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Abstract: Aquaponic systems are made up of hydroponic beds and recycled aquaculture systems. The
significant elements that determine how effectively an aquaponic system operates are the nitrogen
cycle (nitrification) and the phosphorus cycle (phosphate). Because some research indicates that
aquaponics systems are primarily deficient in phosphorus, phosphate-enriched nutrients were added
to raise the phosphorus levels. During an eight-week experimental period, the effects of water quality
parameters and microbiology, animal and plant growth performance, chlorophyll compounds in
lettuce, and the bacterial community were analyzed. Phosphate concentration (1.604 ± 1.933 mg L−1)
and ammonia-oxidizing bacteria (AOB) (1.19 × 102 ± 1.30 CFU mL−1) give significant positive
reactions to the added nutrients. However, the prawn survival rate (17.00 ± 0.63%) showed a
significantly negative response to nutrition modification containing phosphate, and the percentage of
bacterial pathogens became more dominant (pathogen 40.51%; N_bacteria 35.05%; probiotics 24.44%).
This study shows that adding phosphate increases phosphorus levels in an aquaponics system and
changes the microbial community and species growth performance.

Keywords: aquaponic system; phosphate deficiency; phosphorus level; microbial community

1. Introduction

Aquaponics is an approach for merging aquaculture and hydroponics in an environ-
ment that grows crops in recycled aquaculture water [1]. Hydroponics is the practice of
growing plants in water without soil. The two are combined in an enclosed, recirculating
system called aquaponics. The organic wastes accumulated in the water are filtered and re-
moved with a typical recirculating aquaculture system, keeping the water clean for the fish.
However, an aquaponics system passes the nutrient-rich wastewater through a plant-filled
inert substrate. Here, microorganisms break down the waste from the fish, plants absorb
the resulting nutrients, and finally, the water is cleaned and returned to the fish tanks [2].
By cleaning the water to dispose of harmful waste and reusing water, recirculating systems
are intended to rear mass amounts of fish in relatively small amounts [3].

In soils, natural water streams, and municipal sewage, nitrification is vital in cycling
nutrients [4]. Nitrification results in the oxidation of ammonia to nitrate in agricultural
land fertilized with ammonia-based fertilizers [5]. Through nitrifying microbes, NH4

+ is
easily converted to NO3 in oxic conditions, such as deep-cleaning soils. Due to the ease
with which plants can absorb nitrate, the process is crucial for soil health [6].
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In general, in addition to the nitrogen cycles with nitrification, phosphorus cycles in
aquaponics settings cannot be separated. Phosphorus, an essential mineral, frequently
determines biological mechanisms, including crop growth, in soils [7]. As it is a necessary
component for supporting all living and agricultural production on our earth, phosphorus
(P) is a critical component. All crops require three macronutrients (N, K, and P), and it
is one of them [8]. Crop production is slowed by phosphorus deficiency, while too much
phosphorus might react negatively with other nutrients [9].

Previous investigations have discovered a deficiency in total P in their aquaponics
systems [10,11]. This could be because P precipitated as solids, separated in purification
chambers, and rendered inaccessible. If the system water has much calcium, orthophos-
phate might precipitate once at neutral pH to generate calcium phosphate or dicalcium
phosphate [12,13]. When calcium phosphate (Ca3(PO4)2) is in a solid form, it will not be
possible for crops to utilize it, and it can be removed from the system with a purification
chamber [14]. When crops cannot utilize P in solid form, they will grow slower because of
a lack of P uptake, primarily in higher nutritional crops such as fruits or vegetables [15].

The purpose of this study was to evaluate the effect of the addition of phosphate-
enriched nutrients (MN) and without (NN) in an aquaponic system, using lettuce
(Lactuca sativa L.) and tilapia (Oreochromis niloticus) maintained with freshwater shrimp
(Macrobrachium rosenbergii), on water quality and microbiology, aquaponics performance
(tilapia, giant freshwater prawn, and lettuce), chlorophyll compounds in lettuce, and the
bacterial community using a metagenomics technique.

