet the global
food demand and achieve the UN’s Sustainable Developmental Goals (SDG), the aquaculture industry
has conceived of productive solutions with the potential for adaptability, palatability, and profitability.
Tilapia may play a vital role with respect to the possibility for sustainability in the nutrition and
aquaculture sectors. India contributes to the promotion of aquacultural practices through a structural
framework focused on agricultural, environmental, geographical, and socio-economic factors that
provide opportunities for tilapia farming. Globally, the Indian aquaculture sector is currently the
second largest in terms of aquacultural production but is moving toward different species that meet
SDG and facilitate international marketing opportunities. The farming of aquacultural species with
innovative technology constitutes an efficient use of resources. Productive research on feeding,
disease management, construction, and layout helps overcome the challenges faced in aquaculture.
These focused and sustained factors of the aquaculture industry offer a latent contribution to global
food security. This review reports on the state of the art, the challenges regarding tilapia aquaculture
in India, and the Indian government’s schemes, missions, subsidies, projects and funding related to
tilapia production.

Keywords: blue economy; disease management; fish nutrition; species selection; tilapia aquaculture

Key Contribution: The present review deals with the important farming strategies of tilapia aqua-
culture in India. Also, the policies framed by the Indian government through various programs
and subsidies to expand the blue economy relating tilapia farming and their direct benefits to the
aquaculture farmers were highlighted.

1. Introduction

Aquaculture plays a pivotal role in meeting the United Nations’ SDG of alleviating
poverty (SDG 1) and global hunger, ensuring food security and the provision of adequate
nutrition (SDG 2), and promoting sustainable socio-economic growth (SDG 8) [1]. The
farming of aquatic organisms in inland and coastal areas improves the local supply of
food and the economy. Asia is the leading producer of seafood, producing at a rate of
more than 6% per annum [2]. This is due to the increase in the per capita consumption
of fish. To meet the SDG and provide food to those in need and economic opportunities
in rural areas, culturally appropriate species of fish and production approaches must be
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identified. These needs are increasingly being fulfilled by tilapia. Wing-Keong et al. [3]
stated that tilapia is one of the most important species of fish in aquaculture, which is
capable of filling the gap of the increasing worldwide demand for protein sources. Tilapia
farming is widespread, occurring in more than 135 countries and territories [4]. Production
is increasing because of tilapia’s large size, fast growth, prolific breeding characteristics,
palatability, and relatively low cost for production [5]. Although tilapia is a freshwater
species, it can tolerate osmotic and alkalinity stresses up to a particular range [6] as well as
low dissolved oxygen concentrations and osmotic and alkalinity stress [7]. These fish can
mature within 2–3 months of hatching and produce 75–1000 offspring every 22–40 days.
Nile tilapia have been cultivated widely in many parts of the world; they are considered
one of the first fish species to have been cultured and their cultivation constitutes the
largest of the tilapia industries. Globally, Nile tilapia started being cultivated more than
3000 years ago [8]. The Mozambique tilapia industry is the second largest tilapia industry
based on its production and exportation rates. The World Bank [9] projected that global
tilapia production will reach 7.3 million tons by 2030, an increase from the 4.3 million tons
reported in 2010. India’s share of global fish production amounted to 5.68% from 2016–2017,
corresponding to about 10.79 million tons. Tilapia are preferred over carp because of their
firm, white flesh and lack of intermuscular bones. Based on their reproductive behavior,
the commercial species of tilapia have been classified into three major categories: (1) ma-
ternal mouth brooders (Oreochromis species); (2) paternal and biparental mouth brooders
(Sarotherodon species); and (3) substrate incubators (Tilapia species) [10]. The most common
commercially farmed species are blue tilapia (Oreochromis aureus), Mozambique tilapia
(Oreochromis mossambicus), Nile tilapia (Oreochromis niloticus), longfin tilapia (Oreochromis
macrochir), redbreast tilapia (Tilapia rendalii), redbelly tilapia (Coptodon zilli), Sabaki tilapia
(Oreochromis spilurus), three-spotted tilapia (Oreochromis andersonii), and Jaguar guapote
(Parachromis managuensis). Numerous hybrids have been developed and evaluated, and
monosex populations can be developed for various species. The production of various
hybrids is also increasing [11]. India’s contribution to the yearly annual rate of aquacultural
food production amounts to 7.56%, which is greater than the global average from 2000
to 2018 [12]. Thus, this review attempts to study the state of the art and challenges of
tilapia culture in India and elaborate the development of the technology that drives this
critical food production system in a sustainable manner. The governmental program, Neel
Kranti, also known as the blue revolution mission, is a centrally sponsored initiative with
the objective of doubling the production and tripling the exportation of fish by 2022. This
program began in 2014 and was designed to encourage the use of sustainable and integrated
approaches for the development of aquaculture [13]. The main focus of this mission is
the utilization and promotion of technological advancement in aquaculture for national
food-related and nutritional security. The ultimate goal of the program is to encourage the
use of sustainable and integrated approaches for the development of the fisheries sector
in India. [14]. This initiative has four major components: strengthening infrastructure
and security at ports and harbors, boosting skill development and training for fishermen,
encouraging aquaculture, and ensuring fishermen have greater access to financial facilities.
The program’s infrastructure enhancement component intends to offer better facilities at
ports and harbors, mobile health services, and a fishing insurance plan. This will allow
fishermen to carry out their activities in a safe and secure manner and enhance their overall
living conditions. The associated training program seeks to educate fishermen with respect
to the optimal practices in water safety, fishing equipment maintenance, and current fishing
techniques. To support aquaculture, the initiative will allow fishermen to receive improved
technical support, thereby allowing them to launch their own fish-farming companies. This
program will assist fishermen in purchasing higher-quality seeds and gaining access to
more markets, thereby improving their revenue and providing additional job prospects in
the industry. In summary, the Indian government’s Neel Kranti program is a much-needed
effort that can dramatically increase the country’s aquacultural output and assist fishermen
in securing superior economic and living conditions [15–17]. Though India is the largest
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producer of Indian carp (Catla catla, Labeo rohita, and Cirrhinus mrigala), the global demand
and consumption of tilapia have paved the way for the enrichment of the productivity of
Indian aquaculture [18]. In this regard, the government of India has set forth detailed agro-
and socio-economic guidelines for the cultivation of this non-native species with the goal
of protecting native inland species and their production. The guidelines encourage the
amassment of collective knowledge and the undertaking of interdisciplinary efforts, includ-
ing mathematical modelling systems, Internet-of-things (IoT)-based in-silico approaches,
geospatial technology, fisheries and engineering technology, and management strategies, to
provide an innovative and productive outcome regarding the production of tilapia from the
aquaculture industry. The government of India also provides subsidies and development
funds to facilitate tilapia farming based on the poverty line for farmers. In this review,
specific facets such as tilapia aquaculture, the contribution of the Indian tilapia industry
to global aquaculture, major production guidelines, various culturing methods, species-
specific selection criteria, feed and disease management strategies, and the development of
projects/schemes for tilapia production in India will be discussed.

