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Abstract: Photoperiod is one of the most important environmental cues for organisms, and it plays a
crucial role in regulating feeding, behavior, growth, and metabolism. However, seasonal photoperi-
ods are often overlooked in carp culture or experiments, with a poorly understood effect on lipid
metabolism and oxidative stress in fish. To explore the effects of seasonal photoperiods, we exposed
Huanghe carp (Cyprinus carpio haematopterus) to summer photoperiod (14 h light:10 h dark) and
winter photoperiod (10 h light:14 h dark) daylight conditions in an eight-week experiment. Our
results suggested that the winter photoperiod significantly increased the liver TG level as well as the
transcript levels of genes related to lipid synthesis, indicating that the lipid metabolism in Huanghe
carp liver was enhanced compared to summer photoperiod conditions, and that lipid deposition may
be responsible for the increase in body weight level and hepatosomatic index. Additionally, MDA,
GSH, GSH-PX, and T-AOC levels were significantly elevated in the liver of fish under the winter
photoperiod, suggesting that Huanghe carp responded to winter photoperiod exposure-induced
oxidative stress in the liver by enhancing the antioxidant response. Based on transcriptome analysis,
the winter photoperiod activated hepatic autophagy response and the FOXO signaling pathway in
Huanghe carp. Combined with the correlation analysis, the Huanghe carp maintains the physio-
logical health of the liver by activating the FOXO signaling pathway-mediated cell cycle regulation
and autophagy response in response to oxidative stress during winter photoperiod exposure. Our
study provides the first evidence for the physiological regulation of the liver in Huanghe carp under
seasonal photoperiod stimulation.

Keywords: seasonal photoperiod; FOXO signaling pathway; oxidative stress; transcriptome

Key Contribution: Winter photoperiod affected lipid metabolism in the liver of the Huanghe carp
(Cyprinus carpio haematopterus) and caused oxidative stress, inducing autophagy and cell cycle
alterations via the FOXO signaling pathway.

1. Introduction

Light is one of the most important external and ecological factors in ecosystems.
Most animals inhabit highly rhythmic environments characterized by daily or annual light
cycles [1], and they have evolved a circadian clock to adapt to a periodically changing
environment [2]. Photoperiod is considered to be an important cue for circadian rhythms [3].
As an abiotic factor, light affects the growth performance and survival of aquatic organisms
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through feeding, behavior, and energy metabolism [4,5]. It has been suggested that long-
day photoperiod stimulates feeding to enhance hepatic lipid metabolism and promote
growth in the juvenile gibel carp (Carassius auratus) [6]. Under the influence of photoperiod,
there are seasonal changes in the activities of enzymes related to lipid metabolism in
yellowtail Seriola quinqueradiata [7]. The above results suggested that photoperiod as a
zeitgeber directly or indirectly mediates lipid metabolism in fish. Alterations in lipid
metabolism may cause oxidative stress. Excessive oxidative stress impairs the aquatic
antioxidant system and affects fish health. There is evidence that photoperiod induces liver
oxidative stress in aquatic animals [6,8]. Therefore, it is important to emphasize the effects
of photoperiod on aquatic species in artificial aquaculture systems.

Forkhead box O (FOXO) transcription factors mediate insulin and growth factors affect-
ing a variety of physiological functions including cell proliferation, apoptosis, metabolism,
and stress responses [9]. Studies in mammals have shown that FOXO proteins regulate the
cell cycle and enhance resistance to oxidative stress [10]. In aquaculture, there is a growing
body of research on the response of FOXO to environmental factor stresses. For example, it
has been shown that FOXO is altered in response to acute hypoxic stress [11,12]. A study
of heat tolerance in aquaculture fish suggested that FOXO signaling and circadian cycle
may be involved in heat tolerance mechanisms [13]. High salinity enriched the FOXO
signaling pathway in the spleen of Luciobarbus capito (L. capito) to enhance antioxidant
capacity and immunity [14]. High temperature stress inhibits apoptosis by regulating
the expression of FOXO target genes associated with apoptosis, which mediates liver in-
jury in tsinling lenok trout (Brachymystax lenok tsinlingensis) [15]. Some studies have also
demonstrated that FOXO1 plays a key role in autophagy regulation and can upregulate
the expression of autophagy-related genes [16]. FOXO signaling plays an important role in
a study of photoperiodic effects on uterine metabolism in the golden hamster (Mesocrice-
tus auratus), where photoperiod regulates uterine function-related seasonality through
redox/metabolic homeostasis [17]. However, whether FOXO is involved and the role
played under photoperiod-induced physiological changes in carp has not been studied.

