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Abstract: Pacific sardine (Sardinops sagax) is a commercially important species and supports 

important fisheries in the Northwest Pacific Ocean (NPO). Understanding the habitat distribution 

patterns of Pacific sardine is of great significance for fishing ground prediction and stock 

management. In this study, both single-algorithm and ensemble distribution models were 

established through the Biomod2 package for Pacific sardine by combining the species occurrence 

data, sea surface temperature (SST), sea surface height (SSH), sea surface salinity (SSS) and 

chlorophyll-a concentration (Chla) in the NPO during the main fishing season (June–November) 

from 2015 to 2020. The results indicated that the key environmental variables affecting the habitat 

distribution of Pacific sardine were the SSH and SST. The suitable habitat area for Pacific sardine 

showed significant monthly changes: the suitable habitat range in June was larger than that in July 

and August, while the suitable habitat range gradually increased from September to November. 

Furthermore, the monthly geometric centers of habitat suitability index (HSI) for Pacific sardine 

presented a counterclockwise pattern, gradually moving to the northeast from June, and then 

turning back to the southwest from August. Compared with single-algorithm models, the 

ensemble model had higher evaluation metric values and better spatial correspondence between 

habitat prediction and occurrence records data, which indicated that the ensemble model can 

provide more accurate prediction and is a promising tool for potential habitat forecasting and 

resource management. 

Keywords: Sardinops sagax; habitat distribution; species distribution model; environmental 

variation; Northwest Pacific Ocean 

 

1. Introduction 

Fishery resources are the foundation for the development of fisheries and related 

industries, and are one of the main sources of high-quality protein for humans [1]. 

Marine environmental changes can have direct or indirect influences on the marine 

ecosystems that have consequences for the spatio-temporal distribution, resource 

abundance and productivity of marine species, as well as their interactions with each 

other [2–4]. Marine species, in turn, are predicted to respond to environmental 

variations in suitable distribution areas through genetic adaptation or changing 

distribution ranges [5,6]. Therefore, understanding the suitable habitat distribution and 

the dynamics of habitat distribution under environmental change is of great significance 

to the sustainable use and management of fisheries resources. 
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Pacific sardine (Sardinops sagax) is widely distributed in the warm temperate waters 

of the Indo-Pacific and is also one of the most important pelagic stocks in the Northwest 

Pacific Ocean (NPO) [7–9]. Pacific sardine can reach a maximum age of 6–7 years [10,11], 

and attain sexual maturity at two years old, with an average length at maturity (L50) of 

180 mm and an average weight higher or equal to 180 g [12]. The gonadosomatic index 

of female Pacific sardine varies depending on the area, with maximum values at 11 °C 

water temperature [13,14]. The main spawning time of Pacific sardine has been reported 

to be from February to March along central and southern Japan [15]. Sardine larvae are 

transported to the northeast by the Kuroshio and Kuroshio Extension, then continued to 

migrate to the northeast, reaching the feeding grounds in summer [16]. In winter, Pacific 

sardine migrate southwest along the Pacific coast of southern Japan to spawning 

grounds [17]. Japanese fishermen were pioneers in exploiting this species in the 1920s, 

and China began a fishery for these resources in the 1980s [18]. At present, Pacific 

sardine is mainly exploited by Japan, China (including Chinese Taipei) and Korea. The 

annual catch of Pacific sardine recorded in 2019 in China was about 24,773 tons, which 

accounted for 11.1% of global production [19]. Moreover, the proportion of Pacific 

sardine catches in the NPO of China showed a gradually increasing trend from 2014 to 

2020 [20]. Due to their increasing ecological and economic value, the utilization and 

management of Pacific sardine resources have raised widespread concern and these fish 

have been listed among the priority fish species by the North Pacific Fisheries 

Commission (NPFC) [21]. 