2. Tilapia Aquaculture in India

Nile tilapia is the primary cultivable species in India. This cichlid was initially intro-
duced in the state of Kerala, while Mozambique tilapia were imported in 1952 and stocked
into reservoirs and ponds in Kerala state [19]. Due to their rapid rates of reproduction,
the fish overpopulated the area and slowly migrated into the reservoirs of Tamil Nadu,
Karnataka, and Rajasthan, resulting in the extinction of certain inland fish species, such as
Tor tor and Tor putitora. In 2005, the Yamuna River harbored a certain quantity of Nile tilapia;
due to this species’ characteristic reproductive behavior, the abundance of tilapia increased
in comparison with the total fish species in the river by 3.5% in 2 years (reported by the
National Fisheries Developmental Board) [20]. Johnson et al. [21] reported that a drastic
increase in the catch percentage of tilapia ranged from 6.7% to 85.9% from 2008 to 2018,
which is expected to reach >90% according to their decadal species composition study. The
experimental study also noted the species diversity of Nile tilapia from the total catch in
the Halali reservoir [22]. The introduction of tilapia via a polyculture strategy also reduced
the average weight of other major carp. Panikkar [23] recommended the formulation
of a national policy, which led to a ban on tilapia propagation. The strict guidelines on
tilapia farming in India have resulted in a renewed interest in the cultivation of several
species, including Oreochromis mossambicus, Oreochromis niloticus, Oreochromis urolepis, and
Captodon zillii, which are now available throughout the country [24]. Globalization, the food
demand within India, and economic development opportunities precipitated the current
situation, which, consequently, facilitated tilapia farming under the guidelines discussed
below. The relevant regulatory entities in this regard include the Department of Fisheries,
the Central Institutes for Marine and Inland Fisheries Research, the Rajiv Gandhi Centre for
Aquaculture (RGCA), the National Fisheries Development Board, and other government
agencies. Thus, tilapia is now farmed with sustainable farming technology by following
the respective government-issued guidelines.

2.1. India’s Contributions to Tilapia Production

The State of World Fisheries and Aquaculture has acknowledged the stupendous
growth of the Indian fisheries sector, as it ranks, globally, fourth in terms of capture
fisheries and second in terms of inland capture fisheries, contributing as much as 14% of
the share of the total global inland capture [25]. The Indian government has launched a
number of initiatives and projects to boost aquacultural output in the country. The Blue
Revolution Plan, the National Fisheries Development Board (NFDB), and the Fish Farmers
Development Agency (FFDA) are among the major projects. Reflecting and driving the
global shift from capture to culture, the report underscores the fact that 57% of India’s total
fish production stems from aquaculture. The inland and marine sectors provide a wide
range of water resources for culture and capture fisheries. In 1950–1951, India’s total fish
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production was 0.75 million metric tons (MMT); then, it drastically increased to 9.5 MMT
in 2012–2013. Moreover, the current production level has reached 16.25 MMT due to the
projects and schemes funded by the Indian government [25]. The aim of the Blue Revolution
Program is to boost fish output by building fish farms, hatcheries, and processing facilities.
The National Fisheries Development Board promotes sustainable aquaculture methods
and assists relevant businesses financially. The Fish Farmers Development Agency seeks to
boost the productivity of fish farmers by offering training and assistance. These measures
have resulted in tremendous development in the aquaculture sector, increasing employment
and strengthening the country’s export revenues [13]. The GOI aims to double the income
of fishers, fish farmers, and fish workers over five years, with a 9% annual growth rate, to
attain the fish production target of 22 million tons by 2025. This scheme, with reservoir
fisheries as one of the focus areas, aims to create additional employment opportunities,
both directly and indirectly, for six million people employed in the fisheries industry and
its allied activities [26]. The Food and Agriculture Organization (FAO) has predicted that
India’s fish production level will grow by 26% between 2018 and 2030, which is 6.8% and
11.5% faster than the projected growth rate for Asia and the world, respectively [27].

2.2. Guidelines for Tilapia Culture in India

In aquaculture, efforts to increase the productivity of tilapia resulted in high population
density, which, in turn, caused outbreaks of Tilapia Lake Virus (TLV). Although tilapia
farming has resulted in adverse environmental impacts on native fish species, tilapia have
also become a prominent species whose consumption allows rural communities to meet
their food and nutritional requirements. Thus, the National Committee approved the
introduction of exotic aquatic species such as Nile tilapia in 2006. However, farmer-friendly
guidelines for tilapia were not implemented until December 2011. These guidelines were
established based on the concept of the monitoring (M), control (C), and surveillance (S) of
the hatchery, nursery, and farming practices of tilapia culture in India [28]. The detailed
guidelines for farming tilapia in India can be found on the Department of Fisheries website
maintained by the Ministry of Fisheries, Animal Husbandry, and Dairying, Government
of India (www.dahd.nic.in, accessed on 20 January 2023). A Steering Committee was
established at the department of fisheries at the national level to monitor tilapia seed and
grow-out production. The guidelines of the committee initially dealt with cage farming,
which, subsequently, requires registration and information on location, the area of culture,
the type of culture and its intensity, the size of the seed to be stocked, the stocking density,
and the biosecurity parameters in both cage-based and intensive culture. For subsidies and
governmental funds, the guidelines should be followed strictly, with particular emphasis
on stocking density and biosecurity.

3. Farming Strategies of Tilapia Culture: The State of The Art

The use of appropriate and proven farming strategies for tilapia aquaculture facili-
tates better yields and utilization of resources [29]. Several technological advancements
are widely used in aquaculture to overcome various challenging factors, such as climate
change, land availability, socio-economic concerns, and environmental barriers. Various
studies have been reported concerning the strategies and efficient practices for the suc-
cessful production of tilapia. These practices include Biofloc technology (BFT); backyard
brackish water aquaculture; recirculatory aquaculture systems (RAS); cage culture systems
for the farming of potential high-yield varieties of tilapia such as the Genetically Improved
Farmed Tilapia (GIFT) strain, hybrids, and monosex populations; and Integrated Multi
Tropic Aquaculture (IMTA). Polyculture (multiple species in the same production sys-
tem) and integrated fish farming (fish farms integrated with terrestrial agricultural crops)
provide additional income to farmers. One study reported that the integration of aquapon-
ics with BFT applied to GIFT tilapia and bell peppers resulted in improved production
without affecting growth or stress parameters [30]. This technological advancement helps
overcome the challenges in the agro-aquaculture sector [31]. The integration of BFT and

www.dahd.nic.in


Fishes 2023, 8, 176 5 of 31

RAS resulted in better resource utilization and production by providing supplementary
feed for Nile tilapia [32]. Oparinde [33] developed a mathematical model to address the
adaptation strategies associated with changes in the climatic conditions for aquaculture.
Geographical-Information-System (GIS)- and remote-sensing-technology-based data are
associated with applications for effective farming, land or site suitability assessment, or
resource availability. The GIS-based (AHP-Analytical Hierarchical Process) approach fa-
cilitates geospatial mapping for the planning or construction of fish farms and the use of
brackish water resources [34]. Hence, the application of these technological advancements
in aquaculture paves the way for sustainable farming practices. The following strategies
concern the improved farming practices applied in tilapia production.

