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Abstract: The nursehound Scyliorhinus stellaris is a threatened shark species and its population in the
Mediterranean Sea is declining. Programs for captive breeding and repopulation in marine protected
areas (MPA) are being carried out. Unfortunately, pathogens may hinder conservation plans for this
species. An impactful disease of marine animals, caused by the bacteria Photobacterium damselae, has
been detected with increased frequency in recent decades in both farmed and marine animals. The aim
of this work was to determine the cause of a disease outbreak in eight captive nursehounds that died
after 18 months of captivity. Gross necropsy observations were indicative of a presumptive diagnosis
of hemorrhagic septicemia. Histological and molecular techniques were performed, to diagnose
the etiological agents that could be involved in their mortality. Phylogenetic analysis indicated the
presence of P. damselae, identified as subsp. damselae by PCR-duplex, and Photobacterium swingsii in
the analyzed captive nursehound Scyliorhinus stellaris.

Keywords: shark; nursehound; Scyliorhinus stellaris; pasteurellosis; Photobacterium

1. Introduction

The nursehound Scyliorhinus stellaris is an elasmobranch belonging to the Scyliorhinidae
family, order Carcharhiniformes, inhabiting the continental shelf over rocky and algal-
covered bottoms. Usually, it is found at depths between 20 and 60 m, and up to 500 m. This
shark is widespread in the whole Mediterranean, as well as in the coastal waters of the
eastern Atlantic Ocean, from Morocco to the North Sea on the Scandinavian coasts [1].

The nursehound, due to overfishing and/or bycatch, which has substantially caused
the decline of its population in the Mediterranean Sea [2], is currently listed by the IUCN
as a “Vulnerable” species. In the Balearic Islands, it has been listed as an “Endangered”
species under criteria one (I, IV) of the Balearic Red List of Fishes, as a reduction in 50%
of its biomass in the last/next 10 years has been inferred by direct observation and tak-
ing into account the actual stock exploitation level [3]. The strong reduction of S. stellaris
populations has led to the implementation of conservation plans through captive breeding
and repopulation in marine protected areas (MPAs) of the Mediterranean Sea and, particu-
larly, in the Balearic Islands (https://www.mallorcapreservation.org/grants/__trashed/,
accessed on 18 December 2022), where studies on genetic diversity from different locations
have begun [4].

The decline of some fish populations, including sharks, has often been associated
with bycatch, the increase of pathogens in marine water, such as parasites, bacteria, and
viruses, or the increase of susceptibility of the contaminated species due to pollution [5,6].
Among the emerging diseases recently detected in marine and freshwater environments,
Photobacteriosis, also known as Pasteurellosis, is an infection affecting a broad range
of species [7–10]. The etiological agent has been identified as Photobacterium spp., and
particularly the P. damselae subspecies damselae and piscicida. These are Gram-negative,
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facultatively anaerobic, motile bacteria that are pathogenic for marine animals. The two
subspecies cause different diseases and only the subsp. damselae is zoonotic [10–15].

The two subspecies are different in biochemical phenotype, and they show dif-
ferent clinical signs of diseases. The P. damselae subsp. piscicida, (formerly known as
Pasteurella piscicida) is the causative agent of photobacteriosis or the previously recognized
disease known as “pasteurellosis”, of marine fish. In fish affected by acute photobacteriosis,
external signs are usually inconspicuous, except for the observation of slight petechial
hemorrhages [16]. Although photobacteriosis may occur in both acute and chronic forms,
the disease usually develops into septicemia [17].

Instead, P. damselae subsp. damselae (formerly Vibrio damsela) is the causative agent
of “Vibrio damsela infection”, a hemorrhagic septicemia with accompanying skin lesions
in marine fish [18]. However, the P. damselae subsp. damselae is pathogenic for a wide
variety of aquatic animals, both wild and farmed, such as fish, crustaceans, mollusks, and
cetaceans. The organism is also a human pathogen causing necrotizing fasciitis and is con-
sidered a zoonotic agent [18]. Among the specific aquaculture hosts are Dentex dentex [19],
Pagrus auriga [20], Diplodus sargus [21], Sparus aurata [22,23], Scophtalmus maximus,
Seriola quinqueradiata, and Dicentrarchus labrax, among others [18,22]. Further, the P. damselae
subsp. damselae has also been isolated from a variety of newly cultured marine fish species
such as Pagrus auriga, Pagrus pagrus, Diplodus sargus, and Argyrosomus regius [18], and more
recently in wild populations of Sardinella aurita and Mullus surmuletus [24].

