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Abstract: Antibiotics were the main fishery drugs for treating Aeromonas hydrophila (A. hydrophila)
infection, which would generate selective pressure and result in the appearance of antibiotic-resistant
bacteria. The bacterial quorum sensing (QS) system provides a new alternative strategy against
A. hydrophila infection. QS inhibitors can reduce bacterial virulence behaviors by disrupting QS,
which has no effect on bacterial growth. Therefore, we studied the effect of cinnamaldehyde from
a natural plant extract on the QS of A. hydrophila aiming to reduce its pathogenicity. The efficacy of
cinnamaldehyde against A. hydrophila was evaluated from various aspects, including the effects on
aerolysin, lipase, protease, swarming motility, biofilm formation, acyl-homoserine lactones (AHLs),
and QS-related genes. Moreover, the therapeutic effect of cinnamaldehyde in vitro and in vivo
was studied. The results showed that cinnamaldehyde could decrease the virulence phenotypes of
A. hydrophila regulated by QS. Moreover, the transcriptions of related genes (aerA, ahyR, and ahyI) were
downregulated following the addition of cinnamaldehyde. The in vitro and in vivo therapeutic assays
show that cinnamaldehyde could reduce the aerolysin-mediated A549 cell injury and increase the
survival rate of crucian carp infected with A. hydrophila. These results indicate that cinnamaldehyde
would be a candidate QS inhibitor against A. hydrophila infection.

Keywords: Aeromonas hydrophila; quorum sensing; cinnamaldehyde; virulence; biofilm

1. Introduction

Aquatic products have become favorite foods for their rich, high-quality protein and
the improvement of life quality, which accelerates the development of the aquaculture
industry. Nevertheless, the fast growth of aquaculture brings a number of problems,
particularly infectious diseases caused by bacteria. Antibiotics as the main drugs for
fish health management and disease treatment were used in all stages of fish growth [1].
However, the overuse of antibiotics provided selective pressures to bacterial strains and
resulted in the emergence of drug-resistant strains, which then decreased the drug efficacy
or even resulted in treatment failure [2]. The invention of an anti-virulence strategy
targeting bacterial quorum sensing (QS) provided a novel approach facing the incidence
of antibiotic-resistant bacterial infections. The QS systems rely on signaling molecules
secreted by bacteria that vary with bacterial density, which initiate the expression of related
genes and further regulate their virulence behaviors and biofilm formation [3]. Therefore,
the alternative drugs targeting QS can attenuate the pathogenicity and drug resistance
of bacteria.

A. hydrophila is the main pathogen that threatens fish health and causes septicemia in
fish [4]. A. hydrophila can secrete a variety of virulence factors, such as aerolysin, lipase,
protease, and hemolysin, which determine the pathogenicity of the bacterium [5]. Moreover,
A. hydrophila has a strong biofilm-forming ability, which can resist the effects of many
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adverse conditions by attaching to surfaces, thereby promoting the drug resistance and
pathogenicity of bacteria [6]. Studies have found that the virulence of A. hydrophila could be
regulated by the QS [7]. Therefore, disrupting QS is an alternative approach to combating
A. hydrophila infection.

Cinnamaldehyde (Figure 1A) is the main content of Cinnamomum cassia Presl, which
exhibited a number of biological activities, such as antioxidant, antibacterial, antitumor,
anti-inflammatory, and antidiabetic effects [8]. Studies have demonstrated that cinnamalde-
hyde performed against the growth of A. hydrophila by disrupting cell membranes and
interfering with protein metabolism [9]. However, the function of cinnamaldehyde against
the virulence of A. hydrophila has not been reported. Our study found that cinnamaldehyde
could influence the pathogenicity of A. hydrophila by interfering with the QS.
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Figure 1. Inhibitory effects of cinnamaldehyde on hemolytic activity induced by aerolysin. (A) Chem-
ical structure of cinnamaldehyde; (B) growth curves of A. hydrophila co-cultured with indicated
concentrations of cinnamaldehyde; (C) effect of cinnamaldehyde on the hemolytic activity of bacte-
rial supernatants; sheep erythrocytes treated with the bacterial supernatant of the drug-free group
were used as the positive control; (D) detection of aerolysin production in bacterial supernatant
plus cinnamaldehyde. The hemolysis assays in Figure 1C consist of data from three independent
experiments. The results shown are the mean ± SD of the three experimental data compared to the
drug-free group, **, p < 0.01.