3.1. Recirculatory Aquaculture System (RAS)

An RAS uses biofiltration to eliminate trash and raise oxygen levels, thus allowing
for an extremely efficient and eco-friendly approach. Initially, cleansed water is treated
with chemicals to remove chlorine and other hazardous compounds [35]. After this water
has been treated, it then passes into the fish tanks or raceways where the fish are cultured.
These tanks are often constructed with space to swim while also allowing for effective water
flow through the system. The water becomes tainted with ammonia, nitrites, and nitrates
as the fish create waste; this waste can be passed through a biological filter, which is a series
of tanks containing beneficial microorganisms, to decrease such impurities. These bacteria
convert ammonia and nitrites into nitrates, which may be utilized as fertilizer for plants.
The major aerobic bacteria involved in this system belong to the genera Nitrosomonas,
Nitrosococcus, Nitrosospira, or Nitrosolobus. These bacteria tend to convert nitrite to
nitrate (Figure 1). The water is constantly pumped through the biological filter and back
into the fish tanks, thereby ensuring that the fish have a healthy aquarium habitat. The
mechanism of the recirculation system reduces water usage significantly, rendering it
a more sustainable approach than standard aquacultural methods. To maintain ideal
water quality, some RASs contain additional water treatment procedures, such as protein
skimming, carbon dioxide level monitoring, or UV sterilization, in addition to biofiltration,
thereby increasing the potency of water quality maintenance. In summary, an RAS is
a highly efficient and environmentally friendly method for raising aquatic plants and
animals [36–38].
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Figure 1. Reaction mechanism of ammonia−nitrite oxidation used in Recirculatory Aquaculture
System (RAS).

RASs are closed systems that conserve water by recycling and are capable of afford-
ing super-intensive production levels (Figure 2). One of the plausible solutions to the
water crisis and problems regarding land utilization in urban areas is RAS technology.
Ye et al. [39] developed a statistically based imaging technique for tilapia farming in an
RAS. Shnel et al. [40] designed the zero-discharge RAS production system for tilapia. In this
method, nitrogen removal was performed by a fluidized bed reactor. A rotating biological
contactor device for tilapia was used to manage water quality and remove ammonia in
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an RAS production system [41]. An RAS provides optimum environmental conditions
year-round and may be one of the best solutions for the climatic crisis currently threaten-
ing aquaculture [42]. The production of holy basil (Ocimum tenuiflorum) and Nile tilapia
resulted in a better growth rate of tilapia and an improved holy basil yield [43].
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3.2. Biofloc Technology (BFT)

BFT is also known as the activated suspension technique (AST); it involves the use of
microbial communities to break down waste particles and transform them into a protein-
rich biomass that can be easily consumed by the fish [44]. The process is reliant on the
production of high levels of organic matter that results in high concentrations of suspended
solids. However, these solids provide a surface for bacterial colonization, and these bacteria
then serve as a food source for the fish [45]. By utilizing this biofloc technology, farmers
can create a self-sustaining system that increases the efficiency of production and reduces
their dependency on external inputs, thereby reducing their overall operational costs. The
technology has been shown to effectively improve yields, reduce costs, and ensure the
sustainable production of tilapia [46,47] (Figure 3).

This process serves as a source of food for fish [48]. The addition of carbon (C)
and nitrogen (N) sources and the constant aeration and agitation of the water column
result in the superior production of natural feed for the cultured aquatic species. The
optimum ratio of C to N in BFT is 10:1 [49]. The use of BFT helps reduce the environmental
impacts of aquaculture. The formulated diets and their ingredients can constitute an
effective and sustainable farming technique for producing commercially valuable species
in aquaculture [50]. Effluents from BFT can also be used in an aquaponic-based system
(“flocponics”); this feasible approach enhances the growth of tilapia more than that of the
plants [51]. The use of BFT has been shown to improve the quality of larvae and brood
fish [52].
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Based on a partial production cost analysis and a subsequent investigation, Luo et al. [53]
reported that the production of GIFT tilapia was more lucrative when using BFT compared
to a traditional RAS. A zero-water exchange system using BFT resulted in optimum growth
and hematological and immune parameters in GIFT strain fish [54]. The indoor tank
cultivation of Nile tilapia using BFT resulted in 100% survivability and an increased
production rate [55]. Certain studies have suggested that the biofloc system reduces the
entry of pathogens due to the recycling of nutrients and water [56,57] and that the flocs
produced by this technology can enhance the amount of protein available for the tilapia to
consume, leading to a reduction in the usage of feed [58]. This type of approach reduces
the costs of production and generates greater profits [59].

3.3. Cage Farming

Cage culture in open water is another production system that is particularly well
suited for the introduction of aquaculture in rural areas or for adoption by farmers with
little aquaculture experience [60]. The major advantage of cage culture is that it can be
implemented in existing water bodies such as rivers, lakes, ponds, seawater, etc. In addi-
tion, it provides an excellent environmental sustainability index, allowing for affordances
such as lower usage of resources and reduced pollutant accumulation [61]. Formulated
feed is commonly fed to fish housed in cages. In cage culture, fish require significant feed
supplements, including formulated feed, to promote growth, health, and productivity. The
GIFT strain is productive in cage culture systems. The use of sterile, monosex male tilapia
(Oreochromis niloticus) is permitted in cage culture in India [62]. The farming of tilapia in
ponds and cage culture is prominent and gaining popularity in India, wherein the focus is
on Nile tilapia [57]. Seed, larval, and brood quality and stocking density play essential roles
in the success of tilapia cage culture. Stocking density is vital for production, disease, and
stress management in a fish culture environment. This intensive culture method has certain
guidelines in the Indian regime for the culture of monosex tilapia, GIFT, hybridized, and
hormonal sex-reversed tilapia, which have been designed to impede the prolific breeding
tendency of the tilapia. Chakraborty et al. [63] evaluated the stocking density and growth
of Nile tilapia in the Gangetic plains, India. They recommended a stocking density of
kg/m3 for caged-cultured mono-sex Nile tilapia in the Indian context. Another important
factor in tilapia cage culture is feed management. Feeding and nutrient management in
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cage culture involves artificial and natural feed. Providing natural feed (phytoplankton
and zooplankton) improves the nutritional quality of the fish and reduces the necessity for
the supplementation of artificial feed in cage culture. Periphyton is a natural food source
that is gaining popularity in cage culture as it reduces the protein requirements necessitated
by commercial feed and functions as a complementary feed for the fish [64]. According to
Delphino et al. [65], streptococcus-resistant tilapia cultured in cages were found to present
≤ 10% mortality, which significantly increases the production rate by preventing a strepto-
coccus infection. The major drawbacks of cage culture are environmental impacts such as
the release of nitrogen, nutrients, and pollutants in waterbodies by uneaten feed [66].

3.4. Polyculture Tilapia Farming

The culturing of more than one species of aquatic organism in the same system is called
polyculture. This approach facilitates the better utilization of the available natural feed
in ponds by using species displaying different food habits (foraging), thereby facilitating
higher fish production per unit area [67,68]. Polyculture systems can also be referred to
as co-culture, multi-trophic, or integrated aquaculture farming systems. However, the
systemic approaches differ in each system [69]. The primary and secondary species in a
polyculture system enable cost-effective production [70]. Tilapia has a shorter growing
period (a maximum of 6 months to reach 500 g in body weight) when compared to other
teleost species; thus, the cultivation of tilapia with other species requires specific techniques
and strategies {68]. Detailed guidelines and recommendations regarding the species cul-
tured with tilapia polyculture facilitate better income without affecting species production.
Tilapia have been successfully co-cultured with crustaceans (prawn/shrimp) and other
teleost fishes such as silver carp (Hypophthalmichthys molitrix) and common carp (Cyprinus
carpio) [71]. When tilapia are co-cultured with shrimp/prawns, the tilapia are able to act as
an effective filter feeder by consuming zooplankton, while the leftover phytoplankton are
consumed by the shrimps/prawns, thereby reducing the formation of algal blooms and
enhancing economic value [72]. Hisano et al. [73] reported that the co-culturing of Nile
tilapia and giant prawns (Macrobrachium rosenbergii) in a BFT-based RAS polyculture system
resulted in better feed and protein utilization for the tilapia. However, in a polyculture
system consisting of a combination of tilapia and carp, the tilapia achieved greater growth
than the carp due to the reduced feed conversion ratio [74]. Similar results were obtained
by Papoutsoglou et al. [75], where the ratio of 40:60 carp/tilapia production resulted in
better growth with a lower FCR (Feed Conversion Ratio) and carcass lipid concentration.
In fertilized ponds, the mortality rate of tilapia was higher than that of carp [76]. Previous
studies have suggested that management approaches incorporating parameters such as
stocking densities, species, the age of the species, and feed and niche requirements are
essential in the polyculture farming of tilapia [68,77–79].

