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Abstract: Pacific sardine (Sardinops sagax) is a commercially important species and supports important
fisheries in the Northwest Pacific Ocean (NPO). Understanding the habitat distribution patterns of
Pacific sardine is of great significance for fishing ground prediction and stock management. In this
study, both single-algorithm and ensemble distribution models were established through the Biomod2
package for Pacific sardine by combining the species occurrence data, sea surface temperature (SST),
sea surface height (SSH), sea surface salinity (SSS) and chlorophyll-a concentration (Chla) in the NPO
during the main fishing season (June–November) from 2015 to 2020. The results indicated that the
key environmental variables affecting the habitat distribution of Pacific sardine were the SSH and SST.
The suitable habitat area for Pacific sardine showed significant monthly changes: the suitable habitat
range in June was larger than that in July and August, while the suitable habitat range gradually
increased from September to November. Furthermore, the monthly geometric centers of habitat
suitability index HSI) for Pacific sardine presented a counterclockwise pattern, gradually moving
to the northeast from June, and then turning back to the southwest from August. Compared with
single-algorithm models, the ensemble model had higher evaluation metric values and better spatial
correspondence between habitat prediction and occurrence records data, which indicated that the
ensemble model can provide more accurate prediction and is a promising tool for potential habitat
forecasting and resource management.

Keywords: Sardinops sagax; habitat distribution; species distribution model; environmental variation;
Northwest Pacific Ocean

1. Introduction

Fishery resources are the foundation for the development of fisheries and related
industries, and are one of the main sources of high-quality protein for humans [1]. Marine
environmental changes can have direct or indirect influences on the marine ecosystems
that have consequences for the spatio-temporal distribution, resource abundance and pro-
ductivity of marine species, as well as their interactions with each other [2–4]. Marine
species, in turn, are predicted to respond to environmental variations in suitable distri-
bution areas through genetic adaptation or changing distribution ranges [5,6]. Therefore,
understanding the suitable habitat distribution and the dynamics of habitat distribution
under environmental change is of great significance to the sustainable use and management
of fisheries resources.

Pacific sardine (Sardinops sagax) is widely distributed in the warm temperate waters
of the Indo-Pacific and is also one of the most important pelagic stocks in the Northwest
Pacific Ocean (NPO) [7–9]. Pacific sardine can reach a maximum age of 6–7 years [10,11],
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and attain sexual maturity at two years old, with an average length at maturity (L50) of
180 mm and an average weight higher or equal to 180 g [12]. The gonadosomatic index
of female Pacific sardine varies depending on the area, with maximum values at 11 ◦C
water temperature [13,14]. The main spawning time of Pacific sardine has been reported
to be from February to March along central and southern Japan [15]. Sardine larvae are
transported to the northeast by the Kuroshio and Kuroshio Extension, then continued
to migrate to the northeast, reaching the feeding grounds in summer [16]. In winter,
Pacific sardine migrate southwest along the Pacific coast of southern Japan to spawning
grounds [17]. Japanese fishermen were pioneers in exploiting this species in the 1920s,
and China began a fishery for these resources in the 1980s [18]. At present, Pacific sardine
is mainly exploited by Japan, China (including Chinese Taipei) and Korea. The annual
catch of Pacific sardine recorded in 2019 in China was about 24,773 tons, which accounted
for 11.1% of global production [19]. Moreover, the proportion of Pacific sardine catches
in the NPO of China showed a gradually increasing trend from 2014 to 2020 [20]. Due to
their increasing ecological and economic value, the utilization and management of Pacific
sardine resources have raised widespread concern and these fish have been listed among
the priority fish species by the North Pacific Fisheries Commission (NPFC) [21].

Owing to the short life cycle and long migration route of Pacific sardine, large-scale cli-
mate events and regional environmental changes are generally considered to be important
factors that affect the Pacific sardine population [22,23]. Many studies indicated that like
other small pelagic species, the habitat distribution of Pacific sardine is largely influenced
by marine environmental factors, such as the sea surface temperature (SST), sea surface
height (SSH), chlorophyll-a concentration (Chla) and sea surface salinity (SSS) [24–26]. For
instance, Dudarev [27] indicated that 8–20 ◦C and 15–30 m are the suitable SST and depth
for the Pacific sardine distribution in the NPO, respectively. Vander et al. [28] studied
the effects of the SST, SSS and SSH on the distribution of Pacific sardine and the results
showed that the SST has a higher impact than the SSH and SSS. Takasuka et al. [29] put for-
ward a simple “optimal growth temperature” hypothesis and investigated the relationship
between the growth rate of Pacific sardine and SST. The results showed dome-shaped rela-
tionships between the growth rate and SST, with the optimal growth rate occurring when
the temperature was 16.2 ◦C. To our knowledge, there are few studies that investigated the
spatial variation in the potential habitat distribution of Pacific sardine.

A species distribution model (SDM) is widely considered a significant tool for predict-
ing a species’ potential distribution and the influence of climate change on its distribution,
which can combine the species occurrence data and environmental variables [30,31]. SDMs
were successfully used to predict the potential distribution of many species. For instance,
Gong et al. [32] applied maximum entropy (MaxEnt) to forecast the potential distribution
of neon flying squid and projected potential habitat ranges under future climate scenarios.
Guénard et al. [33] used a deep feed-forward artificial neural network (ANN) to model habi-
tat suitability for Lake sturgeon (Acipenser fulvescens) and White perch (Morone americana).
MaxEnt was used by Zhang et al. [34] to study the influencing mechanism of marine envi-
ronmental factors on the potential fishing grounds for Pacific saury (Cololabis saira) in the
NPO, and the distribution range shifts in different months of potential distribution were
revealed. With the development of computer technology and modeling algorithms, dozens
of SDMs were proposed to meet the increasing demand for potential habitat prediction and
fishing grounds searches for marine species [35]. However, the statistical and predictive
performances of different models are varied, which are attributed to the differences in their
scope of application and theoretical algorithms. MaxEnt is one of the most frequently used
SDMs and is generally considered to have a good evaluation performance [36,37]; it is
also simple to operate, easy to use and can deal with high-capacity data [38]. Thuiller [39]
indicated that the performance of SDM decreases with the increase of input data, and it
is not stable and reliable to use only a certain model for potential distribution prediction.
The Biomod modeling package can integrate the results of multiple models and use the
comprehensive results as the output of the ensemble model to improve the accuracy of
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prediction results [40]. The latest version is Biomod2, which was updated in 2016. Biomod2
has been widely recognized and used for the potential distribution prediction of many
species since its publication [41–43].