2. Materials and Methods
2.1. Microorganisms and Reagents

A. hydrophila XS-91-4-1 and Chromobacterium violaceum CV026 were stored in our lab.
Cinnamaldehyde (purity ≥ 95%) was purchased from Shanghai Aladdin Biochemical
Technology Co., Ltd. Enrofloxacin was a commercial product purchased from the National
Institutes for Food and Drug Control (Beijing, China). Cinnamaldehyde and enrofloxacin
were dissolved in DMSO to obtain stock solutions of 40,960 µg/mL for in vitro assays and
dissolved in 10% Tween 80 to obtain cinnamaldehyde emulsion for in vivo study.

2.2. Determination of Minimum Inhibitory Concentrations (MICs)

The MICs were determined according to a previously published protocol [10]. Briefly,
cinnamaldehyde was diluted from 512 µg/mL to 2 µg/mL with MHB medium by 2-fold
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dilution in a 96-well plate, while enrofloxacin was diluted from 32 µg/mL to 0.125 µg/mL.
Then, the bacterial cells at a density of 5 × 105 CFU/mL were added to each well of the
plate and cultured at 28 ◦C overnight. The wells without visible bacterial growth were
defined as MICs.

2.3. Growth Curves Assay

Bacterial suspension cultured in LB broth was equally divided into 5 flasks when the
optical density (OD) at 600 nm reached 0.3. Then, cinnamaldehyde was added into each
flask to cause the final concentrations of cinnamaldehyde in the mixtures to reach 0, 1, 2, 4,
8, and 16 µg/mL, respectively. The mixtures were incubated at 28 ◦C for 5 h, and samples
were taken every 30 min to read the OD600nm values.

2.4. Hemolysis

The hemolysis was measured using bacterial supernatants, as previously described [11].
Briefly, bacterial cultures at OD600nm of 0.3 were added to indicated concentrations of cin-
namaldehyde (0, 1, 2, 4, 8, 16 µg/mL) and then co-cultured to OD600nm of 1.5. The bacterial
suspensions were then centrifuged and then the supernatants were activated with the addi-
tion of trypsin, 100 µL of activated supernatant, 25 µL of sheep erythrocytes, and 875 µL
of hemolysis buffer to obtain a 1 mL reaction system. The systems were then incubated
at 37 ◦C for 20 min. The hemolytic activity of each drug group was read at OD543nm with
a spectrophotometer.

2.5. Immuno-Blot

The concentrations of total proteins of bacterial supernatants described above were
determined using the bicinchoninic acid method [12]. Then, the supernatants were sampled
with Laemmli buffer and boiled for 10 min, then loaded for protein electrophoresis. A semi-
dry transfer cell was used to transfer the proteins to the PVDF membrane. Then, the
PVDF membrane was blocked with milk for 2 h, followed by incubation with the primary
anti-aerolysin antibody and HRP-conjugated secondary goat anti-rabbit antiserum for
1 h, respectively. The levels of aerolysin in the supernatants were detected by an ECL
detection kit.

2.6. Lipase Assay

Lipase assay was determined using the method reported by Ramanathan et al. [13].
In brief, the substrate mixture was composed of 0.3% (w/v) p-nitrophenyl palmitate in
isopropanol and 50 mM Na2HPO4 buffer in an appropriate ratio (1:9). A total of 100 µL
bacterial supernatants after different treatments were added to 900 µL of substrate mixture
and incubated for 1 h. Then, the reaction was terminated by the addition of 1 M sodium
carbonate buffer at the same volume of the system. After centrifugation, the values of
OD410nm were determined in each reaction system.

2.7. Protease Activity Assay

According to a previous study, azocasein was used as the substrate [14]. Briefly, the
supernatants of A. hydrophila co-cultured with cinnamaldehyde at concentrations ranging
from 1 to 16 µg/mL were incubated with 20 mg/mL azocasein for 1 h, and 100 g/L
trichloroacetic acids were added to the mixture to precipitate the protein. Then, an equal
volume of NaOH (1 mol/L) was added, and the values were read at the OD of 440 nm.