Owing to the short life cycle and long migration route of Pacific sardine, large-scale 

climate events and regional environmental changes are generally considered to be 

important factors that affect the Pacific sardine population [22,23]. Many studies 

indicated that like other small pelagic species, the habitat distribution of Pacific sardine 

is largely influenced by marine environmental factors, such as the sea surface 

temperature (SST), sea surface height (SSH), chlorophyll-a concentration (Chla) and sea 

surface salinity (SSS) [24–26]. For instance, Dudarev [27] indicated that 8–20 ℃ and 15–

30 m are the suitable SST and depth for the Pacific sardine distribution in the NPO, 

respectively. Vander et al. [28] studied the effects of the SST, SSS and SSH on the 

distribution of Pacific sardine and the results showed that the SST has a higher impact 

than the SSH and SSS. Takasuka et al. [29] put forward a simple “optimal growth 

temperature” hypothesis and investigated the relationship between the growth rate of 

Pacific sardine and SST. The results showed dome-shaped relationships between the 

growth rate and SST, with the optimal growth rate occurring when the temperature was 

16.2 °C. To our knowledge, there are few studies that investigated the spatial variation 

in the potential habitat distribution of Pacific sardine. 

A species distribution model (SDM) is widely considered a significant tool for 

predicting a species’ potential distribution and the influence of climate change on its 

distribution, which can combine the species occurrence data and environmental 

variables [30,31]. SDMs were successfully used to predict the potential distribution of 

many species. For instance, Gong et al. [32] applied maximum entropy (MaxEnt) to 

forecast the potential distribution of neon flying squid and projected potential habitat 

ranges under future climate scenarios. Guénard et al. [33] used a deep feed-forward 

artificial neural network (ANN) to model habitat suitability for Lake sturgeon (Acipenser 

fulvescens) and White perch (Morone americana). MaxEnt was used by Zhang et al. [34] to 

study the influencing mechanism of marine environmental factors on the potential 

fishing grounds for Pacific saury (Cololabis saira) in the NPO, and the distribution range 

shifts in different months of potential distribution were revealed. With the development 

of computer technology and modeling algorithms, dozens of SDMs were proposed to 

meet the increasing demand for potential habitat prediction and fishing grounds 

searches for marine species [35]. However, the statistical and predictive performances of 

different models are varied, which are attributed to the differences in their scope of 

application and theoretical algorithms. MaxEnt is one of the most frequently used SDMs 
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and is generally considered to have a good evaluation performance [36,37]; it is also 

simple to operate, easy to use and can deal with high-capacity data [38]. Thuiller [39] 

indicated that the performance of SDM decreases with the increase of input data, and it 

is not stable and reliable to use only a certain model for potential distribution prediction. 

The Biomod modeling package can integrate the results of multiple models and use the 

comprehensive results as the output of the ensemble model to improve the accuracy of 

prediction results [40]. The latest version is Biomod2, which was updated in 2016. 

Biomod2 has been widely recognized and used for the potential distribution prediction 

of many species since its publication [41–43]. 

To reasonably utilize and manage Pacific sardine resources in the NPO, it is 

important to understand their potential habitat distribution and the impact of the 

environment on habitat suitability. However, previous research on the Pacific sardine in 

this area mainly focused on basic biology, and there was little research on suitable 

habitat prediction [44,45]. In addition, challenges and uncertainties still exist in the 

research to predict the suitable habitat distribution of Pacific sardine in the NPO. Thus, 

Biomod2 was applied in this study to investigate the potential distribution of Pacific 

sardine in the NPO. The predictive performance of the single-algorithm model and 

ensemble model in the Biomod2 package was tested. The main objectives of this study 

were (1) to determine the key environmental variables influencing the habitat 

distribution of Pacific sardine, (2) to identify the monthly habitat patterns of Pacific 

sardine in the main fishing seasons (June to November), and (3) to compare the 

predictive performances of single algorithm model and ensemble model and explore 

their application prospects. 

2. Materials and Methods 

2.1. Study Area 

In this research, the study area was distributed between 38–45° N and 145–160° E, 

covering the main fishing grounds of Pacific sardine in the NPO (Figure 1). This area is 

situated at the junction of the Kuroshio warm current and the Oyashio cold current, 

which is one of the high-yield sea areas around the world. Many economically important 

fish species, such as tunas (Thunnus spp), Pacific saury (Cololabis saira), Chub mackerel 

(Scomber japonicas) and Pacific sardine, inhabit this zone. 