To reasonably utilize and manage Pacific sardine resources in the NPO, it is important
to understand their potential habitat distribution and the impact of the environment on
habitat suitability. However, previous research on the Pacific sardine in this area mainly
focused on basic biology, and there was little research on suitable habitat prediction [44,45].
In addition, challenges and uncertainties still exist in the research to predict the suitable
habitat distribution of Pacific sardine in the NPO. Thus, Biomod2 was applied in this
study to investigate the potential distribution of Pacific sardine in the NPO. The predictive
performance of the single-algorithm model and ensemble model in the Biomod2 package
was tested. The main objectives of this study were (1) to determine the key environmental
variables influencing the habitat distribution of Pacific sardine, (2) to identify the monthly
habitat patterns of Pacific sardine in the main fishing seasons (June to November), and
(3) to compare the predictive performances of single algorithm model and ensemble model
and explore their application prospects.

2. Materials and Methods
2.1. Study Area

In this research, the study area was distributed between 38–45◦ N and 145–160◦ E,
covering the main fishing grounds of Pacific sardine in the NPO (Figure 1). This area
is situated at the junction of the Kuroshio warm current and the Oyashio cold current,
which is one of the high-yield sea areas around the world. Many economically important
fish species, such as tunas (Thunnus spp.), Pacific saury (Cololabis saira), Chub mackerel
(Scomber japonicas) and Pacific sardine, inhabit this zone.
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Figure 1. Location of fishing grounds for Pacific sardine in the NPO. The Oyashio cold current is
represented using the blue lines and the Kuroshio warm current is shown using the red lines.

2.2. Data Resources

Species occurrence data and environmental variables are essential inputs for ecological
niche models and SDMs. Both inputs are used to detect potentially habitable sites of target
species in the study area [46]. In this study, occurrence data with a spatial resolution grid
of 0.25◦ latitude × 0.25◦ longitude of Pacific sardine was derived from the Technical Group
for Trawl-Purse Seine Fishery, Distant-Water Fishery Society of China, covering the period
between June and November from 2015 to 2020. In total, 599 occurrence records of Pacific
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sardine were included in this study, and the number of occurrence records in each month is
shown in Table 1. Environmental variables that predominantly influence the abundance
and distribution of Pacific sardine stock, including SST, SSH, SSS and Chla, were selected for
species distribution modeling given that they were reported in the literature as important
variables that influence the abundance and distribution of Pacific sardine stock [47]. Those
data were downloaded from the Copernicus Marine Service (http://marine.copernicus.eu,
accessed on 23 May 2022). In order to match with the spatio-temporal resolution of the
species occurrence data, all the environmental data were downloaded at 0.25◦ spatial
resolution and monthly temporal resolution.

Table 1. The number of occurrence records of the Pacific sardine by month from 2015 to 2020.

Month June July August September October November

Number 88 181 81 99 70 80

In order to ensure that the multicollinearity of environmental variables did not affect
the predictive ability and lead to overfitting [48], the mutual independence of environmental
variables was checked by the variance inflation factor (VIF) (Table 2). The VIF values of
the environmental variables were less than 3, except for the SSS. However, the VIF of the
SSS was less than 10, indicating that there was no serious multi-collinearity among the
environmental variables [49,50].

Table 2. Variance inflation factors (VIFs) of the environmental variables.

Environmental Variables SST SSH SSS Chla

Variance inflation factor (VIF) 1.52 1.62 3.38 2.49

2.3. Modelling Procedure

The Biomod2 package in the R(V4.0.2) environment was used to predict the potential
distribution of Pacific sardine in this study, which included ten models: generalized linear
model (GLM), generalized additive model (GAM), multiple adaptive regression splines
(MARS), generalized boosting model (GBM), classification tree analysis (CTA), ANN,
surface range envelope (SRE), flexible discriminant analysis (FDA), random forest (RF) and
MaxEnt. During the modeling process, the first step was to construct the single-algorithm
Pacific sardine habitat model. Three groups of pseudoabsence records were randomly
generated based on the occurrence data and background data of the Pacific sardine, and
each group had 500 pseudoabsence records [46]. In order to evaluate the accuracy of
the model, we randomly selected 70% of the occurrence data as the training dataset and
the remaining 30% as the validation dataset, and the weight of occurrence points was
equal to pseudoabsence points when the model was running and evaluating [51]. Each
model was run ten times, with a total of 1800 single-algorithm model results (3 groups of
pseudoabsence records× running 10 times× 10 single-algorithm models× 6 months). The
true skill statistic (TSS), Cohen’s kappa statistic (Kappa) and the area under the receiver
operating characteristic curve (AUC) were applied as evaluation metrics to assess the
performance of the models [52,53]. The measurement standards for TSS, Kappa and AUC
are shown in Table 3, and the closer each of their values was to 1, the more reliable
the prediction results were [54]. Furthermore, the relative importance of environmental
variables was calculated in order to better understand the environmental factors that
affected the habitat of the Pacific sardine in the NPO.

http://marine.copernicus.eu
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Table 3. Measurement standard for TSS, Kappa and AUC.

Evaluation Metric Fail Bad Medium Good Very Good

TSS 0.00–0.40 0.40–0.55 0.55–0.70 0.70–0.85 0.85–1.00
Kappa 0.00–0.40 0.40–0.55 0.55–0.70 0.70–0.85 0.85–1.00
AUC 0.50–0.60 0.60–0.70 0.70–0.80 0.80–0.90 0.90–1.00

The second step was to develop the ensemble model. In order to reduce the uncertainty
of the single-algorithm model and data generation process (mainly pseudoabsence sites),
we formulated the ensemble species distribution model to predict the spatial distribution
of suitable habitats for the Pacific sardine in the NPO. In this study, individual models
with AUC ≥ 0.9, TSS ≥ 0.7 and Kappa ≥ 0.6 were kept to construct the ensemble species
distribution model of the Pacific sardine based on a range of published work [55,56]. A
total of 6 ensemble models were constructed in this study, that is, one per month from June
to November. The potential suitable habitat distribution results of the Pacific sardine based
on the ensemble model were normalized, and the habitat distribution map of the Pacific
sardine was made using ArcGIS 10.3. The grid value in the map represents the probability
of species occurrence in the fishing area, and the habitat suitability index (HSI) ranges
from 0 to 1, where the closer the grid value is to 1, the higher the probability of species
occurrence. According to the results by Chen et al. [57] and Yu et al. [58], the areas with
HIS ≥ 0.6, with 0.2 < HIS < 0.6 and with HIS ≤ 0.2 were defined as a suitable habitat, a
common habitat and a poor habitat, respectively, for the Pacific sardine stock in the NPO.

2.4. Centroid Shifts

To show the change in the spatial distribution of the suitable habitat due to envi-
ronmental variation, monthly longitudinal geometric centers of the HSI (LONGHSI) and
latitudinal geometric centers of the HSI (LATGHSI) were calculated. The LONGHSI and
LATGHSI were determined using the following equations [59]:

LONGHSI =
∑
(

Longitude(i,m) × HSI(i,m)

)
∑ HSI(i,m)

(1)

LATGHSI =
∑
(

Latitude(i,m) × HSI(i,m)

)
∑ HSI(i,m)

(2)

where Longitude(i,m) and Latitude(i,m) were the longitude and latitude of the ith fishing unit
in month m, respectively. HSI(i,m) is the HSI value within the ith fishing unit in month m.