2. Materials and Methods
2.1. Aquaponics Design

The aquaponics system comprised two 500 L fish tanks, a 1 × 4 × 0.5-m hydroponic
tank with a water volume of 1200 L and hydroton (8–12 mm) at a minimum depth of 30 cm,
a 2 × 1 × 0.5-m sump tank with a water volume of 400 L, and two filtration tanks (a solid
separator and biofilter) with a water volume of 200 L each. Water from the fish tanks
flows through a solid separator and biofilter (equipped with a K1 filter, an aerator, and live
bacteria) before reaching the media bed where plants are grown. The water then flows to
the sump tank and is recirculated back to the fish tanks. The system uses gravity to move
water and a bell siphon to automatically flood and drain the bed media. A water pump
(SP500 AH, 1/2 HP, 110/220 V) with a flow rate of 600 L per hour and a ball valve regulates
the flow rate from the sump tank back to the fish tanks (Figure 1).
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2.2. Phosphorus Solution Preparation

A phosphorus solution was made by mixing urea (30 g), calcium nitrate (236 g),
monopotassium phosphate (90 g), monoammonium phosphate (37 g), magnesium sulfate
(246 g), chimeric iron (10 g), boric acid (3 g), manganese chloride (1 g), zinc sulfate (0.09 g),
copper sulfate (0.04 g), and sodium molybdate (0.01 g) in 1 L of distilled water to make
a 1000× phosphorus solution [16]. The solution was only given at the beginning of the
experimental period when the lettuce was planted to raise the phosphate level.
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2.3. Experimental Setup

The study was conducted using six aquaponic setups, with three serving as the control
group with unmodified nutrition (NN) and three as the treatment group with modified
nutrition (MN). In each setup, 100 tilapias (100 ± 2 g) were placed in both of the two fish tanks,
and 30 prawns (20.0 ± 0.3 g) in the sump tank. Once the system is running smoothly and stable
for two weeks, 50 lettuce plants (Lactuca sativa L-Known-You Seed) can be transplanted into
the grow bed of the aquaponic system, one week after they have been seeded in seedling
trays with compost media. An eight-week experiment was conducted from January to
March 2020 at the Aquaculture Department of National Kaohsiung University Science and
Technology in Kaohsiung, Taiwan, using open-space outdoor laboratories. During the
experiment, tilapia and giant freshwater prawns were fed a 32% crude protein commercial
diet (Quanxing 1.6 mm, Grobest, Pingtung County, Taiwan) twice daily, with the amount
given proportionate to 3% of their body weight.

2.4. Water Quality Monitoring

Temperature, pH, and dissolved oxygen were measured twice daily (8:00 am and
5:00 pm) using HI98194 (HANNA Instruments, Smithfield, RI). Ammonia, nitrite, nitrate,
and phosphate levels were measured weekly using HI83300 (HANNA Instruments, Smith-
field, RI) [17]. The measurements were taken in each of the water columns (fish tank, filter
tank, sump tank) and an average was calculated for each water quality parameter.

2.5. Microbiology

At the end of the experiment, 50 mL of sediment was collected from the aquaponic
system’s sediment bed for microbiological assessment. The samples were homogenized
and diluted in a serially (10−1, 10−2, 10−3) sterile solution (0 ppt) before being plated on
selective media for ammonia-oxidizing [18] and nitrifying-oxidizing bacteria [19]. The
samples were incubated at 35 ◦C, and colony-forming units (CFU) were counted after
72 h. In addition, hydrotone granules were collected, crushed, and preserved at −5 ◦C
for microbial species identification using Next Generation Sequencing (NGS) in Tools
Biotechnology (Taipei, Taiwan). Descriptive analysis was conducted to determine the
variation of the bacterial population using the OTU bar chart. Three replicates of samples
were collected at randomly selected positions.