Common carp (Cyprinus carpio) is one of the most widely distributed and popular
freshwater fish in the world [18]. A carp species called Huanghe carp (Cyprinus carpio
haematopterus) is popular among consumers because of its historical and cultural nature.
We have utilized selective breeding to develop a new fast-growing Huanghe r carp line
based on the traditional Huanghe carp line [19,20]. As temperature, physical activity,
and diet may be variable between seasons, the contribution of photoperiod is difficult
to isolate. Therefore, the effects of photoperiod are often overlooked in carp culture
or experiments. Electric lighting fundamentally altered the relationship between the
endogenous circadian rhythm of the animal and the external environment, similar to the
seasonal photoperiods [21,22]. How constant seasonal photoperiods influence physiological
homeostasis has not been examined. Because the difference in photoperiod between
summer and winter is the largest under natural conditions, we set up summer and winter
photoperiod duration conditions to explore the effects of seasonal light on the new strain
of Huanghe carp. On this basis, enzyme and mRNA levels of indicators related to lipid
metabolism, oxidative stress, and autophagy were quantified. The aim was to investigate
the effects of seasonal photoperiod on lipid metabolism and oxidative stress and to explore
the potential association with the growth of Huanghe carp.

2. Materials and Methods
2.1. Animals and Experimental Design

A total of 120 juvenile Huanghe carp of similar proportions (6.5± 1.5 g), were provided
by Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi,
China. Prior to the experiment, the fish were maintained in a recirculating water system for
4 weeks to 14.5 ± 3 g to acclimatize to the experimental conditions. The juveniles were fed
twice a day (8:00, 17:00) with the compound feed (crude protein level 35 percent, crude fat
level 3 percent, Ningbo Tech-Bank Co., Ltd, Ningbo, China), and food debris was cleaned



Fishes 2023, 8, 595 3 of 15

daily. Throughout the experiment, the temperature was maintained at 24–28 ◦C, dissolved
oxygen > 6 mg L−1, and pH 7.2–7.8. Feeding was discontinued for 24 h before being
used for dissecting. The use of animals in this study was approved by the Animal Care
and Use Committee of Nanjing Agricultural University (Nanjing, China) [Permit Number:
SYXK (Su) 2017-0007]. The fish were randomly divided into two groups. The control group
was kept under a summer light cycle (Con) (14 h light:10 h dark) and the short photoperiod
group (SP) was kept under a winter pattern photoperiod (10 h light:14 h dark). There were
three replicates per group. Each tank was equipped with a white light–emitting diode (LED)
suspended above the bucket. To avoid interference, each tank was covered with a black
opaque barrier. Throughout the experiment, we measured light intensity at 800 ± 20 luxes
using a digital lux meter made by Aladdin Biochemical Technology Co., Ltd. (Shanghai,
China). After 8 weeks of feeding, both groups of fish were sampled at the same time point
during the daytime activity time of the carp. The fish were euthanized and anesthetized
with MS-222 (100 mg L−1) and weighed and measured for body length, body width, and
body thickness. The fish were dissected and the livers were weighed. For performing
RNA-seq, liver samples were collected immediately, frozen in liquid nitrogen, and stored
in an −80 ◦C refrigerator. Another portion of the liver sample was collected, homogenized
(1 g of tissue in 9 mL of 0.9% saline), and centrifuged at 2500 rpm for 10 min at 4 ◦C. The
supernatant was taken, which was used for the determination of biochemical parameters.