3.5. The Integrated Farming of Tilapia

Integrated fish farming involves the combination of farming fish with livestock or
other terrestrial agricultural animals. In this approach, the systems are linked to each other;
thus, land and water resources are efficiently used, and financial and labor costs are reduced.
Integrated fish farming commonly incorporates waste or by-products from the terrestrial
side for utilization on the aquatic side. The overall outcome of the integrated farming
system is a high yield with low input and a limited amount of supplementary feed required
for the fish [80]. Zoonotic pathogen sources and organic manure can contaminate soil and
water in an IFS (environment) with dangerous chemicals and pathogens that pose a threat
to human health [81]. Concerns regarding environmental risks and the bioconcentration of
harmful substances should be mitigated to achieve sustainable IFSs [82]. Adverse effects on
an IFS should be reduced by adopting and adapting environmentally friendly approaches
that are eventually safe and hygienic and prevent further environmental degradation [83].
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3.6. Integrated Multi Tropic Aquaculture (IMTA)

An expansion of the Integrated Farming System has been developed and termed
integrated multi tropic aquaculture. IMTA is commonly practiced as a semi-intensive
culture method that is widely used for the cultivation of animals feeding on diverse trophic
grades (Figure 4). Waste nutrients are collected as sediments in this system and are utilized
by other organisms. This strategy involves the use of filter feeders to remove excess feed to
avoid environmental water pollution [66]. In IMTA, species from different niches consume
the available resources; hence, the nutrient inputs become more efficient [72]. IMTA
practices are of several kinds and have also been called Integrated Peri-Urban Aquaculture
Systems (IPUASs), Integrated Agriculture Aquaculture Systems (IAASs), and Integrated
Fisheries and Agriculture Systems (IFASs) [84,85]. David et al. [86] reported the results
of the cultivation of Amazon River prawn (Macrobrachium amazonicum) and Nile tilapia
using the IMTA technique. In this study, the Nile tilapia acted as a feeding organism,
whereas the Amazon River prawn acted as a recycler. It has been reported that IMTA
could be used as an environmental stability agent in the Sundarbans, serving as a balance
between food production while also supporting the ecological security of the mangrove
ecosystem [87]. When applied to floating cage systems, IMTA approaches enhance the
growth and production of tilapia [88]. According to Rodrigues et al. [89], integrated farming
incorporating tilapia and the Amazon River prawn results in higher growth rates when
natural live feed is utilized. In an integrated farming strategy, the size of the species plays
a vital role. When prawns and tilapia are cultured via integrated farming, the size of the
prawn will increase due to the increased uptake of phytoplankton [90].
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4. Strategies for Species Selection in Tilapia Farming
4.1. Farming of Monosex Tilapia

When undertaking the farming practices of tilapia culture, farmers face unrestrained
reproduction. To overcome this limitation, monosex tilapia cultivation has been imple-
mented [91]. The monosex production of tilapia is a rapidly growing and popular technique
in the field of tilapia farming (Figure 5). This technique is widely used due to the uniform
size of these fish, which are also gaining popularity among consumers [63]. The novel
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production and masculinization of Nile tilapia involves crossing the YY male genotype
with XX females (wild). This technique is known as genetically male tilapia or YY male
tilapia technology. This method is also used as a male factorial sex-determining mecha-
nism [92]. Other methods involved in monosex production include hormonal sex reversal,
interspecific hybridization, and the production of supermales and genetically improved
varieties [93]. Male tilapias grow more quickly than females and use less metabolic energy
to obtain a uniformly sized output; hence, these practices lead to the production of males
at a higher rate for monosex populations [94]. Androgenesis, triploidy, and transgenesis
methods are also available [93]. These methods have the potential to transform tilapia
production by allowing farmers to produce males or females based on their preferences,
removing the need to sort and eliminate fish [95]. They also have the potential to pro-
vide considerable economic advantages to farmers while contributing to the expansion
of the blue economy [96]. However, the adoption of these methods raises queries about
food safety, environmental effects, and ethical problems. As a result, adequate laws and
standards must be implemented to reduce possible hazards related to the usage of these
approaches [97]. The proper usage of these strategies may aid the expansion of the blue
economy and bring economic advantages to farmers while also ensuring the industry’s
safety and sustainability [96]. The monosex production of tilapia is an ongoing line of
research. The study conducted by Sayed and Moneeb [98] indicated that the nonsteroidal
aromatase inhibitor Fadrozole could be used to produce male populations of fish. The
synthetic male hormone 17α-methyltestosterone is used to reverse the sex of tilapia and
produce monosex populations. Considering the negative health-related effects of using
synthetic hormones for sex reversal, it has been recommended that they be substituted
with pyotosterols [99]. Ghosal et al. [100] suggested that the ethanolic extract of Basella alba
leaf and the methanolic extract of Asparagus racemosus can be used as safe and eco-friendly
alternatives for synthetic sex reversal hormones for monosex Nile tilapia.

Fishes 2023, 8, x FOR PEER REVIEW 11 of 37 
 

 

recommended that they be substituted with pyotosterols [99]. Ghosal et al. [100] 

suggested that the ethanolic extract of Basella alba leaf and the methanolic extract of 

Asparagus racemosus can be used as safe and eco-friendly alternatives for synthetic sex 

reversal hormones for monosex Nile tilapia. 

 

Figure 5. Male tilapia (monosex) production through YY male tilapia technology. 

4.2. Farming of GIFT Tilapia 

GIFT tilapia were successfully developed by the International Center for Living 

Aquatic Resources Management (ICLARM), which is now known as the World Fish 

Centre (WFC), and its allies [101]. In India, the GIFT strain is an improvement compared 

to other available strains. The main aim of introducing the GIFT strain is to achieve high 

yields, rapid growth, and high rates of survival at a low cost. The value offered by 

monosex GIFT strains of tilapia resulted in wide-ranging adoption in Asian countries 

[102]. It has been reported that the improved variety of Nile tilapia tolerates both saline 

and freshwater without affecting the FCR, growth, or gill conditions of the fish [103]. One 

study suggests that an around 27–36% faster growth rate can be achieved in GIFT tilapia 

compared to non-GIFT tilapia by using mono and polyculture strategies [104]. The 

detection and identification of potential genes for the improvement of the cultured 

organism offers significant potential for further improvement. Thus, genetically based 

selective breeding with the aid of genome sequencing and mapping will pave the way 

toward the improved production of GIFT tilapia. Xia et al. [105] constructed selection 

footprints and a genome-wide map of genetic variation in tilapia. These tools could be 

used to help construct new and productive varieties of genetically improved tilapia by 

using markers such as DNA markers, thereby constituting a significant contribution to the 

production of fish species. 