2.8. Swarming Motility Assay

Sterilized swarming agar consists of 1% glucose, 0.5% agar, 0.5% peptone, and 0.2%
yeast extract [15]. A total of 15 mL of swarming agar with different concentrations of
cinnamaldehyde (1, 2, 4, 8, and 16 µg/mL) were added to the plates, and then 2 µL of
bacterial suspension (OD600nm = 1.0) was added in the middle of the agar. Swarming agar
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plus DMSO was set as the control group. All plates were incubated for 24 h at 28 ◦C and
the diameters of swarming were determined.

2.9. Biofilm Formation

Cinnamaldehyde was 2-fold diluted at volumes of 100 µL in a 96-well plate, and then
bacterial cultures at volumes of 100 µL were added to each well after a dilution of 1:10.
After incubation at 28 ◦C for 24 h, the cultures in 96-well plates were washed twice with PBS
to remove unattached cells. The plate was air-dried and 0.5% crystal violet was added to
stain bacterial cells. After washing, 95% ethanol was added into each well to release crystal
violet in bacterial cells, and the absorption values were further determined at OD570nm.

For microscopic analysis, cinnamaldehyde and bacterial cultures were added to the
24-well plate containing glass slides and then incubated for 24 h. Bacterial cells attached in
glass slides were stained with crystal violet after washing and images were pictured under
a microscope.

2.10. qPCR Assay

Bacterial cells collected in hemolysis assay were used for qPCR assay. Briefly, a com-
mercial RNA isolation kit was used to obtain the total RNA of the samples, then DNA
remaining in the total RNA was removed. After reverse transcription, qPCR reactions were
carried out to determine the expression levels of target genes. Primer pairs used in the
study were listed in Table 1. Consequently, 16s rRNA was defined as the internal standard.
Ct values were obtained and the expression levels were calculated by 2−∆∆Ct.

Table 1. Primer pairs used in qPCR assay.

Primer Sequence PCR Amplicon (bp) Accession No.

aerA-F TCTACCACCACCTCCCTGTC
218 NC008570.1aerA-R GACGAAGGTGTGGTTCCAGT

ahyI-F GTCAGCTCCCACACGTCGTT
202 CP000462.1ahyI-R GGGATGTGGAATCCCACCGT

ahyR-F TTTACGGGTGACCTGATTGAG
206 CP000462.1ahyR-R CCTGGATGTCCAACTACATCTT

16S rRNA-F TAATACCGCATACGCCCTAC
164 NR074841.116S rRNA-R ACCGTGTCTCAGTTCCAGTG

2.11. AHLs Production Assay

The effect of cinnamaldehyde on the AHLs production of A. hydrophila was deter-
mined by the previous method [16]. Briefly, A. hydrophila and C. violaceum CV026 cul-
tured overnight were streaked in parallel at equal intervals on agar plates plus indicated
concentrations of cinnamaldehyde at 28 ◦C for 24 h. To quantify violacein production,
A. hydrophila was co-cultured with cinnamaldehyde for 24 h, then bacterial supernatants
were collected and sterilized. An overnight C. violaceum CV026 culture was sub-inoculated
into the sterilized supernatants and further cultured for 24 h. Then, bacterial cells of
C. violaceum CV026 were collected by centrifugation and DMSO was added to release
violacein pigment. The production of violacein was determined by a microplate reader at
585 nm.

2.12. Cell Viability Assays

A549 cells cultured in DMEM plus 10% fetal bovine serum and 5% CO2 were used to
determine the protective effect of cinnamaldehyde against aerolysin-induced cell injury.
Cells were seeded into a 96-well plate after being digested by trypsin. Sterile bacterial
supernatants after treatment with cinnamaldehyde were co-cultured with the cells for 1.5 h.
Then, the cells were acquired for live/dead cell staining, and cell-free supernatants for LDH
release assays, respectively. The percent of LDH release was calculated by determining
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the values of OD490nm. Cell injury was evaluated by photographing cells treated with
live/dead regents.