2.2. Liver Tissue Biochemical Parameters

Commercial enzyme-linked immunosorbent assay kits (Nanjing Jiancheng Bioengi-
neering Institute, Nanjing, China) were used to detect a variety of biochemical parameters
in the liver tissue samples, including total protein (TP), triglycerides (TG), total cholesterol
(T-CHO), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol
(HDL-C), malondialdehyde (MDA), catalase (CAT), total superoxide dismutase (T-SOD),
glutathione (GSH), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-
AOC). In detail, the TP was determined by the kosmochromate blue method (Category No:
A045-2). The TG and T-CHO were determined by the GPO-PAP enzyme method (Category
No: A110-1-1 and A111-1-1), respectively. The LDL-C and HDL-C were determined by the
microplate method (Category No: A113-1-1 and A112-1-1), respectively. The MDA content
was determined by the thibabituric acid (TBA) method (Category No: A003-1-1). The MDA
in the degradation products of the peroxidized lipids can be condensed with thiobarbituric
acid (TBA) to form a red product, with a maximum absorption peak at 532 nm. The CAT
content was determined by the ammonium molybdate method (Category No: A007-1-1).
The reaction of the catalase decomposition of H2O2 can be rapidly terminated by adding
ammonium molybdate, and the remaining H2O2 interacts with the ammonium molybdate
to produce a yellow complex, the change of which was measured at 405 nm. The T-SOD
content was determined by the xanthine oxidase method (Category No: A001-1-1), which
generates superoxide anion radicals (O2

−) through the reaction system of xanthine and
xanthine oxidase, the latter oxidizing hydroxylamine to form nitrite, which takes on a
purplish-red color in the presence of a color developer, and its absorbance is measured.
When the measured sample contains SOD, then the superoxide anion radical has a specific
inhibitory effect, so that the formation of nitrite is reduced, and the absorbance value of
the colorimetric tube is lower than the absorbance value of the control tube. GSH-PX
promotes the reaction of H2O2 with GSH to form H2O and oxidized glutathione (GSSG),
and the activity of GSH-PX can be expressed by the rate of its enzymatic reaction (Category
No: A005-1-1). GSH reacts with dithiobinitrobenzoic acid (DTNB) to produce a yellow
compound, and the GSH content is determined quantitatively by colorimetry at 405 nm
(Category No: A006-2-1). The T-AOC content was determined by the ABTS method (Cat-
egory No: A015-2-1). ABTS is oxidized to green ABTS+ under the action of appropriate
antioxidants; the production of ABTS+ will be inhibited in the presence of antioxidants; and
the T-AOC of the samples can be determined and calculated by measuring the absorbance
of ABTS+ at 405 nm.
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2.3. Transcriptome Assembly and Differential Expression Gene (DEGs) Analysis

RNA was extracted from the liver tissue of six Huanghe carp using standard extraction
methods. The high-quality RNA samples were used to construct sequencing libraries.
Differentially expressed genes (DEGs) were identified, and the expression level of each
RNA transcript was calculated according to the Reads Per Kilobase Million (RPKM) method.
Differential expression analysis was performed using DESeq2 software (v1.20.0). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were
performed on the DEGs for enrichment analysis using clusterProfiler software (v3.8.1).
p < 0.05 was considered statistically significant.