2.6. Tilapia, Giant Freshwater Prawn, and Lettuce Growth Performance

The performance of tilapia and giant prawns was assessed weekly by taking samples
of 10 fish/prawn from each tank. The weight of the fish/prawn sample was measured at
the beginning and end of the experiment. Survival (percentage) and final mean weight (g)
were measured at the end of the rearing period. At the end of the experiment, the lettuce
was weighed. Overall biomass and productivity of fish, prawns, and lettuce were also
assessed to calculate total productivity.

2.7. Chlorophyll-a Content of Lettuce

Grinding–settling (GS) methods can be used to extract chlorophyll [20], which involve
immersing the sample in 95% aqueous ethanol and then measuring the amount of chloro-
phyll present using an optical density spectrophotometer (OD). The spectrophotometer
measures the concentration of both chlorophyll a and b by measuring the optical density
at 645 nm and 663 nm [21], respectively. This information is then used to calculate the
total concentration of chlorophyll (chlorophyll a and chlorophyll b) in the sample. Three
replicates of samples were collected at randomly selected positions.

2.8. Data Analysis

Statistics were completed using SPSS Software. Before statistical treatments, Shapiro–
Wilk and Levene tests were used to determine data normality and homogeneity, respectively.
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Before analysis, microbiological data were Log10 transformed to normalize the data [22].
The Student’s t-test was then used to compare variables, considered significance at p < 0.05.

3. Results
3.1. Water Quality and Microbiology

During the experiment, the average temperature was 23.78 ± 3.27 ◦C (NN) and
23.08± 3.12 ◦C (MN), the dissolved oxygen was 7.37± 0.82 mg L−1 (NN) and 7.36± 1.04 mg L−1

(MN), and the pH was 7.59 ± 0.30 (NN) and 7.52 ± 0.29 (MN). Averages for ammonia, nitrite,
nitrate, phosphate, and microbiological results are shown in Table 1. The weekly values for
ammonia, nitrite, nitrate, phosphate, and microbiological results are shown in Figure 2.

Table 1. Chemical and microbial loads in an integrated aquaponic culture system.

Parameter NN MN p-Value (t-Test)

Ammonia (NH3) (mg L−1) 0.30 ± 0.21 0.42 ± 0.23 0.074
Nitrite (NO2

−) (mg L−1) 0.18 ± 0.21 0.21 ± 0.27 0.654
Nitrate (NO3

−) (mg L−1) 0.96 ± 1.46 1.05 ± 2.00 0.857
Phosphate (PO4

−) (mg L−1) 0.72 ± 0.58 1.60 ± 1.93 0.040 *

Total bacteria
AOB (CFU mL−1) 0.09 × 102 ± 0.06 1.19 × 102 ± 1.30 0.000 *
NOB (CFU mL−1) 2.26 × 104 ± 3.31 3.42 × 104 ± 2.83 0.198

Data presented as mean ± standard deviation (n = 3). CFU: Colony-forming unit. Asterisks (*) indicate statistical
differences (p < 0.05).
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3.2. Tilapia, Giant Freshwater Prawn, and Lettuce Growth Performance

After eight weeks of rearing, the integration of prawn, tilapia, and lettuce with and
without nutritional addition for the soilless culture influences prawn, tilapia, and lettuce
performance, except for the survival of tilapia (Table 2). Prawn performance for the treat-
ment with additional nutrition is worse than without nutrition. Prawns lose mass during
culture in both treatments. However, the most significant loss after treatment is with addi-
tional nutrition—the lowest prawn survival was in the aquaponic setting using additional
nutrition with only 17.00 ± 0.63% surviving. At the end of the experiment, 1.90 ± 0.37 kg of
lettuce per experimental unit was harvested for the treatment without additional nutrition,
which is more significant than the 1.65 ± 0.42 kg with additional nutrition.

Table 2. Performance in an integrated giant freshwater prawn (Macrobranchium rosenbergii), tilapia
(Oreochromis niloticus), and lettuce (Lactuca sativa L) system (n = 3).