3. Results
3.1. Single-Algorithm Models Performances

The TSS, Kappa and AUC values of all ten single-algorithm models for each month
were calculated based on the cross-validation evaluation (Table 4). The evaluation results
revealed that different optimal models could be obtained for different months using dif-
ferent evaluation metrics. For instance, in June, MaxEnt was the optimal model under
the three evaluation metrics. For July, the GAM model was the optimal model based on
the TSS values, the RF model was the optimal model based on the Kappa values and the
MaxEnt model was the best model based on the AUC values. Furthermore, for November,
the MaxEnt model had the highest Kappa and AUC values, whereas the MARS model had
the largest TSS value. The above results showed the uncertainty of statistical precision of
single-algorithm models. Considering the AUC performance metrics, the models with the
best predictive performance from June to November were all MaxEnt models (0.938, 0.975,
0.910, 0.911, 0.929 and 0.946, respectively), and the worst ones were all SRE models (0.839,
0.872, 0.737, 0.764, 0.817 and 0.852, respectively) (Table 4).
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Table 4. Evaluation metrics for single-algorithm models.

Month Evaluation Metric GLM GAM MARS GBM CTA ANN SRE FDA RF MaxEnt

June
TSS 0.812 0.786 0.794 0.792 0.737 0.851 0.681 0.770 0.791 0.856

Kappa 0.652 0.646 0.648 0.651 0.581 0.676 0.550 0.645 0.674 0.692
AUC 0.930 0.926 0.915 0.925 0.865 0.936 0.839 0.920 0.932 0.938

July
TSS 0.825 0.873 0.866 0.869 0.809 0.780 0.739 0.828 0.872 0.864

Kappa 0.796 0.855 0.845 0.866 0.803 0.729 0.713 0.817 0.876 0.844
AUC 0.957 0.960 0.967 0.970 0.921 0.926 0.872 0.950 0.972 0.975

August
TSS 0.682 0.727 0.735 0.725 0.607 0.698 0.580 0.676 0.692 0.728

Kappa 0.525 0.615 0.622 0.636 0.526 0.596 0.475 0.566 0.621 0.623
AUC 0.856 0.889 0.906 0.907 0.830 0.873 0.737 0.865 0.887 0.910

September
TSS 0.705 0.696 0.722 0.726 0.596 0.704 0.521 0.667 0.704 0.712

Kappa 0.585 0.585 0.603 0.608 0.442 0.625 0.372 0.564 0.606 0.618
AUC 0.894 0.894 0.908 0.909 0.821 0.908 0.764 0.881 0.907 0.911

October
TSS 0.761 0.741 0.768 0.738 0.669 0.735 0.642 0.704 0.715 0.747

Kappa 0.602 0.605 0.611 0.604 0.455 0.601 0.456 0.526 0.547 0.615
AUC 0.915 0.907 0.922 0.905 0.837 0.909 0.817 0.899 0.898 0.929

November
TSS 0.794 0.835 0.839 0.799 0.749 0.762 0.699 0.785 0.809 0.824

Kappa 0.618 0.654 0.658 0.639 0.533 0.620 0.584 0.625 0.645 0.661
AUC 0.930 0.939 0.943 0.936 0.875 0.917 0.852 0.931 0.937 0.946

The averaged relative environmental variable importance of each single-algorithm
model is shown in Figure 2. The analysis pointed out that the SSH was the most important
environmental variable affecting the habitat distribution of the Pacific sardine in the NPO
in all single-algorithm models, except for the SRE model, followed by the SST. In the SRE
model, the SST and Chla were the two most significant environmental variables, which
contributed 39.0% and 36.6% to the model, respectively, followed by the SSS (34.3%) and
SSH (30.7%). For the single-algorithm models, in most cases, the MaxEnt model was
the optimal model, and if selected based on the AUC evaluation metric, MaxEnt was
the best model for every month (Table 4). Therefore, the monthly averaged predicted
potential habitat distribution of the Pacific sardine in the NPO predicted using MaxEnt
model is shown in Figure 3. The distribution range of the suitable habitat for the Pacific
sardine varied between months. The suitable habitat area showed a fluctuating trend
(first decreasing and then increasing) from June to November, and the corresponding
proportion of pixels with a probability higher than or equal to 0.6 was June (6.4%), July
(4.8%), August (4.2%), September (6.7%), October (7.5%) and November (8.4%). While most
of the occurrences coincided with suitable habitat areas (HIS ≥ 0.6), there were some that
appeared in a common habitat (0.2 < HIS < 0.6) or a poor habitat (HIS ≤ 0.2) (Figure 3).
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Figure 3. Predicted potential habitat distribution of the Pacific sardine in the NPO using the top
single-algorithm model (MaxEnt) with the highest AUC value between June and November from
2015 to 2020. The black points represent the operation positions of the Pacific sardine fishing grounds.

3.2. Ensemble Model Prediction and Potential Habitat Distribution of the Pacific Sardine

Table 5 shows the model compositions and evaluation metric values of the ensemble
models from June to November. The three evaluation metrics of the ensemble models from
June to November were all higher than the corresponding single-algorithm models, which
revealed that the ensemble models provided more robust predictions (Tables 4 and 5). The
environmental variables permutation importance of the ensemble models for different
months was shown in Figure 4, indicating that the SSH and SST played the most important
roles in the potential distribution of the Pacific sardine, and their mean contribution rates
were 68.3% and 46.3%, respectively. In relative terms, the Chla and SSS contributed little
to the predictive performance of the model, which was consistent with the results of the
single-algorithm models in Figure 2.
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Table 5. Evaluation metrics and model compositions for the ensemble models.