2.13. Animal Study

Animal studies were performed under the guidance of the Animal Welfare and Re-
search Ethics Committee at the Yangtze River Fisheries Research Institute (Permission No.
YFI-2022DJ-011, 10 June 2022). All the experimental protocols were approved and super-
vised by the animal care committee. A total of 60 crucian carps weighing 200 ± 10 g were
maintained in 100 L glass tanks for 7 days and then were separated into 3 groups. For the
experimental conditions, the dissolved oxygen in culture water was more than 5.0 mg/L,
the test water temperature was 28 ± 2 ◦C, and the pH was 7.5~8.0. A. hydrophila XS-91-4-1
was cultured to the mid-log phase and diluted to a concentration of 1.5 × 108 CFU/mL
with sterile PBS. The fish infection model was established with the injection of the bacte-
rial suspension at a volume of 100 µL intraperitoneally, and 100 µL of the sterile PBS for
the negative control group. The cinnamaldehyde treatment group was given 25 mg/kg
cinnamaldehyde by a gavage needle, while the positive and negative control group were
administered with 10% Tween 80. The course was maintained for 3 days at 12-h intervals.
The mortality in each group was recorded every day for 8 days. Three independent tests
were carried out in this experiment.

2.14. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8.0 software. Data on
survival rate were analyzed by Kaplan–Meier estimates and log-rank test, while other data
were firstly analyzed by one sample K-S and explore tests, and then by Student’s t-test to
determine the statistical significance. p < 0.05 indicates statistical significance.

3. Results
3.1. Effect of Cinnamaldehyde on A. hydrophila Growth

The MICs were 128 µg/mL and 4 µg/mL for cinnamaldehyde and enrofloxacin, re-
spectively. The results indicated that cinnamaldehyde had little anti-A. hydrophila activity.
Moreover, the growth curves assay was performed to evaluate the influence of cinnamalde-
hyde on bacterial growth in 5 h. As shown in Figure 1B, cinnamaldehyde had no role
in bacterial growth when the concentrations reached 1 to 16 µg/mL. Furthermore, the
addition of DMSO in the drug-free group showed that DMSO could not inhibit bacterial
growth. Taken together, the results demonstrated that A. hydrophila co-cultured with cin-
namaldehyde under our experimental conditions could not provide selective pressure to
the bacterium.

3.2. Cinnamaldehyde Inhibited the Hemolysis of A. hydrophila

The hemolysis results showed that cinnamaldehyde could reduce the hemolytic ac-
tivity of bacterial supernatants obtained from A. hydrophila plus cinnamaldehyde dose-
dependently (Figure 1C). The hemolytic activity declined to 68.14 ± 8.25, 36.64 ± 5.31,
23.21 ± 0.60, 13.94 ± 4.30, and 6.50 ± 0.42% when co-cultured with cinnamaldehyde at
concentrations of 1, 2, 4, 8, and 16 µg/mL compared with the cinnamaldehyde-free group.
Hemolysis was remarkably inhibited by the addition of cinnamaldehyde at concentrations
higher than 1 µg/mL. Moreover, the immune-blot assay was conducted to determine the re-
lationship between aerolysin production and hemolysis. As expected, aerolysin production
decreased with increasing drug concentrations (Figure 1D). Therefore, cinnamaldehyde
could decrease the hemolysis of A. hydrophila supernatants by reducing the production
of aerolysin.

3.3. Inhibitory Effect on Lipase Production

Cinnamaldehyde could dose-dependently reduce lipase production of A. hydrophila
when the concentrations of cinnamaldehyde range from 4 to 16 µg/mL (Figure 2A). Com-
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pared with the cinnamaldehyde-free group, lipase production reduced to 73.49 ± 5.91%
when co-cultured with 16 µg/mL cinnamaldehyde.
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Figure 2. Inhibitory effect of cinnamaldehyde on two extracellular enzymes of A. hydrophila. (A) Li-
pase production of A. hydrophila plus cinnamaldehyde; (B) the effect of cinnamaldehyde on the
protease activity of A. hydrophila. The data in both assays are mean ± SD of three independent
experiments. *, 0.01 < p < 0.05 and **, p < 0.01 when compared with drug-free group.

3.4. Inhibitory Effect on Protease Activity

As shown in Figure 2B, cinnamaldehyde could dose-dependently inhibit the protease
activity of A. hydrophila. Compared with the drug-free group, the protease activity de-
creased to 85.24 ± 5.59, 7.22 ± 2.47, 71.14 ± 2.19, 60.87 ± 2.16, and 45.28 ± 1.50%, plus
cinnamaldehyde at concentrations ranging from 1 to 16 µg/mL.