Parameter NN MN p-Value

Prawn
Mean final weight (g) 19.20 ± 0.75 19.00 ± 0.58 0.733

Survival (%) 30.00 ± 0.90 17.00 ± 0.63 0.000 *
Final biomass (Kg) 0.580 ± 0.040 0.323 ± 0.025 0.001*

Tilapia
Mean final weight (g) 170.32 ± 0.17 172.10 ± 1.55 0.120

Survival (%) 100 100 1
Final biomass (Kg) 17.033 ± 0.015 17.213 ± 0.155 0.116

Lettuce
Final Mass (kg) 1.90 ± 0.37 1.65 ± 0.42 0.482

Total
Final biomass (Kg) 19.51 ± 0.35 19.18 ± 0.26 0.256

Data presented as mean ± standard deviation (n = 3). Asterisks (*) indicate statistical differences (p < 0.05).

3.3. Chlorophyll Compounds in Lettuce (Lactuca sativa L.)

The results of these compounds in lettuce (Lactuca sativa L.) are shown in Table 3.
Chlorophyll-a and chlorophyll-b were higher after treatment with additional nutrition than
without nutritional addition for the soilless culture. However, no significant differences
were found in the statistical analysis for both treatments.

Table 3. Chlorophyll a and chlorophyll b of the culture in the aquaponic system over eight weeks.

Compound NN MN p-Value

Chlorophyll a 23.29 ± 1.88 25.98 ± 5.06 0.436

Chlorophyll b 10.495 ± 0.135 10.510 ± 2.140 0.991

Total 33.785 ± 2.015 36.495 ± 7.205 0.564
Data presented as mean ± standard deviation (n = 3).

3.4. Bacterial Community

The presence of bacteria that can be cultured in each condition was determined de-
pending on the diversity of the phyla obtained with the OTU analysis. Proteobacteria
(24.96%) followed by Bacteroidetes (20.89%) was the order of those with the largest relative
abundance in the aquaponic system without the addition of nutrients (NN). In comparison,
Proteobacteria (27.69%) followed by Bacteroidetes (20.14%) was the order of the largest
relative abundance in the aquaponic system with the addition of nutrients (MN) (Figure 3).
Using the OTU analysis, 21 genera were found for the genus in both conditions. Flavobac-
terium (6%), Cetobacterium (7%), and Aurantimicrobium (2%) accounted for the most
significant proportion in the aquaponic system without the addition of nutrients (NN). In
comparison, Flavobacterium (13%) followed by Cetobacterium (6%) and Aurantimicrobium
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(6%) was the order of those with the most significant relative abundance in the aquaponic
system with the addition of nutrients (MN) (Figure 4). Table 4 shows the presence or
absence of culturable microorganisms under both conditions.
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Table 4. Primary bacterial composition in the experimental aquaponic system. OTU analysis based
on the genus level.

Bacteria NN (%) MN (%)

Nitrogen cycle-related
bacteria

Aurantimicrobium [23] 2.45 6.22
Pir4_lineage [24] 2.25 2.20
Nitrospira [25] 2.40 0.96

Arenimonas [26] 0.43 2.19
SH_PL14 [4] 1.10 1.22
Aquiluna [27] 1.95 0.33
Cellvibrio [28] 1.18 1.07
Pirellula [29] 1.20 0.67

Thiobacillus [30] 1.35 0.30
Blastopirellula [31] 0.71 0.75

Novosphingobium [32] 0.71 0.65
Haliangium [33] 1.07 0.20

Chthoniobacter [34] 0.44 0.63

Probiotics
Cetobacterium [35,36] 6.89 6.26
Polynucleobacter [37] 0.94 2.83

Luteolibacter [38] 1.39 2.02
Rheinheimera [39,40] 0.67 0.49
Jeotgalibacillus [41] 0.53 0.51

Pathogen
Flavobacterium [42–44] 6.45 12.87

Aeromonas [45] 1.12 5.09
Mycobacterium [46,47] 1.44 2.12

A total of 170 genera were identified in both experiments, and only 21 genera were mentioned in the table (>0.5%
of the population).