Month Evaluation Metric Ensemble Model Model Composition

June
TSS 0.880

GLM, GAM, MARS, GBM, ANN, FDA, RF, MaxEntKappa 0.718
AUC 0.942

July
TSS 0.886

GLM, GAM, MARS, GBM, CTA, ANN, FDA, RF, MaxEntKappa 0.881
AUC 0.980

August
TSS 0.748

MARS, GBM, MaxEntKappa 0.662
AUC 0.929

September
TSS 0.749

MARS, GBM, ANN, RF, MaxEntKappa 0.661
AUC 0.920

October
TSS 0.771

GLM, GAM, MARS, GBM, ANN, MaxEntKappa 0.628
AUC 0.938

November
TSS 0.846

GLM, GAM, MARS, GBM, CTA, ANN, FDA, RF, MaxEntKappa 0.688
AUC 0.962
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Figure 5 exhibits the monthly averaged potential habitats of the Pacific sardine for
the ensemble models between June and November from 2015 to 2020. In June, the Pacific
sardine suitable habitats (HIS ≥ 0.6) mainly occurred in the waters between 36–42◦ N and
145–160◦ E of NPO. The suitable Pacific sardine habitat areas of July and August were
narrow in extent and shifted from south to north from June to August. Suitable habitat
areas in September were larger than those in July and August, and the areas appeared to be
larger and shifted from north to south from September to November. Moreover, the habitat
prediction maps for September to November revealed that the fishing vessels of Pacific
sardine were mainly concentrated in suitable habitat areas, and the spatial correspondence
between the habitat predictions and occurrence records data of the ensemble model was
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better than the single-algorithm models (Figures 3 and 5). Figure 6 reveals the monthly SST,
SSH, Chla and SSS values for the fishing grounds of the Pacific sardine fishery from 2015 to
2020. The SST increased first and then decreased with the increase in months, while the
Chla showed the opposite trend. The SSH increased gradually with the increase in months,
while the SSS was relatively stable (Figure 6).
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3.3. Centroid Shifts of Pacific Sardine Fishing Grounds

Variation in the geometric centers of the HSI between June and November during
2015–2020 is shown in Figure 7. It can be seen from the figure that the geometric centers
of the HSI for the Pacific sardine presented a counterclockwise pattern, gradually moving
to the northeast from June, reaching the northeast end in August, and then turning back
to the southwest from September, which pointed out that the geometric center of the HSI
had obvious seasonal changes. The variation range of the longitude and latitude of the
HSI geometric center was between 41◦6′ and 42◦22′ N and between 149◦51′ and 152◦14′ E
(Figure 7).
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4. Discussion

SDMs, such as GAM, ANN and MaxEnt, have been widely used to predict suitable
habitats, map habitat variations and evaluate the relationship between species distribution
and the marine environment [60–62]. Monthly suitable habitat distributions of the Pacific
sardine in the NPO were predicted in this study based on Biomod2 combined with species
occurrence data and environmental variables. There were some issues with the Biomod2
applied in this study that need to be explained here. First, compared with a single-algorithm
model, such as MaxEnt and GAM, Biomod2 can map the overall variation of all models and
can integrate other aspects of different models, such as the variable importance or model
response curves [41]. Therefore, Biomod2 was used in this study to predict the habitat
distribution of the Pacific sardine. Second, the data series used in this research included
just six years (2015–2020). The reason for this was that the Pacific sardine fishery in the
NPO of China started relatively late and the data was limited, which may have affected the
results of the model. The sensitivity analysis of this data series will be carried out in future
research. Finally, our research was one of the few examples that predicted the monthly
habitat variation pattern of the Pacific sardine in the NPO using the ensemble model based
on Biomod2, which could provide accurate information for the sustainable utilization and
conservation of this species.

Figure 2 indicated that while the relative importance rankings of environmental vari-
ables for the single-algorithm models were fairly consistent, the statistical performance dif-
fered between the models (Table 4), which revealed that the inherent differences and uncer-
tainties between the individual models and the prediction performance varied widely [36].
The monthly TSS, Kappa and AUC values in the ensemble model were all higher than
the corresponding monthly values in the single-algorithm model (Tables 4 and 5). In ad-
dition, the species occurrence points of the ensemble model were mainly concentrated
in high-HSI areas, and the predicted habitat had a better spatial correspondence with
reality relative to the top-performing single-algorithm models (Figures 3 and 5). The above
conclusions reinforced the findings of previous studies showing that the ensemble model is
more robust than the single-algorithm models in predicting suitable habitats for marine
organisms [63–65]. Therefore, the ensemble model is expected to become an important tool
for fishing grounds forecasting and resource management.

Figures 2 and 4 showed the relative importance of environmental variables for the
single-algorithm models and the ensemble model, respectively, which demonstrated that
the SSH and SST contributed more to the Pacific sardine habitat model than the Chla and
SSS, and were important environmental factors that affected the Pacific sardine habitat
distribution. Arkhipkin et al. [66] reported that although environmental factors, such
as the SSS, play an important role in the population dynamics of pelagic species, their
contributions are relatively small compared to the SSH and SST, which is consistent with
the results of this study. Moreover, the findings in this study underpinned the importance
of the SSH and SST in the habitat distributions of the Pacific sardine in the NPO. Pacific
sardine is a small warm-temperate pelagic stock, which is sensitive to the SST in their
habitat area. At the same time, plankton is the main prey of Pacific sardine, and the SSH
can change the spatial distribution of this food concentration, which is why the SSH and
SST have a greater impact on the habitat distribution of Pacific sardine.

Figure 5 showed that the suitable habitats for the Pacific sardine were mainly dis-
tributed between 38◦ and 43◦ N and between 145◦ and 156◦ E. However, the habitat
patterns of Pacific sardine in the NPO exhibited significant monthly variations from June
to November. The spatial pattern of suitable habitats was closely related to the changes
in the marine environment in the NPO. The area of suitable habitat for the Pacific sardine
gradually decreased from June to August and increased from September to November
(Figure 5). Correspondingly, the SST increased from 15.19 ◦C in June to 22.10 ◦C in August,
and then gradually decreased, and the SST decreased to 14.25 ◦C in November. Therefore,
it was preliminarily determined that the optimal SST for sardine fishing grounds was
approximately 13 ◦C to 15 ◦C (Figure 6A), which was consistent with previous studies [67].
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The SSH could indicate the mesoscale activity in the NPO. Convergence drives the local
food concentration into different spatial patterns, and it is a physical driver of small pelagic
species distribution [68]. In this study, as the environmental variable with the highest
contribution rate (Figures 2 and 4), the SSH gradually increased from June to October, and
then decreased, and the overall change in the SSH value was small (Figure 6B). However,
there was no regular correspondence with the area changes of suitable habitats, which
may have been related to the complicated mechanism of the SSH affecting the distribu-
tion of Pacific sardine habitats [69]. The effect of Chla on the sardine distribution in the
NPO can be related to marine productivity and food availability for zooplankton, as Chla
is considered an indicator of these processes [70]. Our findings indicated that the Chla
decreased gradually from June to August and showed an increasing trend from September
to November, which was consistent with the monthly habitat pattern of the Pacific sardine
(Figures 5 and 6C). The optimal Chla range was approximately 0.3 to 0.6 mg/m3, which
was consistent with the results of Yang et al. [71]. The impact of the SSS on the suitable
habitat of the Pacific sardine was relatively small, and the monthly average SSS changed
little (Figure 6C). Therefore, the suitable habitat distribution of the Pacific sardine in the
NPO was affected by a combination of several oceanographic changes.