While the P. damselae subsp. damselae is the more recognized member of the genus
Photobacteria for causing fish disease, the genus nowadays comprises more than twenty-
eight validated species, not all of which are pathogenic [25]. Among them, another species
was newly described in marine organisms, Photobacterium swingsii, that was isolated from
Pacific oysters (Crassostrea gigas) collected in Mexico and from crabs (Maja brachydactyla) in
the Canary Islands (Spain) [26].

Recently, it was suggested that wild fish residing in polluted environments are more
receptive to pathogenic microorganisms, particularly P. damselae for both subsp. Damselae
and piscicida [24].

The Photobacterium damselae subsp. damselae is most likely an opportunistic pathogen.
It has been associated with mortalities in wild sharks such as Carcharhinus plumbeus
and Squalus acanthias [27,28], as well as in captive sharks held in commercial display
aquaria. However, it and other Photobacteria species have also been shown to be part
of the normal intestinal microflora of sharks [29]. In support of this, the central intesti-
nal microflora of three shark species (Carcharhinus brevipinna, Rhizoprionodon terraenovae,
and Carcharhinus plumbeus) was shown to share three closely related groups of bacterial
species, with Photobacterium sp. dominating [30], as well as a fluctuating dominance of
Photobacterium sp. was observed in intestinal microflora of scalloped hammerhead sharks
(Sphyrna lewini) [31]. However, shark mortalities in commercial aquarium zebra shark
Stegostoma fasciatum were identified to be caused by the P. damselae subsp. damselae [32] and
smoothhound sharks (Mustelus mustelus) under stressful conditions from a Turkish marine
aquarium affected by another species, namely Photobacterium sanguinicancri [17].

The present study is the first report describing P. damselae subsp. damselae and
Photobacterium swingsii as responsible for hemorrhagic septicemia in captive nursehound
sharks of Scyliorhinus stellaris.

2. Materials and Methods
2.1. Sampling and Placement in Aquarium

Between December 2020 and January 2021, a total of 9 nursehounds were captured
by the Balearic professional fleet (using trammel nets and bottom trawling) in two differ-
ent areas of the Balearic Sea (Spain; Northwestern Mediterranean Sea), with the aim of
establishing a captive breeding stock for repopulation of marine protected areas (MPAs)
with their offspring. During transport on the boat, fish were kept alive in a bucket with
a continuous supply of seawater. Subsequently, the individuals were transferred to an
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aquarium in Mallorca, Balearic Islands (Spain). There, the nursehounds ranging in length
from 73–93.5 cm and weight between 2020–3990 g were quarantined separately at con-
stant temperature for 1 month and then held in a maintenance system for approximately
18 months before mortality events occurred. The maintenance systems were tanks of 8000 L
of capacity, equipped with a water supply from a well in a close recirculating system kept at
specific salinity, temperature, degrees of carbonate hardness (dKH), nitrites (NO2), nitrates
(NO3), ammonia (NH3), magnesium (Mg), calcium (Ca) and phosphates (PO4) levels. All
these parameters were controlled daily. The water temperature varied naturally, being
water drawn from a well, in the range of 19–22 ◦C between the winter and summer seasons.

The animals were fed every 48 h with chopped fresh fish (tuna, headless sardinella,
anchovies, peeled shrimp, and peeled mussels), which is the same food that is supplied
to the rest of the carnivorous fish maintained in the facility. The animals were perfectly
adapted to the maintenance conditions, eating directly from the hand of the feeder, without
being scared or stressed. After the daily feeding, the keepers removed the remains of the
food. The cleaning of the tank filter is done weekly and the bottom of the tank was cleaned
twice a week, rubbing with a scourer and later vacuuming the organic debris.