4.3. Farming of Hybrid Tilapia 

Two of the more common hybrid tilapia are the red tilapia or golden tilapia. The 

Oreochromis mossambicus × Oreochromis niloticus hybrid is gaining popularity because of 

ease with which its cultivation can be managed [106]. Beardmore et al. [93] indicated that 

hybridization can result in monosex populations. Based on the performance of analyzed 

Figure 5. Male tilapia (monosex) production through YY male tilapia technology.



Fishes 2023, 8, 176 11 of 31

4.2. Farming of GIFT Tilapia

GIFT tilapia were successfully developed by the International Center for Living
Aquatic Resources Management (ICLARM), which is now known as the World Fish Centre
(WFC), and its allies [101]. In India, the GIFT strain is an improvement compared to other
available strains. The main aim of introducing the GIFT strain is to achieve high yields,
rapid growth, and high rates of survival at a low cost. The value offered by monosex
GIFT strains of tilapia resulted in wide-ranging adoption in Asian countries [102]. It has
been reported that the improved variety of Nile tilapia tolerates both saline and freshwater
without affecting the FCR, growth, or gill conditions of the fish [103]. One study suggests
that an around 27–36% faster growth rate can be achieved in GIFT tilapia compared to
non-GIFT tilapia by using mono and polyculture strategies [104]. The detection and identi-
fication of potential genes for the improvement of the cultured organism offers significant
potential for further improvement. Thus, genetically based selective breeding with the aid
of genome sequencing and mapping will pave the way toward the improved production of
GIFT tilapia. Xia et al. [105] constructed selection footprints and a genome-wide map of
genetic variation in tilapia. These tools could be used to help construct new and productive
varieties of genetically improved tilapia by using markers such as DNA markers, thereby
constituting a significant contribution to the production of fish species.

4.3. Farming of Hybrid Tilapia

Two of the more common hybrid tilapia are the red tilapia or golden tilapia. The
Oreochromis mossambicus × Oreochromis niloticus hybrid is gaining popularity because of
ease with which its cultivation can be managed [106]. Beardmore et al. [93] indicated that
hybridization can result in monosex populations. Based on the performance of analyzed
the fish, they found the gene and regulatory pathways related to osmoregulatory tolerance
in hybrid tilapia [107]. The advancement of the production of hybrid tilapia requires
one to understand the genetic linkages of the parental strains (the ancestry) of these
fish [108]. Gene-sequenced omics and computational investigations aid the development
of productive hybrid tilapia strains. [109]. Avallone et al. [110] developed an simple and
inexpensive method called Local Ancestry Inference (LAI) for a tilapia-breeding program
using Digest-RAD-sequence-derid Single Nucleotide Polymorphism Markers (SNPM). The
goal of their experiment was to trace ancestral genes via a fast and accurate method for
the production of potential high-yield and disease-resistant varieties of hybrid tilapia.
This method helps remove the unwanted traits in fish [111]. The selective breeding of
tilapia to produce hybrid varieties leads to the optimal presentation of economically and
environmentally favorable traits [112].

5. Management of Feed and Nutrients

To maintain optimum growth and immune functions, feed should contain energy and
nutrients that meet the requirements for tilapia culture [113]. Nutrients play a vital role
in the regulation of metabolism and the maintenance of homeostasis in fish [114]. Various
parameters, such as body weight increase (BWI), FCR, the protein efficiency ratio (PER),
specific growth rate (SGR), and weight gain (WG), are used to measure growth as a function
of feed offered. Fishmeal is a major source of nutrients in fish feed. However, due to the
depletion of fishmeal stock and fluctuations in its selling price, investigations are already
underway to find a suitable alternative. Mostly plant-based alternatives are preferred
because of their nutritional profile and abundance. Nevertheless, the antinutritional factors
present in plant sources hinder the process of completely replacing fishmeal in fish feed.
The dietary needs of tilapia vary based on the developmental stage, water temperature,
and fish size [115]. It is critical to balance the diet with the proper macronutrients and
micronutrients while avoiding overfeeding, which can cause water quality concerns such
as increased fish waste and uneaten food [116]. Producers must also consider feed costs and
devise feeding systems that improve economic efficiency while preserving fish growth and
quality [117]. Fish feed production is extremely difficult since it frequently necessitates the



Fishes 2023, 8, 176 12 of 31

exploitation of arable land to grow crops that are then transformed into fish feed [118]. This
is a sizeable issue since arable land may be better employed for human food production
rather than for fish feed manufacturing. The growing need for fish feed is consuming a
large quantity of arable land that could otherwise be exploited to produce food for human
consumption [119]. The land used to manufacture fish feed could be utilized to grow
crops that could feed humans in many parts of the world, particularly in areas where
food insecurity is already a serious concern [120]. As a result, it is critical to investigate
sustainable alternatives for the production of fish feed, such as the utilization of insect-based
protein sources [121]. This would reduce the strain on arable land and water resources
while also providing a long-term source of protein for tilapia production. Researchers have
conducted various studies to find plant-based alternatives to fishmeal. Nevertheless, due
to antinutritional factors, plant-based alternatives have only been used to partially replace
fish meal [122].

Table 1. Various feed supplements and their performance with respect to fish health.

S. No Feed Supplement Performance Fish Species References

1. Tridax procumbens
Improves growth, production of antioxidants,

immunity, and resistance to monogenean
parasitic infection

(Oreochromis niloticus)
Nile tilapia [123]

2. Caraway seed Improves growth performance (Oreochromis niloticus)
Nile tilapia [124]

3. Silybum marianum Promotes growth and enhances serum biochemical
indices, antioxidant status, and gene expression

Oreochromis niloticus
Nile tilapia [125]

4. Trigonella
foenum-graecum

Improves oxidative status and immune gene
expression and histopathology

(Oreochromis niloticus)
Nile tilapia [126]

5. Salvadora persica
Improves hematoimmunological parameters and

enhances antioxidant responses against
A. hydrophila infection

(Oreochromis niloticus)
Nile tilapia [127]

6. Yucca schidigera
Improves growth performance, hepato-renal
function, and antioxidative status and effects
histopathological alterations against hypoxia

(Oreochromis niloticus)
Nile tilapia [128]

7. Menthol essential oil

Improves growth performance,
digestive enzyme activity,

immune-related genes,
resistance against acute

ammonia exposure

(Oreochromis niloticus)
Nile tilapia [129]

8. Dietary coenzyme
Q10 and Vitamin C

Enhances growth, digestive
enzyme activity, immune-related genes, and
resistance against acute ammonia exposure

(Oreochromis niloticus)
Nile tilapia [130]

9.
Soybean meal diet

combined with
bokashi leachate

Improves feed intake and growth performance

(Oreochromis
mossambicus ×

Oreochromis niloticus)
Red tilapia

[131]

10. Enzymatic feather
meal

Enhances growth, nutrient retention,
and digestibility

(Oreochromis niloticus
× Oreochromis aureus) [132]

11.

Organic acid salt
blend and protease

complex
combination

Improves growth and nutrient digestibility Oreochromis niloticus
× Oreochromis aureus [133]

12. Methylated soy
protein isolates

Acts as good immune-modulating substance and
improved gut health

(Oreochromis niloticus)
Nile tilapia [134]
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Table 1. Cont.