Meanwhile, the distribution range of suitable habitats and the geometric centers of the
HSI were also different in each month, which was attributed to the environmental changes
too (Figures 5–7). Changes in the marine environmental variables, such as an increase in the
SST and a decrease in the Chla in July and August and the migration of geometric centers
from June to November, suggested the migration of Pacific sardine populations northeast
to feeding grounds. After August, the Pacific sardine populations might move southwest
again in search of the optimal marine environment (Figure 7). These findings indicated that
due to the temporal and spatial changes in the marine environment, the suitable habitat
range and geometric centers of the Pacific sardine were not very stable. Interestingly, the
movement pattern of the Pacific sardine in this study was consistent with Yang’s [71] study.

Although some studies have predicted suitable habitats for Pacific sardine in other
regions, most of them used a single-algorithm model, and the prediction results had large
indeterminacies [47,72,73]. An ensemble model that integrated multiple single-algorithm
models was applied in this study to accurately simulate and predict suitable habitat distribu-
tion and monthly habitat pattern variations of the Pacific sardine, which is an economically
and ecologically important species in the NPO. Such ensemble modeling should be re-
peated and applied to other economic fish and cephalopods in the global oceans, such as
Pacific saury and Chub mackerel in the NPO [19], jumbo flying squid (Dosidicus gigas) in
the Southeast Pacific Ocean [74] and Japanese flying squid (Todarodes pacificus) in the East
China Sea [75].

With the development of the world’s distant-water fisheries, more and more countries
and regions have fleets targeting Pacific sardine in the NPO. In order to utilize and manage
Pacific sardine fishery resources based on scientific grounds, we propose the following
management recommendations to deal with the change in the marine environment. (1) Im-
prove knowledge about the life history of Pacific sardine in the NPO and their responses
to the environmental conditions. Meanwhile, adjust the fishing intensity of the Pacific
sardine fishery according to different months and environmental conditions to obtain a
high catch of target species, for example, by increasing the operation intensity of Pacific
sardine from September to November. (2) Improve the knowledge about the relationship
between suitable habitats and the central fishing grounds of Pacific sardine in the NPO with
environmental conditions in order to improve the accuracy of fishing grounds exploration
and reduce the unnecessary investment of fishing effort. (3) Monitor environmental change
and climate variability, and develop a warning system for marine environmental change in
the NPO to better adjust the fishing policy for important economic marine species in the
sea area. Thus, it is necessary to study spatio-temporal variations of suitable habitats for
important fish species.
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5. Conclusions

In this study, the Biomod2 package was applied to investigate potential habitat dis-
tribution and monthly variation patterns of the distribution of the Pacific sardine in the
NPO. The results showed that the ensemble model we formulated provided more robust
projections than any single-algorithm model. The occurrence records in the ensemble model
were well-matched with the predicted suitable habitat. The SSH and SST were important
environmental factors that affected the suitable habitat distribution of the Pacific sardine.
The suitable habitat range contracted from June to August and expanded from September
to November. The HSI geometric centers of the Pacific sardine in the NPO presented a
counterclockwise pattern, gradually moving to the northeast from June, and then turning
back to the southwest from August. The findings in this study suggested that the range and
spatial pattern of the monthly habitat were affected directly by the favorable environmental
conditions in each month. The results presented in this study serve as the first step to
moving the scientific management and sustainable utilization of Pacific sardine resources
in the NPO forward.

Author Contributions: Y.S. and B.K.: conceived the project and designed the experiments. Y.S.:
writing—original draft preparation. W.F.: investigation and resources. L.X. and S.Z.: writing—
review and editing. X.C.: data processing, review and comment. Y.D.: review and comment. S.Z.:
manuscript revision and improvement. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was sponsored by National Key R&D Program of China (2019YFD0901405),
Shanghai Sailing Program (22YF1459900), the Central Public-Interest Scientific Institution Basal
Research Fund, ECSFR, CAFS (2021T04) and Laoshan Laboratory (No. LSKJ202201804).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Methot, R.D.J.; Wetzel, C. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management.

Fish. Res. 2013, 142, 86–99. [CrossRef]
2. Cheung, W.W.L.; Lam, V.W.Y.; Sarmiento, J.L.; Kearney, K.; Watson, R.E.G.; Pauly, D. Projecting global marine biodiversity

impacts under climate change scenarios. Fish Fish. 2009, 10, 235–251. [CrossRef]
3. Poloczanska, E.S.; Brown, C.J.; Sydeman, W.J.; Kiessling, W.; Burrows, M.T. Global imprint of climate change on marine life. Nat.

Clim. Chang. 2013, 3, 919–925. [CrossRef]
4. Yu, W.; Chen, X.J. Ocean warming-induced range shifting of potential habitat for jumbo flying squid Dosidicus gigas in the

southeast Pacific Ocean off Peru. Fish. Res. 2018, 204, 137–146. [CrossRef]
5. Stramma, L.; Johnson, G.C.; Sprintall, J.; Mohrholz, V. Expanding oxygen minimum zones in the tropical oceans. Science 2008, 320,

655–658. [CrossRef] [PubMed]
6. Gallo, N.D.; Levin, L.A. Fish ecology and evolution in the world’s oxygen minimum zones and implications of ocean deoxygena-

tion. Adv. Mar. Biol. 2016, 74, 117–198. [PubMed]
7. Cortes, G.G.; Montanez, J.A.D.A.; Sánchez, F.A.; Salas, S.; Balart, E.F. How do environmental factors affect the stock–recruitment

relationship? The case of the Pacific sardine (Sardinops sagax) of the northeastern Pacific Ocean. Fish. Res. 2010, 102, 173–183.
[CrossRef]

8. Guan, X.D. Sardinops sagax from the coast of Japan. Mar. Fish. 1985, 4, 187–189, (In Chinese with English Abstract).
9. Wei, C.; Chen, Y.Z.; Zhou, B.B.; Sun, J.M. Identification of Sardinops sagax populations in the Yellow Sea of China. Mar. Sci. 1989, 4,

55–60. (In Chinese with English Abstract)
10. Morimoto, H. Age and growth of Japanese sardine (Sardinops melanostictus) in Tosa Bay, southwestern Japan during a period of

declining stock size. Fish. Sci. 2003, 69, 745–754. [CrossRef]
11. Yatsu, A.; Kawabata, A. Reconsidering Trans-Pacific “synchrony” in population fluctuations of sardines. Bulletin J. Soc. Fish.