2.2. Case History

At the end of May 2022, two mortality events occurred in this maintenance system.
The only surviving nursehound was transferred to another tank. The mortality episodes
occurred on two different days, spaced 4 days apart between them.

On the first episode of mortality, 29 May, the fish had eaten normally during the day
(13:00 h). However, that night watchman alerted at dawn (00:15) that the fishes were very
active, swimming and changing direction rapidly, and that there was also food remains
clogging the overflow. When the fish keepers arrived, only 15 min after the emergency call,
they met 2 dead nursehounds and another was lethargic, swimming sideways and making
loops. The affected nursehound was transferred to another independent tank and the
following day it fully recovered. Dead nursehounds were immediately removed and frozen
at −20 ◦C for subsequent necropsy. The rest of the specimens did not present anomalous
behaviors. However, the reddish coloration of the skin and the flaccid, friable abdomen
with the appearance of being filled with water were especially remarkable in these two
dead nursehounds.

In the second mortality episode, on June 4, the remaining 6 surviving nursehounds
died. Only the one that was separated from the previous ones in the first episode of
mortality survived and later recovered. As in the previous mortality episode, the animals
had eaten in the morning (13:00 h) and, at dusk (22:00 h), the night watchman alerted that
he was observing dead specimens at the bottom of the tank. In addition, the water level
was rising since there was food debris in the overflow and floating at the surface of the tank.
When the keeper came urgently, he observed 5 dead nursehounds and one survivor very
weak, swimming in loops. An extra supply of oxygen was administrated to the survivor
nursehound, however, it died after a few hours. The nursehounds seemed to have vomited
since the tank was found with floating food remains. Gills were reddish, with no signs of
disease, however, it was noteworthy, as, in the previous episode, the reddish colors of the
skin and the belly seemed to be full of water. The specimens were refrigerated for their
subsequent necropsy, which was carried out the following day, together with the other
previously frozen individuals.

Necropsies were performed at LIMIA-IRFAP (Marine and Aquaculture Research
Laboratory of the Balearic Government). After gross examination, samples of the different
tissues were taken, for histological and molecular purposes, being fixed in 10% buffered
formalin for subsequent histological processing or frozen at −20 ◦C for molecular biology
analyses.

No other animals living in the same aquarium facilities have been previously or
subsequently affected by this mortality outbreak.
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2.3. Analytical Procedures

Samples of the liver, spleen, gonad, digestive tract (stomach and anterior intestine),
kidney, and gill were processed for routine histological examination. Sections were stained
with Mayer’s hematoxylin and eosin (MHE). Some additional sections were stained with
the Brown and Brenn Gram and Ziehl-Neelsen (ZN) staining procedures to facilitate the
detection of bacteria and acid-fast bacteria (i.e., Mycobacterium sp., Nocardia, Rhodococcus,
and other acid-fast bacteria), respectively.

The DNA extractions were carried out on nonpooled samples of liver and kidney
from each individual, using the commercial Macherey-Nagel DNA Tissue extraction kit
(Düren, Germany), following the manufacturer’s instructions. The quality and concentra-
tion of the DNA were measured using the Nanodrop ND1000 (Thermo Scientific, Waltham,
MA, USA).

PCR amplifications of a fragment of the 16S rDNA gene, using the F1/R12 universal
primer pair [33,34], were carried out for each sample. PCR reactions were performed in
a total volume of 20 µL containing 1 µL of genomic DNA, 10 µL of KAPA Taq Ready
Mix DNA Polymerase (Kapa Biosystems, Wilmington, MA, USA), 0.4 µL (20 mM) of each
primer, and water to make up the final volume. After a predenaturation period for 2 min
at 94 ◦C the amplification protocol applied in a Biometra PCR Thermocycler (Göttingen,
Germany) consisted of 40 cycles of 94 ◦C for 30 s, 56 ◦C for 20 s, 72 ◦C for 1.30 min.