3.5. Inhibitory Effect of Cinnamaldehyde on Swarming Motility

As shown in Figure 3A, the swarming zone of A. hydrophila was visible on drug-free
agar, while the swarming range became narrow following the addition of cinnamalde-
hyde at indicated concentrations (Figure 3B–F). Moreover, the swarming diameter was
determined. As shown in Figure 3G, the swarming diameter decreased to 10.67 ± 1.25,
9.33 ± 0.47, 8.33 ± 0.47, 7.00 ± 1.41, and 4.67 ± 0.47 mm, and 15.33 ± 1.89 mm for the
drug-free group. The swarming motility was significantly reduced when co-cultured with
cinnamaldehyde at concentrations ranging from 1 to 16 µg/mL.
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Figure 3. Effects of cinnamaldehyde on swarming motility. (A) DMSO control group; (B) 1 µg/mL;
(C) 2 µg/mL; (D) 4 µg/mL; (E) 8 µg/mL; (F) 16 µg/mL; (G) swarming diameter. All data are
presented as mean ± SD in the swarming diameter of three independent experiments. **, p < 0.01
when compared to the DMSO group.
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3.6. Inhibition of Biofilm Formation

As shown in Figure 4A, cinnamaldehyde could reduce A. hydrophila biofilm for-
mation in a dose-dependent manner. The inhibition rates of biofilm formation ranged
from 17.54 ± 11.62% to 70.26 ± 8.22%, as the drug concentration was increased from 1 to
16 µg/mL. Moreover, the biofilm on glass slides was observed by microscopy. As shown in
Figure 4B, a large number of bacterial cells stained purple could be observed on a drug-free
slide, while a few cells were presented in the 16 µg/mL drug group (Figure 4C).
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Figure 4. Effect of cinnamaldehyde on biofilm formation of A. hydrophila. (A) Determination of the
cinnamaldehyde effect on bacterial biofilms, all data are the mean ± SD of three independent experi-
ments. *, 0.01 < p < 0.05 and **, p < 0.01 when compared with drug-free group; (B) cinnamaldehyde-
free group; (C) 16 µg/mL.

3.7. Cinnamaldehyde Reduced the Transcription of Related Genes

The above results showed that cinnamaldehyde could reduce the production of viru-
lence factors and biofilm formation, which are regulated by the QS system of A. hydrophila.
Therefore, we determined the effect of cinnamaldehyde on aerolysin coding genes (aerA)
and QS-related genes (ahyR, ahyI). As shown in Figure 5, the transcription of aerA gene was
reduced to 5.58-fold under the 16 µg/mL drug compared with the drug-free group, and
13.48-fold and 8.35-fold for ahyI and ahyR, respectively. Moreover, statistical significance
was observed in the lowest tested concentration of 1 µg/mL.
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3.8. Cinnamaldehyde Reduced AHLs Production

qPCR results showed that cinnamaldehyde could downregulate the transcript of re-
lated genes, while AHLs are the main signal molecules in the QS system regulating the
expression of related genes of A. hydrophila. The results indicated that cinnamaldehyde
might inhibit AHLs production. Thus, bioreporter C. violaceum CV026 was used to in-
vestigate the production of AHLs of A. hydrophila after a co-incubation with indicated
concentrations of cinnamaldehyde. As shown in Figure 6A, C. violaceum CV026 produced
a visible purple color in the drug-free agar, while a little purple color was produced on
16 µg/mL of the drug agar (Figure 6F). Moreover, the violacein production of C. violaceum
CV026 was quantitatively determined by releasing it in DMSO. As shown in Figure 6G, cin-
namaldehyde could dose-dependently reduce violacein production in C. violaceum CV026,
and statistical significance was observed in the 2 µg/mL drug group.
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Figure 6. Cinnamaldehyde reduces AHLs production by A. hydrophila. (A) Cinnamaldehyde-free
group; (B) 1 µg/mL; (C) 2 µg/mL; (D) 4 µg/mL; (E) 8 µg/mL; (F) 16 µg/mL; (G) violacein production
of C. violaceum CV026 in response to AHLs at indicated cinnamaldehyde concentrations, all data are
the mean ± SD of three independent experiments. **, p < 0.01 when compared to the drug-free group.