2.4. RNA Extraction and Quantitative Real-Time PCR

After sampling, the liver samples were quick-frozen in liquid nitrogen and then
transferred to a −80 ◦C refrigerator for storage. The liver total RNA of the Huanghe carp
was extracted with the TRIzol reagent (Vazyme Biotechnology Co., LTD., Nanjing, China),
and the OD260/OD280 ratio was measured by a NanoPhotometer® N50 (Implen, München,
Germany) at 1.8–2.0. A little amount of RNA was taken and run on 1% agarose gel
electrophoresis to check its integrity. The cDNA was synthesized using 1 µg of the extracted
RNA by HiScript III RT SuperMix for qPCR (+gDNA wiper) kit (Vazyme). Quantitative
real-time PCR (qPCR) was carried out by the ChamQ Universal SYBR qPCR Master Mix
(Vazyme) in a Thermal Cycler Dice Real Time System TP800 system. qPCR was performed
in a 20 µL reaction system. The reaction mixture was incubated for 40 cycles at 95 ◦C
for 5 s and 59–62 ◦C for 1 min. In the experiment, GAPDH was selected as a reference
gene [20]. The relative expression of the target gene was calculated using the 2−∆∆CT

method [23]. The primers (Table 1) for RT-qPCR were designed based on the sequences
obtained in the RNA-seq and were synthesized by Shanghai exsyn-bio Technology Co., Ltd.
(Shanghai, China).

Table 1. Primers used for qPCR.

Gene Primer Sequence (5′−3′) Fragment Length (bp)

SREBP1C
F: GCCTGCTTCACTTCACTACT

137R: CCAGTCCTCATCCACAAA

FAS
F: GTGTACGCCACCGCCTATTA

104R: ATAGCAATAGCGGCCTGTCC

ACCα
F: AGACCGTATCTACAGGCACT

107R: GCATCTTATGGTTGGCAC

CPT1
F: TGACCTACAGTTGAGCCG

196R: AATCATGCCCATAGAGGG

LPL
F: GACAATGGCACAGAATGG

190R: ACATACCCGTAACCGTCC

ATG9
F: ACAAGCGTGGAGGGAACCGT

184R: AGGGACCAACATCGAGCA

BNIP3
F: ACGGGAATCCAGCAGTAG

162R: ATCCTTGCGACAGCCTCAG

BCL2
F: AGCGGCTTTATCAGTCGG

162R: CACAAACGGTCCCTCCAA

BCL2L1
F: CGCATCGTGGGACTGTTT

241R: TCATTCCAGCCAGCAACC

CYCLIND
F: GCGGCTACACTGAACTCT

210R: GCTGGCTCTTTCCTCTTCAA

CYCLING2
F: TCTTCGGTTACAGCACTCAG

142R: TCTTCTTTGGTCACTCGG

MTMR3
F: GGAGGGCACTAAATGGTT

178R: GATGGTCCTGTAGAAGGGA
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Table 1. Cont.

Gene Primer Sequence (5′−3′) Fragment Length (bp)

FOXO1
F: ACGAACTTGGCGACTCTG

183R: CCACTGATGGGTTCTTAGG

FOXO3
F: ACGCCTGGGGAAACTATT

200R: GACAAAGCGACTGTGGAG

FOXO4
F: CCACCGAGGAAGATAAACAC

161R: GATCAGGTCTGCGTAGGA

GAPDH
F: CCGTTCATGCTATCACAGCTACACA

310R: GTGGATACCACCTGGTCCTCTG

2.5. Correlation Analysis

Pairwise comparisons of FOXO, autophagy, and cell cycle–related genes are shown,
with a color gradient denoting the Spearman’s correlation coefficients. Mantel test was
performed to analyze the correlation between antioxidant parameters and FOXO and
autophagy-related genes. Edge width corresponds to Mantel’s r statistic for the corre-
sponding distance correlations, and edge color denotes the statistical significance. The
above programs were performed using R v4.1.1 (https://www.r-project.org (accessed on
10 September 2023)). p < 0.05 was the threshold of significance.

2.6. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics for Windows, version
27.0. The Student’s t-test was used to test the significance between the Con and SP groups.
The data are expressed as mean ± standard error (SEM) unless otherwise stated. For all the
analyses, p < 0.05 was considered statistically significant.