To identify the subspecies of P. damselae, further PCR reactions were performed
in a duplex, using the primers Ure-5’/Ure-3’, specific for subsp. damselae [35] and the
primers 76a/76b [36], for amplification of subsp. piscicida, following the amplification
protocol: 95 ◦C for 4 min and then 30 cycles at 95 ◦C for 1 min, 65 ◦C for 30 s and 72 ◦C for
1 min, with a final extension step of 5 min at 72 ◦C [36]. A negative amplification control
was used for each PCR reaction. The amplified PCR fragments were separated in 1.5%
agarose gel and stained with GelRed® Nucleic Acid Gel Stain (Biotium, Fremont, CA, USA).
Amplicons were purified using a mi-PCR purification Kit (Metabion International, Planegg,
Germany) following the manufacturer’s instructions and sequenced in both directions
using the ABI 3130 Genetic Analyzer (Applied Biosystems, Waltham, MA, USA).

Finally, the sequences were aligned to carry out a comparative analysis with known
sequences present in GenBank using the BLAST application. Phylogenetic relationships
were assessed using the neighbor-joining (NJ), maximum likelihood (ML) methods with
MEGA X software (1000 bootstrap replicates; [37]) and Bayesian inference (BI), using
MrBayes v. 3.2 (with 10,000 replicates; [38]), where every clade was supported by posterior
probabilities. The sequences of some Vibrionaceae taxa available in GenBank were included
in the phylogenetic analysis, using Paraphotobacterium marinum as an outgroup.

3. Results and Discussion
3.1. Physical and Chemical Parameters

In the aquaria, there were no abrupt changes in water temperature (ranging between
22 ◦C and 22.4 ◦C) during the time of the mortality events, as well as salinity (40%)
and ph (7.78). The concentrations of Mg (1300 ppm), Ca (450 ppm), dkH (2.90 mEq/L),
NO2 (0 ppm), NO3 (0–2 ppm), NH3 (0 ppm), and PO4 (0 ppm) were recorded in the tanks
the same days of the death of the animals. In an aquarium, poor water quality can cause
harm for fish if not maintained properly and balanced carefully. In fact, fish can become
very stressed which weakens their immune system making them more susceptible to
infection [39]. However, all the physical and chemical parameters of the water measured in
this facility can be considered within the range of good water quality.

3.2. Gross Macroscopic Observations

At necropsy, disease indications were not specific, though they were indicative of acute
hemorrhagic septicemia. They were consistently seen in all eight affected fish. Externally,
severe dermal petechial and ecchymotic hemorrhages were observed, especially around
the mouth and along the ventrum, together with abnormal abdominal swelling (Figure 1A).



Fishes 2023, 8, 128 5 of 11

Internally, a reddish serosanguinous abdominal fluid was observed, suggesting hemol-
ysis [40]. The liver and spleen were congested, and the gastrointestinal tract was empty
and covered with mucus. The observation of distended gallbladders, filled with greenish
bile, was indicative of anorexia. The large ovarian congestion was one of the most striking
findings (Figure 1B). No other remarkable visceral lesions were observed.
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Figure 1. Necropsy and macroscopic lesions detected in S. stellaris affected individuals. (A) Petechial
lesions and ecchymoses are mainly located on the skin of the belly and pectoral fins. (B) Note the
intense ovarian congestion (white arrow) in another affected specimen.

3.3. Histopathological and Molecular Biology Analysis

The histopathological examination was only made in six of the eight affected sharks,
corresponding to those that were kept fresh. The livers of the specimens presented fatty
liver disease (steatosis), as occurred in most species living in captivity [41]. However, it
must be taken into account that sharks do not have a swim bladder and are dependent on
the lipids stored in the liver for buoyancy. Hence, this may not be the hepatic lipidosis
associated with diets of captive fish [1].