Oceanogr. 2017, 81, 271–283.
12. Suda, M.; Kishida, T. A spatial model of population dynamics of the early life stages of Japanese sardine, Sardinops melanostictus,

off the Pacific coast of Japan. Fish. Oceanogr. 2003, 12, 85–99. [CrossRef]

http://doi.org/10.1016/j.fishres.2012.10.012
http://doi.org/10.1111/j.1467-2979.2008.00315.x
http://doi.org/10.1038/nclimate1958
http://doi.org/10.1016/j.fishres.2018.02.016
http://doi.org/10.1126/science.1153847
http://www.ncbi.nlm.nih.gov/pubmed/18451300
http://www.ncbi.nlm.nih.gov/pubmed/27573051
http://doi.org/10.1016/j.fishres.2009.11.010
http://doi.org/10.1046/j.1444-2906.2003.00682.x
http://doi.org/10.1046/j.1365-2419.2003.00224.x


Fishes 2023, 8, 86 14 of 16

13. Michio, Y.; Tanaka, H.; Honda, S.; Nishida, H.; Nashida, K.; Hirota, Y.; Ishida, M.; Ohshimo, S.; Miyabe, S.; Ito, H. Sex-ual
maturation, spawning period and batch fecundity of Japanese sardine (Sardinops melanostictus) in the coastal waters of western
Japan in 2008–2010. Bull. Jpn. Soc. Fish. Oceanogr. 2013, 77, 59–67.

14. Nyuji, M.; Hongo, Y.; Yoneda, M.; Nakamura, M. Transcriptome characterization of BPG axis and expression profiles of ovarian
steroidogenesis-related genes in the Japanese sardine. BMC Genom. 2020, 21, 668. [CrossRef] [PubMed]

15. Watanabe, Y.; Zenitani, H.; Kimura, R. Population decline of the Japanese sardine Sardinops melanostictus owing to recruitment
failures. Can. J. Fish. Aquat. Sci. 1995, 52, 1609–1616. [CrossRef]

16. Kinoshita, T. Northward migrating juveniles in the Kuroshio Extension area. In Stock Fluctuations and Ecological Changes of
the Japanese Sardine; Watanabe, Y., Wada, T., Eds.; Koseisyakoseikaku: Tokyo, Japan, 1998; pp. 84–92. (In Japanese with
English Abstract)

17. Kuroda, K. Studies on the recruitment process focusing on the early life history of the Japanese sardine, Sardinops melanostictus
(Schelegen). Bull. Natl. Res. Inst. Fish. Sci. 1991, 3, 25–278, (In Japanese with English Abstract).

18. Wang, M.Y.; Dong, W.D. Development and utilization of the Sardinops sagax. Fish. Sci. 1992, 7, 14–16. (In Chinese with
English Abstract)

19. Shi, Y.C.; Zhang, X.M.; He, Y.R.; Fan, W.; Tang, F.H. Stock Assessment Using Length-Based Bayesian Evaluation Method for Three
Small Pelagic Species in the Northwest Pacific Ocean. Front. Mar. Sci. 2022, 9, 775180. [CrossRef]

20. Zhao, G.Q.; Shi, Y.C.; Fan, W.; Cui, X.S.; Tang, F.H. Study on main catch composition and fishing ground change of light purse
seine in Northwest Pacific. South China Fish. Sci. 2022, 18, 33–42, (In Chinese with English Abstract).

21. North Pacific Fisheries Commission. NPFC Yearbook 2017. 2017, p. 385. Available online: www.npfc.int (accessed on 21 November 2017).
22. Brochier, T.; Echevin, V.; Tam, J.; Chaigneau, A.; Goubanova, K.; Bertrand, A. Climate change scenarios experiments predict

a future reduction in small pelagic fish recruitment in the Humboldt Current system. Glob. Chang. Biol. 2013, 19, 1841–1853.
[CrossRef]

23. Ishimura, G.; Herrick, S.; Sumaila, U.R. Stability of cooperative management of the Pacific sardine fishery under climate variability.
Mar. Policy 2013, 39, 333–340. [CrossRef]

24. Chen, C.S.; Chiu, T.S. Abundance and spatial variation of Ommastrephes bartramii in the eastern North Pacific observed from an
exploratory survey. Acta Zool. Taiwan 1999, 10, 135–144.

25. Lacomte, F.; Grant, W.S.; Dodson, J.J.; Rodriguez-Sanchez, R.; Bowen, B.W. Living with uncertainty; genetic imprints of climate
shifts in east Pacific anchovy (Engraulis mordax) and sardine (Sardinops sagax). Mol. Ecol. 2004, 13, 2169–2182. [CrossRef]

26. Porchas, M.M.; Rodríguez, M.H.; Ramírez, L.F.B. Thermal behavior of the Pacific sardine (Sardinops sagax) acclimated to different
thermal cycles. J. Therm. Biol. 2009, 34, 372–376. [CrossRef]

27. Dudarev, V.A. Oceanological Principles of Distribution, Migration, and Dynamics of Population of Far Eastern Sardine. In
Gidrometeorologiya i Gidrokhimiya Morei, Tom 8. Yaponskoe More; Hydrometeorology and Hydrochemistry of the Seas, Vol. 8: Sea of
Japan; Gidrometeoizdat: St. Petersburg, Russia, 2004; Volume 8, pp. 229–234.

28. Vander, L.C.D.; Castro, L.; Drapeau, L.; Checkley, D., Jr. (Eds.) Report of a GLOBEC-SPACC Workshop on Characterizing and
Comparing the Spawning Habitats of Small Pelagic Fish; GLOBEC Report 21; GLOBEC: Swindon, UK, 2005; Volume 7, p. 33.

29. Takasuka, A.; Oozeki, Y.; Aoki, I. Optimal growth temperature hypothesis: Why do anchovy flourish and sardine collapse or vice
versa under the same ocean regime? Can. J. Fish. Aquat. Sci. 2007, 64, 768–776. [CrossRef]

30. Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev.
Ecol. Evol. S. 2009, 40, 677–697. [CrossRef]

31. Zhang, Z.; Xu, S.; Capinha, C.; Weterings, R.; Gao, T. Using species distribution model to predict the impact of climate change on
the potential distribution of Japanese whiting Sillago japonica. Ecol. Indic. 2019, 104, 333–340. [CrossRef]

32. Gong, C.X.; Chen, X.J.; Gao, F.; Yu, W. The Change Characteristics of Potential Habitat and Fishing Season for Neon Flying Squid
in the Northwest Pacific Ocean under Future Climate Change Scenarios. Mar. Coast. Fish. 2021, 13, 450–462. [CrossRef]

33. Guénard, G.; Morin, J.; Matte, P.; Secretan, Y.; Valiquette, E.; Mingelbier, M. Deep learning habitat modeling for moving organisms
in rapidly changing estuarine environments: A case of two fishes. Estuar. Coast. Shelf Sci. 2020, 238, 106713. [CrossRef]

34. Zhang, X.M.; Shi, Y.C.; Li, F.; Zhu, M.M.; Wei, Z.H. Prediction of potential fishing ground for Pacific saury (Cololabis saira) based
on MAXENT model. J. Shanghai Ocean Univ. 2020, 29, 280–286, (In Chinese with English Abstract).