S. No Feed Supplement Performance Fish Species References

13. Whey Protein
Concentrate (WPC)

Improves gut health, total weight gain, survival
rate, and immune status of fish against

Aeromonas hydrophila

(Oreochromis niloticus)
Nile tilapia [135]

14. Bacillus subtills and
Lactobacillus plantarun

Increases amylase (enzymatic) activity, modulates
intestinal microbiota profile

(Oreochromis niloticus)
Nile tilapia [136]

15. Bacillus pumilus and
exogenous protease

Enhances growth, immunity, serum parameters,
gene expression and gut bacteria

(Oreochromis niloticus)
Nile tilapia [137]

16. Enterococcus faecium Improves growth, hematological and biochemical
parameters, and non-specific immune response

(Oreochromis niloticus)
Nile tilapia [138]

17. Aspergillus oryzae Improves oxidative status and immune response
against hypoxia

(Oreochromis niloticus)
Nile tilapia [139]

18. Clostridium butyricum Improves growth, feed utilization, and gut health Oreochromis niloticus
× Oreochromis aureus [140]

19.
Chitosan and

chitosan
nanoparticles

Improves health and phagocytic activity (Oreochromis niloticus)
Nile tilapia [141]

20. Zinc oxide
nanoparticles Improves health (Oreochromis niloticus)

Nile tilapia [142]

21.
Dietary sodium

butyrate
nanoparticles

Enhances growth (Oreochromis niloticus)
Nile tilapia [143]

22.
Synergized selenium

and zinc oxide
nanoparticles

Improves growth, hemato-biochemical profile, and
immune status and reduces oxidative stress

(Oreochromis niloticus)
Nile tilapia [144]

23. Cinnamon
nanoparticles

Enhances antioxidant and digestive enzyme
activity, growth, and health

(Oreochromis niloticus)
Nile tilapia [145]

Natural organisms, supplementary feed, and feed additives are widely used in com-
mercial fish farming [146]. Depending on the culturing practices employed and the foraging
behavior of the specific group, tilapia will grow rapidly when fed with fishmeal-based
diets, plant-based diets, biofortified feed additives, or other natural types of feed. The
use of formulated diets helps curtail unwanted chemical inputs, and the use of synthetic
antibiotics naturally fosters the growth and immune status of the fish [147]. Fish meal is an
excellent protein ingredient in diets but is very expensive [148]. Fish meal provides protein
and essential amino acids but can also contain thiaminase, an anti-nutritional factor that can
degrade thiamine [132]. The demand for fishmeal exceeds the supply and alternative pro-
tein sources are needed. Tilapia present positive results when fed with alternative protein
ingredients (Table 1). Thus, feasible, balanced, low-cost, anti-nutritional-agent-free feed
should be formulated for sustainable aquacultural production. Studies concerning feed for-
mulation and nutrition technology are increasingly relying on proteomics, transcriptomics,
genomics, and metabolomics to interpret the efficiency of growth- and immune-enhancing
feed formulations in aquatic feed and nutrition [149].
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6. Strategies for Diseases Management of Tilapia

Disease outbreaks can cause severe losses in aquaculture. Proper diagnostic advance-
ments should be implemented to avert economic loss [150]. Several diseases are caused by
poor water quality management, the high stocking of fish, and improper feeding strate-
gies [151]. The continuous usage of antibiotics/medications leads to an increased incidence
of drug-resistant bacteria; another consequent drawback is an accumulation of antibiotics
in fish [152,153]. Tilapia are highly susceptible to pathogens such as bacteria, fungi, viruses,
and ecto- or endoparasites or their secondary toxic metabolites. Tilapia are also highly
susceptible to Motile Aeromonas Septicemia (MAS), columnaris, edwardsiellosis, fran-
cisellosis, streptococcosis, and vibriosis [5]. TLV (an ortho myxo-like virus) is a potential
threat to farming and production [154], and it is ascribable to certain bacterial pathogens
such as Aeromonas, Flavobacterium, and Streptococcus. Certain co-existence studies analyzed
TLV and bacterial pathogens to assess the resultant epidemic disease [155]. Ectoparasites
that affect tilapia farming include monogeneans (Cichlidogyrus, Cyrodactylus etc.,) and pro-
tozoans (Trichodina, Vorticella), which can result in severe monetary losses in the tilapia
industry [156]. These disease-causing agents effect high mortality rates and are a menace
to future production [157]. A disease outbreak in tilapia production causes adverse effects
on aquaculture (Figure 6). Streptococcus agalactiae and Streptococcus iniae are the major
causative agents for the endemic disease streptococcosis. This disease causes severe mortal-
ity, specifically during the summer months when the increase in water temperature favors
the growth of S. iniae [158]. Ismail et al. [159] reported that vaccine-based diets reduce the
severity of streptococcosis infection by as much as 13% and increase survival rates by up
to 75%. Biocontainment measures include the quarantining of the diseased fishes, water
treatment using ultraviolet light, and chemical treatment (disinfectants) to reduce the risk
of diseases in the culture environment before the administration of medication. However,
antibiotics, chemical agents, or chemotherapeutics are only used after the identification
of sick fish [160,161]. Vaccination and improved hygiene protocols are critical to avoiding
antibiotic abuse in tilapia production. Antibiotic resistance occurs when bacteria develop
resistance to the actions of antibiotics, rendering them more difficult to treat. Antibiotic
overuse in the fish farm industry can result in the entrance of antibiotics into the food
chain, thereby potentially compromising human health. Vaccination protects farmed tilapia
against infections that might harm them, thus lowering the need for antibiotics. Improved
hygiene protocols can also help avert disease outbreaks by lowering the likelihood of
pathogen transmission. The implementation of these strategies is assured to promote
sustainable and safe tilapia farming both in terms of the environment and human health.

The sustainability of aquaculture requires the control of diseases. The government,
NGOs, and various research institutes in India are focusing on this challenge and providing
disease-resistant strains of fish [119]. The emerging techniques, such as the sequencing of
whole genomes, provide new insights into the disease resistance of high-yield varieties of
tilapia. Oreochromis spilurus cultured in seawater contains an antimicrobial peptide [162].

6.1. Vaccines

Fish are cold-blooded animals but respond to vaccines like warm-blooded animals [163].
Vaccinating fish may reduce the use of antibiotics in aquaculture. Duff [164] was the first
to examine oral immunization against furunculosis in Atlantic salmon (Salmo salar). The
advantage of using vaccines over antibiotics is that a vaccine stimulates the immune re-
sponse and induces immunological memory, thus preventing future outbreaks by exposure
to pathogens [165].
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Table 2. Bacterial vaccines administered for tilapia.

S. No. Pathogens Type Mode of
Administration Efficacy Performance References

1.