 

Figure 1. Location of fishing grounds for Pacific sardine in the NPO. The Oyashio cold current is 

represented using the blue lines and the Kuroshio warm current is shown using the red lines. 
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2.2. Data Resources 

Species occurrence data and environmental variables are essential inputs for 

ecological niche models and SDMs. Both inputs are used to detect potentially habitable 

sites of target species in the study area [46]. In this study, occurrence data with a spatial 

resolution grid of 0.25° latitude × 0.25° longitude of Pacific sardine was derived from the 

Technical Group for Trawl-Purse Seine Fishery, Distant-Water Fishery Society of China, 

covering the period between June and November from 2015 to 2020. In total, 599 

occurrence records of Pacific sardine were included in this study, and the number of 

occurrence records in each month is shown in Table 1. Environmental variables that 

predominantly influence the abundance and distribution of Pacific sardine stock, 

including SST, SSH, SSS and Chla, were selected for species distribution modeling given 

that they were reported in the literature as important variables that influence the 

abundance and distribution of Pacific sardine stock [47]. Those data were downloaded 

from the Copernicus Marine Service (http://marine.copernicus.eu, accessed on 23 May 

2022). In order to match with the spatio-temporal resolution of the species occurrence 

data, all the environmental data were downloaded at 0.25° spatial resolution and 

monthly temporal resolution. 

In order to ensure that the multicollinearity of environmental variables did not 

affect the predictive ability and lead to overfitting [48], the mutual independence of 

environmental variables was checked by the variance inflation factor (VIF) (Table 2). The 

VIF values of the environmental variables were less than 3, except for the SSS. However, 

the VIF of the SSS was less than 10, indicating that there was no serious multi-

collinearity among the environmental variables [49,50]. 

Table 1. The number of occurrence records of the Pacific sardine by month from 2015 to 2020. 

Month June July August September October November 

Number 88 181 81 99 70 80 

Table 2. Variance inflation factors (VIFs) of the environmental variables. 

Environmental Variables SST SSH SSS Chla 

Variance inflation factor (VIF) 1.52 1.62 3.38 2.49 

2.3. Modelling Procedure 

The Biomod2 package in the R(V4.0.2) environment was used to predict the 

potential distribution of Pacific sardine in this study, which included ten models: 

generalized linear model (GLM), generalized additive model (GAM), multiple adaptive 

regression splines (MARS), generalized boosting model (GBM), classification tree 

analysis (CTA), ANN, surface range envelope (SRE), flexible discriminant analysis 

(FDA), random forest (RF) and MaxEnt. During the modeling process, the first step was 

to construct the single-algorithm Pacific sardine habitat model. Three groups of 

pseudoabsence records were randomly generated based on the occurrence data and 

background data of the Pacific sardine, and each group had 500 pseudoabsence records 

[46]. In order to evaluate the accuracy of the model, we randomly selected 70% of the 

occurrence data as the training dataset and the remaining 30% as the validation dataset, 

and the weight of occurrence points was equal to pseudoabsence points when the model 

was running and evaluating [51]. Each model was run ten times, with a total of 1800 

single-algorithm model results (3 groups of pseudoabsence records × running 10 times × 

10 single-algorithm models × 6 months). The true skill statistic (TSS), Cohen’s kappa 

statistic (Kappa) and the area under the receiver operating characteristic curve (AUC) 

were applied as evaluation metrics to assess the performance of the models [52,53]. The 

measurement standards for TSS, Kappa and AUC are shown in Table 3, and the closer 

each of their values was to 1, the more reliable the prediction results were [54]. 
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Furthermore, the relative importance of environmental variables was calculated in order 

to better understand the environmental factors that affected the habitat of the Pacific 

sardine in the NPO. 