3.9. Cell Viability Results

As shown in Figure 7A, untreated cells were stained green indicating live cells, while
cells after treatment with a drug-free supernatant indicating dead cells were stained red
(Figure 7B). The ratio of dead cells in the visual field was obviously decreased compared
with cells in the cinnamaldehyde-free group (Figure 7C). Moreover, LDH release results
showed that LDH release reduced with increasing concentrations of cinnamaldehyde
(Figure 7D). When co-cultured with 16 µg/mL drug-treated supernatant, LDH release
decreased to 38.12 ± 2.12%, and to 67.50 ± 3.77% for the drug-free group.
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Figure 7. The protective effect of cinnamaldehyde on aerolysin-mediated cell injury. (A) Untreated
cells; (B) cells treated with drug-free supernatant; (C) cells treated with 16 µg/mL cinnamaldehyde-
treated bacterial supernatant; (D) LDH release of A549 cells co-cultured with cinnamaldehyde-
treated bacterial supernatants; LDH assay was performed in triplicate; data were mean value ± SD.
*, 0.01 < p < 0.05 and **, p < 0.01.

3.10. Protective Effect of Cinnamaldehyde on Crucian Carp Infected by A. hydrophila

The results above showed that cinnamaldehyde could significantly suppress the prod-
uct of virulence factors and biofilm formation and provided protection to A549 cells against
cell injury. The findings above revealed that cinnamaldehyde might have therapeutic effects
on a fish model challenged with A. hydrophila, Therefore, the infection model of crucian
carp was established. In the positive control group, swelling showed around the fins and
ascites in the abdominal cavity. As shown in Figure 8, deaths occurred on the first day in
the cinnamaldehyde-treated group and the positive control group. The mortality of fish in
the positive control group was 100% in 7 days (Figure 8), and 45% of the cinnamaldehyde-
treated group. The results showed statistical significance by log-rank test analysis. All fish
were alive in the negative control group during the course.
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Figure 8. Cinnamaldehyde can increase the survival rate of crucian carp infected with A. hydrophila.
Infected crucian carp were administered with 25 mg/kg of cinnamaldehyde or sterile PBS every
12 h for 3 days; deaths were recorded for 8 days. Treatment with cinnamaldehyde had a signifi-
cant protective effect on crucian carp infected with A. hydrophila when analyzed by log-rank test
(p < 0.0001).
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4. Discussion

A. hydrophila threatens the healthy development of freshwater aquaculture [17]. Antibi-
otics are the primary measures for dealing with bacterial diseases in aquaculture, but the
occurrence of resistance restricted the practice of antibiotics [18]. Therefore, new therapeutic
drugs are needed for increasing bacterial diseases in aquaculture. Studies have demon-
strated that herbal medicines have benefits in controlling bacterial infections [19]. A number
of studies reported that cinnamaldehyde inhibited the growth of both Gram-positive and
Gram-negative bacteria [20,21]. Sapna Rani et al. studied the in vitro antimicrobial activity
of cinnamaldehyde using the agar disk diffusion method and showed that cinnamaldehyde
could inhibit Streptococcus agalactiae at a concentration of 0.66 µg/mL [22]. Xing et al. found
that natural cinnamaldehyde could be used as an alternative for fungicide in the field with
a MIC of 50 mL/L for Fusarium verticillioides [23]. Cinnamaldehyde has been reported
to inhibit the growth of bacteria from aquatic sources. Yin et al. found that the MIC of
cinnamaldehyde was effective against the growth of A. hydrophila CW at 256 µg/mL by
disrupting the cell membrane and impacting protein metabolism [24]. Barbara Rossi tested
the inhibitory effect of cinnamaldehyde against two Vibrio spp.; the results showed that
the MICs of cinnamaldehyde were effective against Vibrio harveyi and Vibrio anguillarum
at 1.88 mM and 3.75 mM, respectively [25]. In our study, the MIC of cinnamaldehyde
against A. hydrophila XS-91-4-1 was 128 µg/mL, which was about two times lower than that
reported by Yin et al., and may be due to differences in strains [24].