35. Hao, T.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising
predictive performance of species distribution models. Ecography 2020, 43, 549–558. [CrossRef]

36. Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.;
Lehmann, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151.
[CrossRef]

37. Araújo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [CrossRef]
38. Ahmed, S.E.; McInerny, G.; O’Hara, K.; Harper, R.; Salido, L.; Emmott, S.; Joppa, L.N. Scientists and software-surveying the

species distribution modeling community. Divers. Distrib. 2015, 21, 258–267. [CrossRef]
39. Thuiller, W. Biomod: Optimizing predictions of species distributions and projecting potential future shifts under global change.

Glob. Chang. Biol. 2003, 9, 1353–1362. [CrossRef]
40. Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. Biomod: A platform for ensemble forecasting of species distributions.

Ecography 2009, 32, 369–373. [CrossRef]

http://doi.org/10.1186/s12864-020-07080-1
http://www.ncbi.nlm.nih.gov/pubmed/32993516
http://doi.org/10.1139/f95-154
http://doi.org/10.3389/fmars.2022.775180
www.npfc.int
http://doi.org/10.1111/gcb.12184
http://doi.org/10.1016/j.marpol.2012.12.008
http://doi.org/10.1111/j.1365-294X.2004.02229.x
http://doi.org/10.1016/j.jtherbio.2009.07.002
http://doi.org/10.1139/f07-052
http://doi.org/10.1146/annurev.ecolsys.110308.120159
http://doi.org/10.1016/j.ecolind.2019.05.023
http://doi.org/10.1002/mcf2.10170
http://doi.org/10.1016/j.ecss.2020.106713
http://doi.org/10.1111/ecog.04890
http://doi.org/10.1111/j.2006.0906-7590.04596.x
http://doi.org/10.1016/j.tree.2006.09.010
http://doi.org/10.1111/ddi.12305
http://doi.org/10.1046/j.1365-2486.2003.00666.x
http://doi.org/10.1111/j.1600-0587.2008.05742.x


Fishes 2023, 8, 86 15 of 16

41. Alabia, I.D.; Saitoh, S.I.; Igarashi, H.; Ishikawa, Y.; Usui, N.; Kamachi, M.; Awaji, T.; Seito, M. Ensemble squid habitat model using
three-dimensional ocean data. ICES J. Mar. Sci. 2016, 73, 1863–1874. [CrossRef]

42. Xu, Y.; Huang, Y.; Zhao, H.; Yang, M.; Zhuang, Y.; Ye, X. Modelling the Effects of Climate Change on the Distribution of
Endangered Cypripedium japonicum in China. Forests 2021, 12, 429. [CrossRef]

43. Zhao, G.H.; Cui, X.Y.; Sun, J.J.; Li, T.T.; Wang, Q.; Ye, X.Z.; Fan, B.G. Analysis of the distribution pattern of Chinese Ziziphus jujuba
under climate change based on optimized biomod2 and MaxEnt models. Ecol. Indic. 2021, 132, 108256. [CrossRef]

44. Logerwell, E.A.; Smith, P.E. Mesoscale eddies and survival of late stage Pacific sardine (Sardinops sagax) larvae. Fish. Oceanogr.
2010, 10, 13–25. [CrossRef]

45. Ma, C.; Zhuang, Z.D.; Liu, Y.; Xu, C.Y.; Cai, J.D.; Shen, C.C. Preliminary study on catch composition and biological characteristics
of main species of light-lift net in the Northwest Pacific Ocean. J. Fish. Res. 2018, 40, 141–147. (In Chinese with English Abstract)

46. Assis, J.; Tyberghein, L.; Bosh, S.; Verbruggen, H.; Serrão, E.A.; Clerck, D.O. Bio-ORACLE v2.0: Extending marine data layers for
bioclimatic modelling. Glob. Ecol. Biogeogr. 2017, 27, 277–284. [CrossRef]

47. Petatán, R.D.; Ojeda, R.M.Á.; Sánchez, V.L.; Rivas, D.; Reyes, B.H.; Cruz, P.G.; Morzaria, L.H.N.; Cisneros, M.A.M.; Cheung, W.;
Salvadeo, C. Potential changes in the distribution of suitable habitat for Pacific sardine (Sardinops sagax) under climate change
scenarios. Deep Sea Res. Part II 2019, 169–170, 104632. [CrossRef]

48. Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [CrossRef]
49. Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carr’e, G.; Marqu´ez, J.R.G.; Gruber, B.; Lafourcade, B.; Leitao, P.J.

Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46.
[CrossRef]

50. Tien, B.D.; Lofman, O.; Revhaug, I.; Dick, O. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical
index and logistic regression. Nat. Hazards 2011, 59, 1413–1444.

51. Chen, Y.L.; Shan, X.J.; Ovando, D.; Yang, T.; Dai, F.Q.; Jin, X.S. Predicting current and future global distribution of black rockfish
(Sebastes schlegelii) under changing climate. Ecol. Indic. 2021, 128, 107799. [CrossRef]

52. Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill
statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [CrossRef]

53. Lobo, J.M.; Jiménez, V.A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol.
Biogeogr. 2008, 17, 145–151. [CrossRef]

54. Pearce, J.; Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Modell.
2000, 133, 225–245. [CrossRef]

55. Phillips, N.D.; Reid, N.; Thys, T.; Harrod, C.; Payne, N.L.; Morgan, C.A.; White, H.J.; Porter, S.; Houghton, J.D.R. Applying species
distribution modelling to a data poor, pelagic fish complex: The ocean sunfishes. J. Biogeogr. 2017, 44, 2176–2187. [CrossRef]

56. Silva, D.P.; Aguiar, A.G.; Simiao-Ferreira, J. Assessing the distribution and conservation status of a long-horned beetle with
species distribution models. J. Insect. Conserv. 2016, 20, 611–620. [CrossRef]

57. Chen, X.J.; Tian, S.Q.; Chen, Y.; Liu, B.L. A modeling approach to identify optimal habitat and suitable fishing grounds for neon
flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Fish. Bull. 2010, 108, 1–15.