The second step was to develop the ensemble model. In order to reduce the 

uncertainty of the single-algorithm model and data generation process (mainly 

pseudoabsence sites), we formulated the ensemble species distribution model to predict 

the spatial distribution of suitable habitats for the Pacific sardine in the NPO. In this 

study, individual models with AUC ≥ 0.9, TSS ≥ 0.7 and Kappa ≥ 0.6 were kept to 

construct the ensemble species distribution model of the Pacific sardine based on a range 

of published work [55,56]. A total of 6 ensemble models were constructed in this study, 

that is, one per month from June to November. The potential suitable habitat 

distribution results of the Pacific sardine based on the ensemble model were normalized, 

and the habitat distribution map of the Pacific sardine was made using ArcGIS 10.3. The 

grid value in the map represents the probability of species occurrence in the fishing area, 

and the habitat suitability index (HSI) ranges from 0 to 1, where the closer the grid value 

is to 1, the higher the probability of species occurrence. According to the results by Chen 

et al. [57] and Yu et al. [58], the areas with HIS ≥ 0.6, with 0.2 < HIS < 0.6 and with HIS ≤ 

0.2 were defined as a suitable habitat, a common habitat and a poor habitat, respectively, 

for the Pacific sardine stock in the NPO. 

Table 3. Measurement standard for TSS, Kappa and AUC. 

Evaluation Metric Fail Bad Medium Good Very Good 

TSS 0.00–0.40 0.40–0.55 0.55–0.70 0.70–0.85 0.85–1.00 

Kappa 0.00–0.40 0.40–0.55 0.55–0.70 0.70–0.85 0.85–1.00 

AUC 0.50–0.60 0.60–0.70 0.70–0.80 0.80–0.90 0.90–1.00 

 

2.4. Centroid Shifts 

To show the change in the spatial distribution of the suitable habitat due to 

environmental variation, monthly longitudinal geometric centers of the HSI (LONGHSI) 

and latitudinal geometric centers of the HSI (LATGHSI) were calculated. The LONGHSI 

and LATGHSI were determined using the following equations [59]: 

������� =
∑����������(�,�) × ���(�,�)�

∑ ���(�,�)
  (1)

������� =
∑���������(�,�) × ���(�,�)�

∑ ���(�,�)
  (2)

where Longitude(i,m) and Latitude(i,m) were the longitude and latitude of the ith fishing unit 

in month m, respectively. HSI(i, m) is the HSI value within the ith fishing unit in month m. 

3. Results 

3.1. Single-Algorithm Models Performances 

The TSS, Kappa and AUC values of all ten single-algorithm models for each month 

were calculated based on the cross-validation evaluation (Table 4). The evaluation 

results revealed that different optimal models could be obtained for different months 

using different evaluation metrics. For instance, in June, MaxEnt was the optimal model 

under the three evaluation metrics. For July, the GAM model was the optimal model 

based on the TSS values, the RF model was the optimal model based on the Kappa 

values and the MaxEnt model was the best model based on the AUC values. 

Furthermore, for November, the MaxEnt model had the highest Kappa and AUC values, 

whereas the MARS model had the largest TSS value. The above results showed the 
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uncertainty of statistical precision of single-algorithm models. Considering the AUC 

performance metrics, the models with the best predictive performance from June to 

November were all MaxEnt models (0.938, 0.975, 0.910, 0.911, 0.929 and 0.946, 

respectively), and the worst ones were all SRE models (0.839, 0.872, 0.737, 0.764, 0.817 

and 0.852, respectively) (Table 4). 

The averaged relative environmental variable importance of each single-algorithm 

model is shown in Figure 2. The analysis pointed out that the SSH was the most 

important environmental variable affecting the habitat distribution of the Pacific sardine 

in the NPO in all single-algorithm models, except for the SRE model, followed by the 

SST. In the SRE model, the SST and Chla were the two most significant environmental 

variables, which contributed 39.0% and 36.6% to the model, respectively, followed by 

the SSS (34.3%) and SSH (30.7%). For the single-algorithm models, in most cases, the 