Streptococcus iniae improves
the simulation of GALT

(Gut-Associated Lymphoid
Tissue) and

specific antibodies

Attenuated
Intraperitoneal 79–100%

Leads to higher antibody
production conferred by
cell-mediated immunity

[166]
Bath 86% Leads to higher

antibody production

Formalin-Inactivated Intraperitoneal 79–100% Provides good immunogenicity

DNA Vaccine
Modified PCI-neo plasmid or PBS
(Streptococcal α-enolase gene in

pCI-neo plasmid)

Intramuscular 72.5%

Leads to increased levels of
proinflammatory cytokines and

S. iniae-specific
neutralizing antibodies

[167]

2. Streptococcus agalactiae

DNA Vaccine
(Recombinant bacteria with

surface immunogenic protein)
Oral 75% Immunogenic [168]

Attenuated with erythromycin. Intraperitoneal 82–100% Leads to higher
antibody production [169]

3. Aeromonas hydrophila Heat-Inactivated
Formalin Inactivated Intramuscular 90%, 86.6% Immunogenic and facilitates

highest antibody production [170]

4. Flavobacterium columnare

Attenuated
(Rifampicin-resistant

low-virulence strains) subunit
vaccine

Bath 80%
Provides good immunogenicity
and cross-protection to multiple

genomovar co-infections
[171]

5. Vibrio anguillarum DNA Vaccine
(Recombinant flagellin A protein) Intraperitoneal Higher survival rate Facilitates greater agglutination

and bactericidal activity [172]

6. Edwardsiella tarda

Whole-cell formalin-inactivated +
recombinant GAPDH

proteins that
were emulsified with
Montanide adjuvant

Intraperitoneal 71.4% Promotes greater
antibody response [172]
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Attenuated and inactivated DNA- and RNA-type vaccines have been widely used to
treat various bacterial, viral, and parasitic diseases in fish and have been experimentally
tested in tilapia species. These vaccines can be monovalent, bivalent, or polyvalent [173–179].
Zhang et al. [180] suggested that understanding the mechanism of fish vaccination leads
to higher defensive efficiency towards pathogens. The oral injection of an engineered
formalin killed vaccine (FKV) for Streptococcus iniae administered to a red tilapia hybrid
led to positive responses [181]. El tantawy and Ayoub. [182] reported that the inclusion of
turmeric in fish feed combined with whole dead A. hydrophila cells led to a 100% survival
rate in a group of A. hydrophila-infected tilapia. Table 2. shows that polyvalent vaccines
consisting of formalin-inactivated Streptococcus agalactiae, Streptococcus iniae, Enterococcus
fecalis, Francisella orientalis, and Lactococcus garvieae combined with the commercial ad-
juvant Montanide significantly increase the survival rates and immunogenicity of Nile
tilapia [183,184]. However, commercial vaccines are not available in India [185].

6.2. Antibiotics

Commercial antibiotics are widely used to treat various fish diseases. Raj et al. [186]
stated that Aeromonas veronii samples from diseased Nile tilapia exhibiting bilateral exoph-
thalmia were sensitive to the following antibiotics: chloramphenicol, cefixime or clavulanic
acid, ciprofloxacin, and kanamycin. However, the misuse or overuse of antibiotics impacts
overall fish health and causes multidrug resistance in the pathogen [187]. There are also
certain health concerns concerning the usage of antibiotics in aquaculture. For example, the
gut microbiome of tilapia should not be altered as it promotes the growth and health status
of the fish [188]. In this regard, effective technology has been developed to reduce the
unwanted impacts of antibiotics by using absorbent material that delivers the antibiotics
efficiently [189] (Table 3).
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Table 3. Usage of antibiotics in tilapia culture.

S. No Antibiotic Target Disease/Causative Organisms References

1 Oxytetracycline Francisellosis, motile Aeromonas septicemia, and Streptococcosis [190]

2 Florfenicol Aeromonas salmonicida, Aeromonas hydrophila, Flavobacterium
psychrophilum, Yersinia ruckeri, and Vibrio anguillarum [191]

3 Azithromycin
Aeromonas spp., Pseudomonas fluorescens, Vibrio anguillarum,

Flavobacterium columnare, Edwardsiella tarda, Streptococcus spp., and
Enterococcus spp.

[192]

4 Sulfamethoxazole Alphaproteobacteria, cyanobacteria, Fusobacteria, and
unclassified–P-proteobacteria [193]

5 Erythromycin Streptococcosis [194]

Módenes et al. [195] designed a mathematical modelling system for tilapia and tetracy-
cline using an absorbent material (biochar) capable of absorbing this antibiotic and serving
as a potential delivery method. It was shown that the use of a combination of natural
compounds and antibiotics could be a method for reducing antibiotic resistance and other
adverse effects. This study confirmed that rutin obtained from Citrus sinensis, a flavonoid
compound rich in Vitamin P, combined with gentamicin exhibited better antibacterial and
anti-biofilm effects against Pseudomonas aeruginosa [196]. The study also reported that rutin
and the antibiotic florfenicol possess potential antibacterial and anti-biofilm properties both
in vitro and in vivo against Aeromonas hydrophila [197].

6.3. Immunostimulants

Herbal plants are promising agents as they stimulate fish immunity at low doses
without any side effects [198,199]. Their potential immunostimulants have significant
natural characteristics, such as possessing low molecular weight, being water-soluble and
amphoteric, and containing nitrogen molecules [200]. Immunostimulants in the form of
chemicals, drugs, and natural compounds from plants and other sources can activate the
host defense mechanisms against various disease-causing pathogens (Table 4). Bricknell
and Dalmo [201] reported that immunostimulants boost the immune system of fish dur-
ing larval development. Meena et al. [202] reported that beta-glucan can be used as a
potential immunostimulant in aquaculture as it enhances the immune performance of
fish. Beta-glucan and other immunosaccharides such as inulin, mannooligosaccharide, and
fructooligosaccharide are widely used immunostimulants and are considered prebiotics.
Immunostimulants, or immunopotentiators, improve the adaptive and innate immune
system of the host [203]. Immunostimulants also serve as eco-friendly feed additions that
can enhance a fish’s growth and immune performance.

Table 4. Usage of herbal immunostimulants in tilapia culture.

S. No Immunostimulant Organism Performance References

1 Turmeric
(Curcuma longa)

Nile tilapia
(Oreochromis niloticus)

Enhances growth, immunity, and
antioxidant status [204]

2 Pumpkin seed meal
(Cucurbita mixta)

Mossambique tilapia
(Oreochromis
mossambicus)

Enhances growth, immune, and disease
resistance activity [205]

3 Velvet bean
(Mucuna pruriens)

Mossambique tilapia
(Oreochromis
mossambicus)

Enhances innate immunity and growth
performance [206]

4 Ashwagandha
(Withania somnifera)

Nile tilapia
(Oreochromis niloticus) Provides an immuno-therapeutic effect [207]
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Table 4. Cont.

S. No Immunostimulant Organism Performance References

5 Mangrove
(Excoecaria agallocha)

Red hybrid tilapia
(Oreochromis niloticus)

Enhances non-specific immune
responses and disease resistance [208]

6 Guava
(Psidium guajava)

Nile tilapia
(Oreochromis niloticus)

Enhances growth, nutrient utilization,
and immune system [209]

7 African wormwood
(Artemisia afra)

Mossambique tilapia
(Oreochromis
mossambicus)

Enhances growth and disease resistance [210]

8 Chamomile
(Matricaria chamomilla)

Nile tilapia
(Oreochromis niloticus)

Enhances growth and immune
parameters [211]

9 Spanish dagger
(Yucca schidigera)

Nile tilapia
(Oreochromis niloticus)

Enhances growth, hematology,
nonspecific immune responses, and

disease resistance
[212]

10 Oregano
(Origanum vulgare)

Red belly tilapia
(Coptodon zillii) Enhances innate immunity [213]

11 Peppermint
(Mentha piperita)

Nile tilapia
(Oreochromis niloticus)

Enhances hemato-immunological
parameters [214]

Bustamam et al. [215] reported that a 2.5% inclusion of Isochrysis galbana (IG) supple-
mented as a dietary immunostimulant enhances the immune system of red hybrid tilapia. It
also increases the abundance of certain secondary metabolites such as glutamate, isoleucine,
and tyrosine. Notably, immunostimulants tend to alter the metabolomics of the fish, which
alters their metabolism [216].