58. Yu, W.; Wen, J.; Zhang, Z.; Chen, X.J.; Zhang, Y. Spatio-temporal variations in the potential habitat of a pelagic commercial squid.
J. Mar. Syst. 2020, 206, 103339. [CrossRef]

59. Li, G.; Cao, J.; Zou, X.; Chen, X.J.; Runnebaum, J. Modeling habitat suitability index for Chilean jack mackerel (Trachurus murphyi)
in the South East Pacific. Fish. Res. 2016, 178, 47–60. [CrossRef]

60. Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009.
[CrossRef]

61. Arroita, G.G.; Monfort, J.J.L.; Elith, J.; Gordon, A.; Kujala, H.; Lentini, P.E.; McCarthy, M.A.; Tingley, R.; Wintle, B.A. Is my species
distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 2015, 24, 276–292. [CrossRef]

62. Takasuka, A.; Kuroda, H.; Okunishi, T.; Shimizu, Y.; Hirota, Y.; Kubota, H.; Sakajl, H.; Kimura, R.; Ito, S.I.; Oozeki, Y. Occurrence
and density of Pacific saury Cololabis saira larvae and juveniles in relation to environmental factors during the winter spawning
season in the Kuroshio Current system. Fish. Oceanogr. 2014, 23, 304–321. [CrossRef]

63. Mainali, K.P.; Warren, D.L.; Dhileepan, K.; McConnachie, A.; Strathie, L.; Hassan, G.; Karki, D.; Shrestha, B.B.; Parmesan, C.
Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling.
Glob. Chang. Biol. 2015, 21, 4464–4480. [CrossRef]

64. Watling, J.I.; Brandt, L.A.; Bucklin, D.N.; Fujisaki, I.; Mazzotti, F.J.; Romañach, S.S.; Speroterra, C. Performance metrics and
variance partitioning reveal sources of uncertainty in species distribution models. Ecol. Modell. 2015, 309–310, 48–59. [CrossRef]

65. Scales, K.L.; Miller, P.I.; Ingram, S.N.; Hazen, E.L.; Bograd, S.J.; Phillips, R.A. Identifying predictable foraging habitats for a
wide-ranging marine predator using ensemble ecological niche models. Divers. Distrib. 2016, 22, 212–224. [CrossRef]

66. Arkhipkin, A.I.; Rodhouse, P.G.K.; Pierce, G.J.; Sauer, W.; Sakai, M.; Allcock, L.; Arguelles, J.; Bower, J.R.; Castillo, G. World squid
fisheries. Rev. Fish. Sci. Aquac. 2015, 23, 92–252. [CrossRef]

67. Weber, E.D.; McClatchie, S. Predictive models of northern anchovy Engraulis mordax and Pacific sardine Sardinops sagax spawning
habitat in the California Current. Mar. Ecol. Prog. Ser. 2010, 406, 251–263. [CrossRef]

68. Ichii, T.; Mahapatra, K.; Sakai, M.; Okada, Y. Life history of the neon flying squid: Effect of the oceanographic regime in the North
Pacific Ocean. Mar. Ecol. Prog. Ser. 2009, 378, 1–11. [CrossRef]

http://doi.org/10.1093/icesjms/fsw075
http://doi.org/10.3390/f12040429
http://doi.org/10.1016/j.ecolind.2021.108256
http://doi.org/10.1046/j.1365-2419.2001.00152.x
http://doi.org/10.1111/geb.12693
http://doi.org/10.1016/j.dsr2.2019.07.020
http://doi.org/10.1890/02-3114
http://doi.org/10.1111/j.1600-0587.2012.07348.x
http://doi.org/10.1016/j.ecolind.2021.107799
http://doi.org/10.1111/j.1365-2664.2006.01214.x
http://doi.org/10.1111/j.1466-8238.2007.00358.x
http://doi.org/10.1016/S0304-3800(00)00322-7
http://doi.org/10.1111/jbi.13033
http://doi.org/10.1007/s10841-016-9892-8
http://doi.org/10.1016/j.jmarsys.2020.103339
http://doi.org/10.1016/j.fishres.2015.11.012
http://doi.org/10.1111/j.1461-0248.2005.00792.x
http://doi.org/10.1111/geb.12268
http://doi.org/10.1111/fog.12065
http://doi.org/10.1111/gcb.13038
http://doi.org/10.1016/j.ecolmodel.2015.03.017
http://doi.org/10.1111/ddi.12389
http://doi.org/10.1080/23308249.2015.1026226
http://doi.org/10.3354/meps08544
http://doi.org/10.3354/meps07873


Fishes 2023, 8, 86 16 of 16

69. Song, H.; Miller, A.J.; McClatchie, S.; Weber, E.D.; Nieto, K.M.; Checkley, D.M.J. Application of a data-assimilation model to
variability of Pacific sardine spawning and survivor habitats with ENSO in the California Current System. J. Geophys. Res. 2012,
117, C03009. [CrossRef]

70. Hua, C.X.; Li, F.; Zhu, Q.C.; Zhu, G.P.; Meng, L.W. Habitat suitability of Pacific saury (Cololabis saira) based on a yield-density
model and weighted analysis. Fish. Res. 2020, 221, 105408. [CrossRef]

71. Yang, C.; Zhang, H.; Han, H.B.; Zhao, G.Q.; Xu, B.; Shi, Y.C.; Yan, Y.Z.; Ge, Y.L. Spatial and temporal distribution and optimum
environmental characteristics of the Sardinops sagax in the North Pacific Ocean. Progr. Fish. Sci. 2022. Available online:
http://journal.yykxjz.cn/yykxjz/ch/reader/view_abstract.aspx?journal_id=yykxjz&file_no=202203210000001 (accessed on
14 May 2022). (In Chinese with English Abstract)

72. Emmett, R.L.; Brodeur, R.D.; Miller, T.W.; Pool, S.S.; Bentley, P.J.; Krutzikowsky, G.K.; McCrae, J. Pacific sardine (Sardinops sagax)
abundance, distribution, and ecological relationships in the Pacific Northwest. Cal. Coop. Ocean. Fish. 2005, 46, 122–143.

73. Nieto, K.; McClatchie, S.; Weber, E.D.; Lennert-Cody, C.E. Effect of mesoscale eddies and streamers on sardine spawning habitat
and recruitment success off southern and central California. J. Geophys. Res. Oceans 2014, 119, 6330–6339. [CrossRef]

74. Yu, W.; Wen, J.; Chen, X.J.; Gong, Y.; Liu, B.L. Trans-Pacific multidecadal changes of habitat patterns of two squid species. Fish.
Res. 2021, 233, 105762. [CrossRef]

75. Zhang, X.; Saitoh, S.I.; Hirawake, T. Predicting potential fishing zones of Japanese common squid (Todarodes pacificus) using
remotely sensed images in coastal waters of south-western Hokkaido, Japan. Int. J. Remote Sens. 2016, 1–18.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1029/2011JC007302
http://doi.org/10.1016/j.fishres.2019.105408
http://journal.yykxjz.cn/yykxjz/ch/reader/view_abstract.aspx?journal_id=yykxjz&file_no=202203210000001
http://doi.org/10.1002/2014JC010251
http://doi.org/10.1016/j.fishres.2020.105762

	Introduction 
	Materials and Methods 
	Study Area 
	Data Resources 
	Modelling Procedure 
	Centroid Shifts 

	Results 
	Single-Algorithm Models Performances 
	Ensemble Model Prediction and Potential Habitat Distribution of the Pacific Sardine 
	Centroid Shifts of Pacific Sardine Fishing Grounds 

	Discussion 
	Conclusions 
	References