4. Discussion

In an aquaponic system, water quality is a limiting element. Maintaining appropriate
water quality will ensure that the performance of the animals and plants in the system
follows our goal. This seems to be difficult in a connected system since the quality of the
water moving in the hydroponic and aquaculture subsystems is the same and continuously
flowing in both systems. One main water quality parameter that is challenging to control
at optimal values is pH. The optimal pH for plants will be different from that for fish, in
general. The plant pH should be 5.5, and the fish pH should be around 7.5 [48]. In this
case, for soilless lettuce culture, the pH is around 6.5–7.0 [16]. Our results show that a pH
of around 7.5 should be optimal for fish but less for lettuce soilless culture. The survival
rate of 100% for tilapia (Table 2) is acceptable for fish living in these aquaponic systems.
Tilapia is a widely used fish in aquaponic systems due to its ability to adapt to a range
of water conditions and its hardiness [49]. These fish must be able to tolerate the high
levels of nutrients in the water, which are added to promote plant growth [50]. On the
other hand, the survival rate for giant freshwater prawns (Table 2) is 30.00 ± 0.90% for the
non-treatment (NN) and 17.00 ± 0.63% for the with-treatment (MN). Both of these results
are not as good as those found in another study of around 55% [51], thus survival should
be affected by another factor.

Another significantly different water quality between both treatments is phosphate
(PO4

3−) (Table 1). Phosphorus in aquaculture water bodies is often in an un-proportional
amount [52]. Considering aquaculture pond contents are frequently more phosphorus-
rich than natural waters, and because their discharge could contaminate receiving waters
with phosphorus compounds and promote increased growth of plants, phosphorus is
essential [53]. Around 30–65% of the phosphorus in the fish diet is still inaccessible
to plants because it is fixed in the solid excretions, which are subsequently filtered out
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mechanically [54]. On the other hand, plants cannot easily access the kinds of phosphate
found in fish waste. Because it is the only form that plants can absorb and assimilate,
inorganic ionic is needed in adequate levels [55]. Above pH 7.0, inorganic phosphate bonds
to calcium; hence, aquaponic systems should be careful about keeping pH levels near 7.0.
Various insoluble derivatives of calcium phosphate can accumulate in sediment as pH
levels rise above 7.0 [55,56]. The amount of phosphorus delivered by fish meal might vary
regarding to the production state in a system that grows lettuce. Based on how the system is
set up, roughly 100% of the phosphorus water can be recycled in the plant biomass [57]. In
this study, there was much less in the treatment with added nutrition than in the treatment
without nutrition (Table 2). It appears that phosphorus tends to be restricting and might
thus inhibit plant growth including lettuce production [13,58]. P has a few distinct qualities;
one is its poor availability brought on by slow absorption and increased soil fixing. This
all indicates that P may pose a significant growth-limiting challenge to plants. Although
using animal waste and chemical P for fertilization on cropland has increased crop yield
and inorganic P richness, they have also damaged the ecosystem throughout the years [59].

Although feed remains the primary source of phosphorus for prawn ponds [60], the
higher phosphate concentration in this study (Table 1) is likely influenced by the phosphate
levels in the water flow. The added nutrition contains 90-g Monopotassium Phosphate
(KH2PO4) and 37-g Monoammonium Phosphate (NH4H2PO4) in every 1000 L; this should
be one of the sources of phosphate in the water aquaponic system with additional nutrition.
When phosphate in water increases, it will positively affect AOB communities [61,62].
Trends in the significance of high phosphate and AOB (Table 1) clearly define that AOB
in an aquaponic system with supplemental nutrition has a more significant population
than without supplemental nutrition. As soon as particulate or soluble organic phosphorus
breaks down into dissolved inorganic phosphorus and sinks to the bottom, substrate algae
and phytoplankton take up the phosphorus [63]. Following phosphate dosing, a shift in
the microbial community towards organisms that can utilize or metabolize phosphate was
observed, including an increase in certain types of bacteria. [64].