A variety of naturally extracted compounds have anti-virulence effects on A. hydrophila.
Jing et al. found that 8 µg/mL of genistein could significantly inhibit the hemolytic ac-
tivity and biofilm formation of A. hydrophila [26]. Sun et al. showed that 25 µg/mL of
esculetin could significantly reduce the biofilm formation of A. hydrophila, while in our
study, 1 µg/mL of cinnamaldehyde could significantly reduce the biofilm formation of
A. hydrophila [27]. Moreover, cinnamaldehyde has been reported as an inhibitor targeting
bacterial virulence and this results in the reduction of the pathogenicity of a number of bac-
terial pathogens. Ferro et al. reported that cinnamaldehyde could diminish the hemolytic
activity and adhere to the latex of Staphylococcus aureus (S. aureus) at sub-inhibitory con-
centrations of 0.125 mg/mL, which protected Galleria mellonella larvae from S. aureus
infection [28]. Studies found that cinnamaldehyde could significantly inhibit the biofilms
of Porphyromonas gingivalis and Streptococcus mutans at sub-MIC concentrations [29,30].
Li et al. demonstrated that cinnamaldehyde could interact with the LuxR-type protein
of Pseudomonas fluorescens and result in the reduction of virulence factors [31]. Mary et al.
found that uropathogenic Escherichia coli treated with 750 µM cinnamaldehyde could sig-
nificantly downregulate the expression of the related virulence genes at subinhibitory
concentrations, which could decrease the attachment and invasion of bacteria to urinary
tract epithelial cells [32]. Moreover, cinnamaldehyde had the same inhibitory effect on
the production of virulence factors and the expression of the virulence gene (aerA) of
A. hydrophila in our study.

Gilles Brackman determined the ability of cinnamaldehyde to inhibit AI-2-based
QS system in Vibrio harveyi; the results showed that cinnamaldehyde and its derivatives
could interfere with AI-2 QS at concentrations without anti-bacterial growth and lead to
a neutralizing virulence in Artemia shrimp [33]. However, the effect of cinnamaldehyde
against the A. hydrophila QS system was not reported. Dong et al. found that A. hydrophila
co-incubated with thymol could significantly downregulate QS-related genes ahyI and
ahyR, and provide protection to channel catfish challenged with A. hydrophila [34]. The
same methods were used by us and showed that cinnamaldehyde could significantly
downregulate the QS-related genes ahyI and ahyR at the concentrations in our study.
Moreover, QS mediated by AHLs regulates the pathogenicity of A. hydrophila strains [35].
C. violaceum CV026 is a bioreporter that can produce purple violacein in response to
AHLs [36]. In our present study, cinnamaldehyde could reduce AHLs production of
A. hydrophila by using the C. violaceum CV026. The results indicated that cinnamaldehyde
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could inhibit QS by inhibiting the expression of QS-related genes and the production
of AHLs.

In aquaculture, the cinnamon essential oil has been shown to have antibacterial,
anesthetic, growth-promoting, and antioxidant effects, indicating a promising use in aqua-
culture [37]. Moreover, Abdelhamed et al. found that feeding commercial feed mixed with
15 and 20 mg/kg of cinnamaldehyde could increase the survival rate of catfish infected
with Edwardsiella ictaluri [38]. Faikoh et al. examined zebrafish infected with Streptococ-
cus agalactiae and A. hydrophila. The zebrafish were immersed in water with 75 µL/L of
liposome-encapsulated cinnamaldehyde, which significantly increased the survival rate
of the zebrafish (31.1 ± 10.18% and 35.6 ± 3.85%) compared with the control group [39].
Our study showed a higher survival rate of 45% to crucian carp infected with A. hydrophila
compared with the control group, which may be due to the method of administration and
the species of fish. Taken together, our findings provide a candidate alternative drug for
A. hydrophila infection.

5. Conclusions

Cinnamaldehyde could reduce the production of aerolysin, lipase, protease, and
AHLs, and inhibit swarming motility and biofilm formation by interfering with the QS of
A. hydrophila at sub-inhibitory concentrations. qPCR analysis indicated that cinnamalde-
hyde could downregulate the transcription of aerolysin coding genes (aerA) and QS-related
genes (ahyR, ahyI). Moreover, significant therapeutic effects were shown in vitro and in vivo
therapeutic assays. Taken together, cinnamaldehyde is a potential QS inhibitor against
A. hydrophila infection.
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