3. Results
3.1. Effects of Seasonal Photoperiod on the Growth Performance of Huanghe Carp

In this paper, we evaluated whether a seasonal photoperiod affected the growth
performance of Huanghe carp, and the results are shown in Table 2. The winter photoperiod
(SP) significantly increased final body weight (p = 0.048), but other growth indicators
including body length, body width, body thickness, and condition factor did not differ
considerably. In addition, the hepatosomatic index (HSI) was significantly elevated under
the winter photoperiod (p = 0.021). Therefore, we hypothesized that winter photoperiod–
induced weight gain in Haunghe carp was related to liver alteration.

Table 2. Growth performance of Huanghe carp under winter photoperiod exposure.

Con SP

Final body weight (g) 55.44 ± 2.09 62.39 ± 2.75 *
Body length (cm) 13.08 ± 0.21 13.55 ± 0.20
Body width (mm) 42.24 ± 0.60 42.97 ± 0.74
Body thickness (mm) 22.84 ± 0.35 23.77 ± 0.45
Hepatosomatic index (HSI) (%) 1.53 ± 0.04 1.68 ± 0.05 *
Condition factor (CF) (g/cm3) 0.026 ± 0.00 0.025 ± 0.00

* p < 0.05

3.2. Alterations in Lipid Metabolism during Seasonal Photoperiods

The liver is the hub of the lipid metabolism. We sought to explore changes in lipid
metabolism in the liver to explain weight gain. The winter photoperiod significantly en-
hanced TG levels compared to the summer photoperiod (Con) (Figure 1B; p = 0.028). T-CHO
and LDL-C levels did not change dramatically (Figure 1A,C). In addition, we measured
gene expression to assess the effects of seasonal photoperiods on lipid metabolism. The
winter photoperiod enhanced the transcript levels of the lipid synthesis-related genes sterol
regulatory element binding protein-1C (SREBP-1C), fatty acid synthase (FAS), and acetyl

https://www.r-project.org
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CoA carboxylase alpha (ACCα), while the mRNA levels of fatty acid oxidation carnitine
O-palmitoyltransferase 1 (CPT1) and the lipid hydrolysis-related gene lipoprotein lipase
(LPL) were also significantly increased (Figure 1D; p < 0.05). The above results suggest that
the winter photoperiod enhanced lipid metabolism to induce lipid accumulation, which
may explain the increase in body weight.
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Figure 1. Influence of winter photoperiod on hepatic lipid metabolism in Huanghe carp. (A) Total
cholesterol (T-CHO) content; (B) triglyceride (TG) content; (C) low-density lipoprotein cholesterol
(LDL-C) content; (D) gene expression of sterol regulatory element binding protein-1C (SREBP-1C),
fatty acid synthase (FAS), acetyl CoA carboxylase alpha (ACCα), carnitine O-palmitoyltransferase
1 (CPT1), and lipoprotein lipase (LPL). Results were expressed as mean ± SEM, n = 9.

3.3. Influence of Photoperiod on Oxidative Stress in the Liver of the Huanghe Carp

The deposition of lipids in the liver is one of the physiological contributors to ox-
idative stress. The winter photoperiod activated the intestinal antioxidant system of the
Huanghe carp. Relative to the control group, the levels of MDA increased under winter
photoperiod exposure (Figure 2A; p = 0.035). The activities of GSH, GSH-PX, and T-AOC
were also markedly elevated in the liver (Figure 2D–F; p < 0.05). Moreover, no significant
alterations were found in the activities of CAT and T-SOD after the photoperiodic changes
(Figure 2B,C).