A total of 13 phyla and 21 genera of known bacteria in this non-phosphorus-adding
treatment system (>0.5% from population abundance) is dominated by N-related bacteria,
which represent the majority of all bacteria in systems, followed by probiotic bacteria and
pathogens (Figure 5). A total of 11 genera of bacteria involved in nitrogen cycles have
been found (Table 4). This type of bacteria has the potential to successfully co-culture
plant and animal symbiosis. Their primary function is converting the ammonia from the
excrement and uneaten fish/prawn diet to nitrate and nitrite, allowing aquatic plants to
use the end material more easily for growth. One species known to obtain energy through
the anaerobic oxidation of ammonia is one of the Pirellula-like organisms considered typical
root-associated bacteria [24,65]. They act as catalysts for significant changes in the global
carbon and nitrogen cycles. Pirellula sp. strain 1 contains a gene that encodes a bacterial
hemoglobin that is thought to detoxify nitric oxide (NO) by oxidation. Some carbon-
starvation proteins, such as DNA-protection proteins, have homologs in the genome [29].
Nitrospira would fit into the comammox’s theoretically projected ecological niche. Biofilm
or floc production is a feature of the engineered systems examined in this work. In biofilms,
diffusion barriers and ammonium or nitrite concentration gradients could form niches with
limited substrate influx, allowing comammox to outcompete incomplete nitrifiers. Diverse
nitrifier communities may be supported by complex biofilm or floc designs with multiple
microenvironments [25].
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Next, the phosphorus-adding nutrition treatment group is dominated by pathogens,
which represent the majority of all bacteria in systems, followed by N-related and pro-
biotic bacteria (Figure 4). A total of three genera of pathogen bacteria have been found
(Table 4). Even though just three genera have been found, they are likely to impact fish
and prawn culture significantly. The total density of harmful bacteria that developed
in the aquaponic system with nutrients added (MN) was substantially more significant
than that of harmful bacteria that developed in the aquaponic system without nutrients
added (NN). Flavobacterium, the most significant percentage in this group, could be one
of the factors behind the dramatically varied survival rates of freshwater prawns in this
study. In several studies, Flavobacterium, known as a pathogen [43,44], can be found in
the early embryonic phase of M. rosenbergii when in the blastula stage [66]. According to
some studies, Aeromonas is one of the diseases bvastria that has put the huge freshwater
prawn growth system at risk [67–69]. The damage produced by mycobacteria invasion
and spread had not yet manifested clinical indications, such as aberrant conduct. The
cytoplasm of fixed phagocytes of this animal did not contain acid-fast bacteria. According
to the histopathology findings, M. rosenbergii’s predominant host response to mycobacteria
infection was hemocyte encapsulation rather than phagocytes [46].

Chlorophyll, the principal pigment of leafy green vegetables, is essential in deter-
mining their health condition. Because most nitrogen is absorbed in leaf chlorophyll, the
nutritional status of leafy green vegetables can also be assessed by quantifying chlorophyll
content. In this study, the amount of chlorophyll extracted using both procedures (grinding–
settling and immersion) had no significant difference between the aquaponic systems with
and without added nutrition (Table 3), which is consistent with earlier studies [70,71]. It
has been proven that chlorophyll activity is still regular.

5. Conclusions

Adding a fertilizer containing phosphate directly into a body of water can significantly
increase phosphorus levels in an aquaponic system. This strongly supports the observation
that AOB and NOB alter their community. An increase in pathogenic bacteria, particularly
Flavobacterium and Aeromonas, was observed as a result of nutrient addition. However,
there is no significant change in water quality (DO, pH, temperature, ammonia, nitrate,
nitrite) or the growth performance of tilapia and lettuce. The only result not in favor of
this system is the giant prawns’ meager survival rate, which could have been affected by
pathogenic bacteria in the nutrient-rich system. Both Flavobacterium and Aeromonas are
known pathogens in most shrimp or prawn ponds. Further research is needed on the
sources of phosphate in aquaponic systems that need to be controlled for their forms that
are rather accessible for plants, but that should not support the proliferation of microbial
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pathogens. Additionally, using other species that have a high tolerance to fluctuations in
macro- and micro-nutrients, such as catfish, may be considered during the experiment.
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