MaxEnt model was the optimal model, and if selected based on the AUC evaluation 

metric, MaxEnt was the best model for every month (Table 4). Therefore, the monthly 

averaged predicted potential habitat distribution of the Pacific sardine in the NPO 

predicted using MaxEnt model is shown in Figure 3. The distribution range of the 

suitable habitat for the Pacific sardine varied between months. The suitable habitat area 

showed a fluctuating trend (first decreasing and then increasing) from June to 

November, and the corresponding proportion of pixels with a probability higher than or 

equal to 0.6 was June (6.4%), July (4.8%), August (4.2%), September (6.7%), October 

(7.5%) and November (8.4%). While most of the occurrences coincided with suitable 

habitat areas (HIS ≥ 0.6), there were some that appeared in a common habitat (0.2 < HIS < 

0.6) or a poor habitat (HIS ≤ 0.2) (Figure 3). 

Table 4. Evaluation metrics for single-algorithm models. 

Month Evaluation MetricGLM GAM MARS GBMCTA ANN SRE FDA RF MaxEnt

June 

TSS 0.812 0.786 0.794 0.792 0.7370.851 0.6810.7700.791 0.856 

Kappa 0.652 0.646 0.648 0.651 0.5810.676 0.5500.6450.674 0.692 

AUC 0.930 0.926 0.915 0.925 0.8650.936 0.8390.9200.932 0.938 

July 

TSS 0.825 0.873 0.866 0.869 0.8090.780 0.7390.8280.872 0.864 

Kappa 0.796 0.855 0.845 0.866 0.8030.729 0.7130.8170.876 0.844 

AUC 0.957 0.960 0.967 0.970 0.9210.926 0.8720.9500.972 0.975 

August 

TSS 0.682 0.727 0.735 0.725 0.6070.698 0.5800.6760.692 0.728 

Kappa 0.525 0.615 0.622 0.636 0.5260.596 0.4750.5660.621 0.623 

AUC 0.856 0.889 0.906 0.907 0.8300.873 0.7370.8650.887 0.910 

September 

TSS 0.705 0.696 0.722 0.726 0.5960.704 0.5210.6670.704 0.712 

Kappa 0.585 0.585 0.603 0.608 0.4420.625 0.3720.5640.606 0.618 

AUC 0.894 0.894 0.908 0.909 0.8210.908 0.7640.8810.907 0.911 

October 

TSS 0.761 0.741 0.768 0.738 0.6690.735 0.6420.7040.715 0.747 

Kappa 0.602 0.605 0.611 0.604 0.4550.601 0.4560.5260.547 0.615 

AUC 0.915 0.907 0.922 0.905 0.8370.909 0.8170.8990.898 0.929 

November 

TSS 0.794 0.835 0.839 0.799 0.7490.762 0.6990.7850.809 0.824 

Kappa 0.618 0.654 0.658 0.639 0.5330.620 0.5840.6250.645 0.661 

AUC 0.930 0.939 0.943 0.936 0.8750.917 0.8520.9310.937 0.946 
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Figure 2. Relative environmental variable importance derived from the single-algorithm models. 
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Figure 3. Predicted potential habitat distribution of the Pacific sardine in the NPO using the top 

single-algorithm model (MaxEnt) with the highest AUC value between June and November from 

2015 to 2020. The black points represent the operation positions of the Pacific sardine fishing 

grounds. 

3.2. Ensemble Model Prediction and Potential Habitat Distribution of the Pacific Sardine 

Table 5 shows the model compositions and evaluation metric values of the 

ensemble models from June to November. The three evaluation metrics of the ensemble 

models from June to November were all higher than the corresponding single-algorithm 

models, which revealed that the ensemble models provided more robust predictions 

(Table 4, Table 5). The environmental variables permutation importance of the ensemble 

models for different months was shown in Figure 4, indicating that the SSH and SST 

played the most important roles in the potential distribution of the Pacific sardine, and 

their mean contribution rates were 68.3% and 46.3%, respectively. In relative terms, the 

Chla and SSS contributed little to the predictive performance of the model, which was 

consistent with the results of the single-algorithm models in Figure 2. 