6.4. Probiotics

Live microorganisms that can improve host health are collectively referred to as probi-
otics. The common probiotics used in aquaculture include the Aeromonas, Bacillus, Clostrid-
ium, Cornybacterium, Enterococcus, Enterobacter, Lactobacillus, Lactococcus, Pseudomonas, She-
wanella, Saccharomyces, and Vibrio species [122]. These potential probiotics tend to enhance
the growth and immune system of fish [217]. Essa et al. [218] reported that tilapia growth
performance and the activity of digestive enzymes such as amylase, protease, and lipase
were improved by providing Bacillus subtilis and Lactobacillus plantarum or a mixture of yeast
(Saccharomyces cerevisiae) as an alternative feed. Moreover, these probiotics were associated
with the gut microbiota and enhanced the enzymes that hydrolyze macronutrients for the
better digestion and absorption of nutrients [115]. Ghosh et al. [219] investigated the probi-
otic and antipathogenic nature of Bacillus sp. Banerjee and Ray. [220] experimented with
the antagonistic effects of Bacillus megatarium in the intestine of tilapia. Certain species of
Bacillus can degrade cellulose. Bacillus circulans isolated from the gut of tilapia increased the
fermentation of cellulose [221]. Lara-Flores et al. [222] stated that probiotics incorporated in
a diet consisting of 40% or 27% crude protein improved feed conversion ratios and weight
gain compared to a control diet. Probiotics not only promote growth but also improve
the immune system, disease resistance, and survival rate of tilapia. Aly et al. [223] fed
sample fish a mixture of Bacillus subtilis and Lactobacillus acidophilus as a probiotic, which
resulted in a significantly higher survival rate in Nile tilapia. Samat et al. [224] attempted
the administration of a probiotic via live feed. Moina micrura was used as the live feed and
Bacillus pocheonensis as the probiotic. This combination resulted in the improved health and
survival of the fish. Ringo et al. [225] reported that Bacillus amyloliquefaciens supplemented
as a probiotic in feed for tilapia modifies the gut microbiome and enriches the production of
secondary metabolites. The major criteria for the supplementation of probiotics to fish vary
based on the species and depend on the concentration, mode of administration, etc. [122].



Fishes 2023, 8, 176 19 of 31

7. Projects Developed for The Production of Tilapia in India

Governing bodies such as the National Fisheries Development Board (NFDB) and the
Rajiv Gandhi Center for Aquaculture (RGCA) have given sustained and focused priority to
the fisheries sector through policies and financial support designed to support small-scale
farmers, women, and various centers in order to achieve sustainable fish production in
India (Table 5). The RGCA, in association with the World Fish Centre (WFC), developed
genetically improved varieties of tilapia for the betterment of fish farmers and small
householders, thereby helping to promote tilapia farming and improve local economies in
the country. The WFC also focuses on sustainable and logical breeding programs for the
tilapia industry in India [28,226].

Table 5. Projects and schemes for tilapia culture in India.

S. No. Governing
Body/Funding Agencies Project Target Fish Species

1. NFDB

Brackish water cage culture for
sustainable aquaculture in coastal

regions of India

Milk Fish (Chanos chanos), Asian seabass
(Lates calcarifer), grey mullet (Mugil

cephalus), pearlspot (Etroplus suratensis),
Nile tilapia (Oreochromis niloticus), silver

pompano (Trachinotus blochii)

Demonstration of azolla production
for tilapia feed supplement in

Madhavaram, TNJFU Campus,
Tamil Nadu

GIFT Tilapia

Backyard Recirculatory
Aquaculture System Monosex tilapia, Pangasius valenciennes

2.

RGCA
working in association

with (WFC)
to enhance the genetic

strains of tilapia.

Establishment of a satellite nucleus of
the GIFT strain at RGCA to support
tilapia production in India: Phase I

(2011–2016)
Establishment of a satellite nucleus of

the GIFT strain at RGCA, India:
Phase II (2019–2023)

GIFT Tilapia

The Indian government’s policies and goals for the fisheries sector have been strength-
ened by FAO activities. The Bay of Bengal Program (BOBP), a regional fisheries program
created by FAO, is centered in Chennai, India [13]. Through collaboration with global
aquaculture and fisheries allies, India is contributing to the share of global public goods,
including by sharing its expertise in agriculture (aquaculture) and rural development with
other developing countries. In 2022, the Indian government launched Pradhan Mantri
Matsya Sampada Yojana (PMMSY) to form a blue revolution by enhancing the sustainable
development of fisheries and aquaculture (Figure 7). This program creates various em-
ployment opportunities. In addition, this program is collaborating with various private
organizations such as Fountainhead Agro Farms Private Limited to enrich the production
of tilapia using Israeli technology.
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8. Blue Economy—Future Perspectives

The blue economy is critical to tilapia production and is predicted to grow dramatically
in the upcoming years. The tilapia sector is under pressure to enhance its productivity
while reducing environmental concerns as the demand for food increases [227]. With the
global population estimated to exceed 9 billion by 2050, the tilapia sector will be critical
in fulfilling the increasing need for protein. The future of tilapia production is bright
because of several elements that support the rise of the blue economy [228]. This review
has highlighted the critical factors defining the tilapia industry’s future. To begin with,
technological advances in tilapia farming have revolutionized the sector. Conventional
agricultural practices are no longer appropriate for today’s commercial market needs. The
Blue Economy has created new prospects for international commerce, which has led to
greater growth in the tilapia sector. Foreign investment is being driven by rising global
consumer demand, and trade agreements are simplifying market access for many nations.
Furthermore, the increasing demand for live fish, such as tilapia, gives providers additional
potential to develop the market beyond the commonly sold frozen fish. In summary, the
future of tilapia production from the perspective of the blue economy seems promising.
Technological advancements, advances in fish feed production, shifting consumer habits,
and possibilities regarding international commerce are all contributing to this expansion.
The industry’s sustained growth should help to drive economic development and food
security by fulfilling the rising consumer demand for healthy, sustainable foods.

9. Conclusions

In India, aquaculture is a promising economic activity and a rising sector with wide
resources and potential. The vibrancy of the aquaculture sector could be visualized as a
drastic advancement in the field of aquaculture, which India has achieved in past decades.
Tilapia significantly contributes to the total share of aquaculture exports in India, which
boosts the country’s economy. With recent breakthroughs in aquacultural technology and
improvements in the diets of tilapia, there has been constant advancement in tilapia output,
leading to the sustainable development of Indian aquaculture. Tilapia cultivation may be
an economically feasible choice for aquaculture production in various locations of India, as
long as suitable investment and management practices are employed. The Rajiv Gandhi
Centre for Aquaculture (MPEDA, Ministry of Commerce and Industry, Government of
India) has established a tilapia project and breeding program focused on the use of potential
GIFT strains to improve production conditions in India in collaboration with the WFC,
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Malaysia. The NFDB of India was formed in 2006 and is an autonomous body under the
Ministry of Fisheries, Animal Husbandry, and Dairying of the Government of India that
seeks to promote and encourage tilapia farming. Still, farmers are facing difficulties related
to disease management while culturing tilapia, necessitating the provision of vaccines for
longer-term protection and low-cost vaccines that increase mucosal immunity. Various
technologies and tools are available that can support the future of aquacultural production
and the betterment of the country’s economy and food supply. The policy making regarding
tilapia aquaculture in India not only aspires to promote economic value but also concerns
ensuring national and global food security, diminishing malnutrition, and reducing poverty.
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