3.4. Quality of Library Sequencing and Differential Gene Expression in Liver

To further investigate the effects of seasonal photoperiodic changes on the liver, tran-
scriptomes were utilized to evaluate differences in gene expression. A total of 265,802,786 raw
reads were retained, including 133,156,312 in the control group and 132,646,474 reads in
the SP group, respectively, which were deposited to the National Center for Biotechnology
Information (NCBI) with the accession number of PRJNA889451. The Q20 and Q30 were
ensured to be >97.07% and 92.14%, respectively. The GC content occupied 47.33–48.19%
of the libraries. After quality control of the sequences for each sample, the comparison
yielded a total of 219,353,838 (105,782,275 in the Con and 113,571,563 in the SP group,
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respectively) reads, of which 81.66–87.76% aligned with the reference transcriptome. The
uniquely mapped reads were 29,918,503–34,530,992, above 76.16% to 80.2% of the uniquely
mapped rate (Table 3). The above results verified that the library sequencing quality met
the requirements of differentially expressed gene (DEG) analysis.
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Figure 2. Winter photoperiod exposure induces oxidative stress in the intestine of Huanghe carp.
(A) malondialdehyde (MDA) content; (B) catalase (CAT) content; (C) total superoxide dismutase (T-
SOD) content; (D) glutathione (GSH) content; (E) glutathione peroxidase (GSH-PX) content; (F) total
antioxidant capacity (T-AOC) level. Results were expressed as mean ± SEM, n = 9.

Table 3. Illumina sequencing and mapping statistics of the liver transcriptome of Huanghe carp.

Con-1 Con-2 Con-3 SP-1 SP-2 SP-3

Raw reads 46,576,536 41,233,316 45,346,460 44,230,214 45,064,924 43,351,336
Clean reads 44,365,184 39,283,252 43,104,336 43,551,724 44,496,136 42,217,336
Q20 (%) 97.13 97.07 97.45 97.94 97.93 97.56
Q30 (%) 92.21 92.14 93.01 93.93 94.04 93.07
GC content (%) 48.19 47.61 47.33 48.09 47.48 47.75
Total mapped 37,300,129 32,077,643 36,404,503 38,222,064 38,312,667 37,036,832
Mapping rate (%) 84.08 81.66 84.46 87.76 86.1 87.73
Uniquely mapped 34,006,887 29,918,503 34,285,329 34,530,992 35,449,121 33,857,504
Uniquely mapped rate (%) 76.65 76.16 79.54 79.29 79.67 80.2

Repeatability between samples was assessed by principal component analysis (PCA).
The PCA diagram showed that the scatter points corresponding to the three samples in
the SP group clustered together within the group, indicating that the sample data were
similar, and there was good discrimination between the groups (Figure 3A). The number
of DEGs is shown in Figure 3B. Compared with the control group, the liver of fish under
the winter photoperiod exhibited 556 DEGs, of which 440 DEGs were upregulated and
116 DEGs were downregulated. To demonstrate more clearly the variations in DEGs, these
DEGs were clustered into different subgroups according to their expression levels in the
heatmap (Figure 3C).
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3.5. Functional Analysis by GO Enrichment and KEGG Enrichment

GO enrichment demonstrates differential terms mainly associated with metabolic,
stress and signaling aspects (Figure 4A). To cluster these significant DEGs, GO terms with
categories such as molecular function (MF), biological process (BP), and cellular component
(CC) were performed to reveal the molecular characterization of these DEGs. Unexpect-
edly, CC-related terms were not significant (Figure 4B). Metabolism-related pathways
mainly included ‘response to lipid’, ‘steroid-hormone-mediated signaling pathway’, ‘cellu-
lar response to steroid hormone stimulus’, ‘cellular response to lipid’, ‘cellular response
to organic cyclic compound’, ‘response to organic substance’, and ‘response to chemical
substance’. GO terms such as ‘hormone-mediated signaling pathway’, ‘cellular response
to hormone stimulus’, ‘response to endogenous stimulus’, ‘cellular response to organic
substance’, and ‘cellular response to chemical stimulus’ are related to stress. Some other
GO terms are involved in signaling, such as ‘neuropeptide signaling pathway’, ‘circadian
rhythm’, ‘rhythmic process’, and ‘sulfate transport’.