Figure 5 exhibits the monthly averaged potential habitats of the Pacific sardine for 

the ensemble models between June and November from 2015 to 2020. In June, the Pacific 

sardine suitable habitats (HIS ≥ 0.6) mainly occurred in the waters between 36–42° N and 

145–160° E of NPO. The suitable Pacific sardine habitat areas of July and August were 

narrow in extent and shifted from south to north from June to August. Suitable habitat 

areas in September were larger than those in July and August, and the areas appeared to 

be larger and shifted from north to south from September to November. Moreover, the 

habitat prediction maps for September to November revealed that the fishing vessels of 

Pacific sardine were mainly concentrated in suitable habitat areas, and the spatial 

correspondence between the habitat predictions and occurrence records data of the 

ensemble model was better than the single-algorithm models (Figure 3, Figure 5). Figure 

6 reveals the monthly SST, SSH, Chla and SSS values for the fishing grounds of the 

Pacific sardine fishery from 2015 to 2020. The SST increased first and then decreased 

with the increase in months, while the Chla showed the opposite trend. The SSH 

increased gradually with the increase in months, while the SSS was relatively stable 

(Figure 6). 

  

1.0 0.8 0.6 0.4 0.2 0.0
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Table 5. Evaluation metrics and model compositions for the ensemble models. 

Month Evaluation Metric Ensemble Model Model Composition 

June 

TSS 0.880 

GLM, GAM, MARS, GBM, ANN, FDA, RF, MaxEnt Kappa 0.718 

AUC 0.942 

July 

TSS 0.886 

GLM, GAM, MARS, GBM, CTA, ANN, FDA, RF, MaxEnt Kappa 0.881 

AUC 0.980 

August 

TSS 0.748 

MARS, GBM, MaxEnt Kappa 0.662 

AUC 0.929 

September 

TSS 0.749 

MARS, GBM, ANN, RF, MaxEnt Kappa 0.661 

AUC 0.920 

October 

TSS 0.771 

GLM, GAM, MARS, GBM, ANN, MaxEnt Kappa 0.628 

AUC 0.938 

November 

TSS 0.846 

GLM, GAM, MARS, GBM, CTA, ANN, FDA, RF, MaxEnt Kappa 0.688 

AUC 0.962 

 

Figure 4. Permutation importance of the environmental variables for different months. 
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Figure 5. Distribution of the Pacific sardine potential habitats simulated using the ensemble 

models between June and November from 2015 to 2020 in the NPO. The black points represent the 

operation positions of the Pacific sardine fishing grounds. 

1.0 0.8 0.6 0.4 0.2 0.0
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Figure 6. Monthly satellite-based (A) SST, (B) SSH, (C) Chla and (D) SSS values for the fishing 

grounds of the Pacific sardine fishery between 2015 and 2020. 

3.3. Centroid Shifts of Pacific Sardine Fishing Grounds 

Variation in the geometric centers of the HSI between June and November during 

2015–2020 is shown in Figure 7. It can be seen from the figure that the geometric centers 

of the HSI for the Pacific sardine presented a counterclockwise pattern, gradually 

moving to the northeast from June, reaching the northeast end in August, and then 

turning back to the southwest from September, which pointed out that the geometric 

center of the HSI had obvious seasonal changes. The variation range of the longitude 

and latitude of the HSI geometric center was between 41°6′ and 42°22′ N and between 

149°51′ and 152°14′ E (Figure 7). 
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Figure 7. Variation of the geometric centers of the HSI between June and November from 2015 to 

2020. 

4. Discussion 

SDMs, such as GAM, ANN and MaxEnt, have been widely used to predict suitable 

habitats, map habitat variations and evaluate the relationship between species 

distribution and the marine environment [60–62]. Monthly suitable habitat distributions 

of the Pacific sardine in the NPO were predicted in this study based on Biomod2 

combined with species occurrence data and environmental variables. There were some 

issues with the Biomod2 applied in this study that need to be explained here. First, 

compared with a single-algorithm model, such as MaxEnt and GAM, Biomod2 can map 

the overall variation of all models and can integrate other aspects of different models, 

such as the variable importance or model response curves [41]. Therefore, Biomod2 was 

used in this study to predict the habitat distribution of the Pacific sardine. Second, the 

data series used in this research included just six years (2015–2020). The reason for this 

was that the Pacific sardine fishery in the NPO of China started relatively late and the 

data was limited, which may have affected the results of the model. The sensitivity 

analysis of this data series will be carried out in future research. Finally, our research 

was one of the few examples that predicted the monthly habitat variation pattern of the 

Pacific sardine in the NPO using the ensemble model based on Biomod2, which could 

provide accurate information for the sustainable utilization and conservation of this 

species. 