Depending on the observed individual, moderate to marked autolysis was present in
the tissue sections examined. Only a few significant microscopic lesions were evident and
were limited to liver, spleen, and gill congestion, regardless of the position in which the
specimens were stored. Hepatic or splenic granulomas were absent. Clouds of amorphous
basophilic material were observed in the lumen of the renal tubules of all nursehound
individuals (Figure 2), inside which Gram staining revealed isolated and weakly stained
pleomorphic Gram-negative coccobacilli. No acid-fast bacteria were seen in the liver,
kidney, and gills. Rafts of sloughed intestinal epithelium that contained both Gram-positive
and Gram-negative bacteria were present in the intestinal lumina of all fish. Only one fish,
corresponding to the one with the highest degree of autolysis, also showed pleomorphic
acid-fast bacteria in its intestinal lumen.
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Fragments of the partial 16S rDNA gene (approximately 1400 bp) were obtained
from all specimens. The sequence of a single bacterium was obtained from each infected
individual. Among all, only two clearly different strains were detected and the sequences
were deposited in GenBank under accession numbers LC744198 and LC744199. Strain one
was obtained from all samples except in one specimen; on the contrary, the sequence of
strain two was obtained from only this last individual.

The BLAST result of the two strain sequences obtained from the Balearic aquar-
ium indicated similarity (99.9–100% identity) with two types of bacteria of the same
genus, Photobacterium damselae and Photobacterium swingsii. Likewise, the phylogenetic
analyses unambiguously included the obtained two strain sequences within the cluster of
Photobacterium species, supported by significant bootstrap values (Figure 3). A consistent
monophyletic clade (high significant bootstrap values/Bayesian probability: 100/100/1)
showed that the strain one sequence was more closely related to P. damselae species, al-
though the subspecies could not be identified, while the strain two sequence was related to
P. swingsii (significant bootstrap values/Bayesian probability: 82/71/0.79).
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Moreover, the PCRs applied for the detection of P. damselae subspecies allowed their
identification in all the seven samples in which strain one was shown with a partial
16S rDNA gene. The PCRs revealed only the amplification for the UreC partial gene with
products of 448 bp specific for P. damselae subsp. damselae (Figure 4). On the contrary, no
amplicons of 297 bp (using the primers 76a/76b), specific for P. damselae subsp. Piscicida
were obtained (Figure 4).
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using 76a/76b and Ure-5’/Ure-3’ primer pairs. M, 100 bp ladder; 1–7 ID of the samples.

All the analyzed nursehounds showed macroscopic pathological findings consistent
with acute Photobacterium septicemia, similar to those described in other studies affecting
different cultured species [22,42–45]. Generally, clinical signs and gross lesions in fish
acutely infected with Photobacterium sp. may be absent and/or nonspecific. However, white
nodules are often present in multiple visceral organs with the chronic form of the disease.
Hence it is sometimes referred to as pseudotuberculosis [11,42]. Although viral infections
cannot be ruled out, the detection of Photobacterium spp. makes it considered to be the most
plausible causative agent of the infection.

In recent years, mortality outbreaks caused by pathogens, affecting different fish
species, have been observed in Balearic waters [46–49], some of them affecting mainly
MPAs [50,51]. However, no massive mortality events (MMEs) of S. stellaris have been
observed until now in Balearic MPA.

The origin of the transmission and the presence of these pathogens in a facility is
not easy to identify and different hypotheses can be proposed. In general, many wild
fish do not easily adapt to artificial conditions, and when placed in aquaria, many disease
problems can arise [52]. Pasteurellosis is usually related to moderate seawater temperatures,
above 20 ◦C [53]. Below this temperature, the fish can harbor the pathogen as a subclinical
infection and become a carrier for a long period of time [54]. However, considering that
the nursehounds analyzed in this work were housed in aquaria for more than one year
(including one when water temperatures were higher) without showing any signs of
disease, hence the likelihood that the sharks were subclinically infected and carriers are
relatively low. However, it cannot be discarded that the bacteria may have been present at
the time of capture as part of the normal intestinal flora [29–31] and that a stressful event,
connected to aquarium keeping [55–57], induced the overt infection.

Similarly, we can reject the other hypothesis of the introduction of the pathogen
directly by water, due to poor filtration, because fish hosted simultaneously in different
tanks would have been affected and died.