Figure 2 indicated that while the relative importance rankings of environmental 

variables for the single-algorithm models were fairly consistent, the statistical 

performance differed between the models (Table 4), which revealed that the inherent 

differences and uncertainties between the individual models and the prediction 

performance varied widely [36]. The monthly TSS, Kappa and AUC values in the 

ensemble model were all higher than the corresponding monthly values in the single-

algorithm model (Table 4, Table 5). In addition, the species occurrence points of the 

ensemble model were mainly concentrated in high-HSI areas, and the predicted habitat 

had a better spatial correspondence with reality relative to the top-performing single-

algorithm models (Figure 3, Figure 5). The above conclusions reinforced the findings of 

previous studies showing that the ensemble model is more robust than the single-

algorithm models in predicting suitable habitats for marine organisms [63–65]. 

Therefore, the ensemble model is expected to become an important tool for fishing 

grounds forecasting and resource management. 

Figure 2 and Figure 4 showed the relative importance of environmental variables 

for the single-algorithm models and the ensemble model, respectively, which 
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demonstrated that the SSH and SST contributed more to the Pacific sardine habitat 

model than the Chla and SSS, and were important environmental factors that affected 

the Pacific sardine habitat distribution. Arkhipkin et al. [66] reported that although 

environmental factors, such as the SSS, play an important role in the population 

dynamics of pelagic species, their contributions are relatively small compared to the SSH 

and SST, which is consistent with the results of this study. Moreover, the findings in this 

study underpinned the importance of the SSH and SST in the habitat distributions of the 

Pacific sardine in the NPO. Pacific sardine is a small warm-temperate pelagic stock, 

which is sensitive to the SST in their habitat area. At the same time, plankton is the main 

prey of Pacific sardine, and the SSH can change the spatial distribution of this food 

concentration, which is why the SSH and SST have a greater impact on the habitat 

distribution of Pacific sardine. 

Figure 5 showed that the suitable habitats for the Pacific sardine were mainly 

distributed between 38° and 43° N and between 145° and 156° E. However, the habitat 

patterns of Pacific sardine in the NPO exhibited significant monthly variations from June 

to November. The spatial pattern of suitable habitats was closely related to the changes 

in the marine environment in the NPO. The area of suitable habitat for the Pacific 

sardine gradually decreased from June to August and increased from September to 

November (Figure 5). Correspondingly, the SST increased from 15.19 ℃ in June to 

22.10 ℃ in August, and then gradually decreased, and the SST decreased to 14.25 ℃ 

in November. Therefore, it was preliminarily determined that the optimal SST for 

sardine fishing grounds was approximately 13 ℃ to 15 ℃ (Figure 6A), which was 

consistent with previous studies [67]. The SSH could indicate the mesoscale activity in 

the NPO. Convergence drives the local food concentration into different spatial patterns, 

and it is a physical driver of small pelagic species distribution [68]. In this study, as the 

environmental variable with the highest contribution rate (Figure 2, Figure 4), the SSH 

gradually increased from June to October, and then decreased, and the overall change in 

the SSH value was small (Figure 6B). However, there was no regular correspondence 

with the area changes of suitable habitats, which may have been related to the 

complicated mechanism of the SSH affecting the distribution of Pacific sardine habitats 

[69]. The effect of Chla on the sardine distribution in the NPO can be related to marine 

productivity and food availability for zooplankton, as Chla is considered an indicator of 

these processes [70]. Our findings indicated that the Chla decreased gradually from June 

to August and showed an increasing trend from September to November, which was 

consistent with the monthly habitat pattern of the Pacific sardine (Figure 5, Figure 6C). 

The optimal Chla range was approximately 0.3 to 0.6 mg/m3, which was consistent with 

the results of Yang et al. [71]. The impact of the SSS on the suitable habitat of the Pacific 

sardine was relatively small, and the monthly average SSS changed little (Figure 6C). 

Therefore, the suitable habitat distribution of the Pacific sardine in the NPO was affected 

by a combination of several oceanographic changes. 

Meanwhile, the distribution range of suitable habitats and the geometric centers of 

the HSI were also different in each month, which was attributed to the environmental 

changes too (Figures 5–7). Changes in the marine environmental variables, such as an 

increase in the SST and a decrease in the Chla in July and August and the migration of 

geometric centers from June to November, suggested the migration of Pacific sardine 

populations northeast to feeding grounds. After August, the Pacific sardine populations 

might move southwest again in search of the optimal marine environment (Figure 7). 

These findings indicated that due to the temporal and spatial changes in the marine 

environment, the suitable habitat range and geometric centers of the Pacific sardine were 

not very stable. Interestingly, the movement pattern of the Pacific sardine in this study 

was consistent with Yang’s [71] study. 

Although some studies have predicted suitable habitats for Pacific sardine in other 

regions, most of them used a single-algorithm model, and the prediction results had 

large indeterminacies [47,72,73]. An ensemble model that integrated multiple single-
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algorithm models was applied in this study to accurately simulate and predict suitable 

habitat distribution and monthly habitat pattern variations of the Pacific sardine, which 

is an economically and ecologically important species in the NPO. Such ensemble 

modeling should be repeated and applied to other economic fish and cephalopods in the 

global oceans, such as Pacific saury and Chub mackerel in the NPO [19], jumbo flying 

squid (Dosidicus gigas) in the Southeast Pacific Ocean [74] and Japanese flying squid 

(Todarodes pacificus) in the East China Sea [75]. 

With the development of the world’s distant-water fisheries, more and more 

countries and regions have fleets targeting Pacific sardine in the NPO. In order to utilize 

and manage Pacific sardine fishery resources based on scientific grounds, we propose 

the following management recommendations to deal with the change in the marine 

environment. (1) Improve knowledge about the life history of Pacific sardine in the NPO 

and their responses to the environmental conditions. Meanwhile, adjust the fishing 

intensity of the Pacific sardine fishery according to different months and environmental 

conditions to obtain a high catch of target species, for example, by increasing the 

operation intensity of Pacific sardine from September to November. (2) Improve the 

knowledge about the relationship between suitable habitats and the central fishing 

grounds of Pacific sardine in the NPO with environmental conditions in order to 

improve the accuracy of fishing grounds exploration and reduce the unnecessary 

investment of fishing effort. (3) Monitor environmental change and climate variability, 

and develop a warning system for marine environmental change in the NPO to better 

adjust the fishing policy for important economic marine species in the sea area. Thus, it 

is necessary to study spatio-temporal variations of suitable habitats for important fish 

species. 

5. Conclusions 

In this study, the Biomod2 package was applied to investigate potential habitat 

distribution and monthly variation patterns of the distribution of the Pacific sardine in 

the NPO. The results showed that the ensemble model we formulated provided more 

robust projections than any single-algorithm model. The occurrence records in the 

ensemble model were well-matched with the predicted suitable habitat. The SSH and 

SST were important environmental factors that affected the suitable habitat distribution 

of the Pacific sardine. The suitable habitat range contracted from June to August and 

expanded from September to November. The HSI geometric centers of the Pacific 

sardine in the NPO presented a counterclockwise pattern, gradually moving to the 

northeast from June, and then turning back to the southwest from August. The findings 

in this study suggested that the range and spatial pattern of the monthly habitat were 

affected directly by the favorable environmental conditions in each month. The results 

presented in this study serve as the first step to moving the scientific management and 

sustainable utilization of Pacific sardine resources in the NPO forward. 
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