A more plausible explanation would be the transmission through food (contaminated
fresh or frozen fish) or through human management operations in the aquarium facilities
(for example by contaminated suits of divers). However, other animals fed the same food
showed no signs of illness. Further studies, supported by complementary and more specific
techniques, should be carried out to corroborate these different hypotheses.
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The detection in a dead nursehound of P. swingsii, which is a species only recently
described and poorly known, unlike other photobacteria, could indicate the character of an
opportunistic pathogen of this bacterium that causes disease only under certain conditions.
Conversely, the characteristics of the P. damselae subsp. damselae are known. It behaves
as a generalist free-swimming bacterium and as a pathogen with hemolytic and cytolytic
activities, causing disease in a wide range of animal phyla [58].

In fact, one of the clearest differences between the P. damselae subsp. Damselae, with
respect to the subsp. piscicida, is the ability to produce hemolysis in different types of
blood, both fish and mammals. Erythrocytes from different species are sensitive to both
the cells and extracellular products of the P. damselae subsp. damselae [59]. The symptoms
that this bacterium causes in fish are clearly related to the production of extracellular
compounds that include phospholipase or hemolytic activities [60]. The hemolysis caused
by the P. damselae subsp. damselae seems to be a consequence of a toxin and/or additional
hemolysins [61]. In addition, various studies have shown in culture plates a clear distinction
between strongly hemolytic strains and weakly hemolytic strains within the P. damselae
subsp. damselae [22,35,62]. However, damages to organs and tissues that can lead to death
in animals are directly related to the action of these toxins that substantially contribute to
bacterial pathogenicity.

Nevertheless, it was observed that these bacteria can be transmitted, not only to other
aquatic animals in the aquarium, [40] but also in the wild. Animal reintroduction from
aquarium facilities into the wild must be done with great care to prevent the possible spread
of disease into the natural environment. It could compromise conservation effectiveness,
particularly in marine reserves [63]. In general, in controls prior to fish stocking in the wild,
the general state of health of the individuals, their skin, food condition, the appearance of
the gills, and everything that can determine the better physical conditions to adapt their life
in freedom and the integration into the natural environment, are inspected. In addition, the
main diseases of bacterial, parasitic, and fungal origin are commonly analyzed, only allow-
ing repopulation when the absence of detection of infectious diseases which could represent
a risk, is established. For this reason, in the management plans for the reintroduction of
S. stellaris, or other shark species, in the wild and in MPAs, similarly, more controls should
be carried out both immediately after their capture and routinely during captivity, making
accurate observations of the general state of the individuals, and also frequent control
laboratory analyses on animals, water, and even on the food that is supplied. Furthermore,
adequate sanitary protocols in relation to human maintenance activities, equipment, and
animal handling, will help minimize the stress of captive individuals and limit the possible
entries of infection.

Therefore, particular attention should be directed towards the protection and preserva-
tion of MPAs from possible infections, avoiding their inadvertent contamination through the
introduction of those microbial organisms, to date not considered particularly pathogenic
for a particular species.

In recent decades, different vaccine formulations have been developed for some aqua-
cultured fish species against photobacteriosis and some vaccines are already commercially
available [64,65]. Therefore, further research into the development and application of
new vaccines for this species of shark, including effective vaccination strategies in large
display aquaria to prevent and control this disease should be incorporated into the species
conservation.

The results of this work suggest paying more attention during the stabling phases and
the handling of this species for conservation purposes and helping to adapt prevention and
protection actions in the wild and during reintroduction into MPAs.

4. Conclusions

This study was the first to describe the detection of Photobacterium damselae and
P. swingsii in the nursehound shark Scyliorhinus stellaris. The subspecies of P. damselae subsp.
damselae was likely associated with hemorrhagic septicemia in the captive individuals
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studied. This work was carried out using histological and molecular techniques for the
identification of these bacteria. Two different PCRs were performed for preliminary iden-
tification of P. damselae and then to identify the subspecies of the samples found to be
positive.

Although this species studied is not at imminent risk of extinction, plans for fish
stocking are starting up.

Further investigations are needed for understanding the impact of this potential
pathogen in the reintroduction of shark specimens in marine protected areas.
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