According to the KEGG function annotations, a total of 16 significantly enriched
pathways were identified (Figure 5A, p < 0.05). The top two significantly enriched
KEGG pathways were ‘autophagy–animal’ (ccar04140) and ‘FOXO signaling pathway’
(ccar04068). Transcriptome results suggest that winter photoperiod exposure augmented
the autophagy response and FOXO signaling pathway in the carp liver (Figure 5B,C).
Additionally, lipid-metabolism-related pathways including the ‘PPAR signaling path-
way’, ‘fatty acid metabolism’, ‘adipocytokine signaling pathway’, and ‘inositol phos-
phate metabolism’ were significantly enriched. KEGG pathways associated with amino
acid metabolism including ‘arginine biosynthesis’, ‘alanine, aspartate and glutamate
metabolism’, ‘biosynthesis of amino acids’, and ‘glycine, serine and threonine metabolism’
were also significantly enriched.
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Figure 4. GO annotations analysis of the DEGs. (A) Scatter plot showed the GO Term among all
DEGs detected in the liver of Huanghe carp with different photoperiods. The horizontal axis showed
the rich factor and the vertical axis showed the GO term, respectively. The dot size presented the
number of DEGs in each GO term. (B) Histogram diagram of GO enrichment analysis. The colors in
the bar chart represent biological processes (BP) and molecular functions (MF), and the numbers of
significant putative DEGs are shown on the x-axis.
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Figure 5. Significantly enriched KEGG pathways. (A) KEGG enrichment analysis scatter plot
representing pathways of significant DEGs for seasonal photoperiodic changes in Huanghe carp.
(B) Color pathway of the autophagy–animal. (C) Color pathway of the FOXO signaling pathway. The
purple and red background color in the pathway represents the down-regulated and up-regulated
genes, respectively. (D) Gene expressions of myotubularin-related protein 3 (MTMR3), autophagy-
related protein 9 (ATG9), B-cell lymphoma-2 (BCL2), BCL2 interacting protein 3 (BNIP3), B-cell
lymphoma-2 like 1 (BCL2L1) (also known as BCL-XL), CYCLIND, CYCLING2, forkhead box O1
(FOXO1), forkhead box O3 (FOXO3), and forkhead box O4 (FOXO4).
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3.6. Data Validation by qPCR

The genes related to autophagy, FOXO, and cell cycle were selected for verifica-
tion (Figure 5D). The results showed that all the candidate genes in qPCR verification
agreed with the results of the RNA-Seq technology. In brief, the gene expression levels
of autophagy-related protein 9 (ATG9), B-cell lymphoma-2 like 1 (BCL2L1) (also known
as BCL-XL), BCL2 interacting protein 3 (BNIP3), CYCLIND, CYCLING2, forkhead box O1
(FOXO1), and forkhead box O4 (FOXO4) were significantly up-regulated in the liver of the
Huanghe carp under winter photoperiod exposure, while myotubularin-related protein
3 (MTMR3), B-cell lymphoma-2 (BCL2), and forkhead box O3 (FOXO3) were significantly
down-regulated. Altogether, the qPCR results of the above genes confirmed the accuracy
of the RNA-Seq data.

3.7. Correlation Analysis between Antioxidant Parameters and Key Genes

Correlation analysis was used to determine the relationship between antioxidant pa-
rameters and key genes. As shown in Figure 6, CYCLING2 and FOXO1 showed significant
positive correlations with MDA, GSH, and GSH-PX, respectively. In addition, MDA was
also significantly positively correlated with ATG9, BNIP3, and FOXO4. Additionally, in-
tergene correlation analysis identified FOXO1 and FOXO4 as positively correlated with
autophagy-related genes including ATG9 and BNIP3 as well as cell cycle CYCLING2.
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4. Discussion

There are many indications that seasonal cycles affect fish health. The main clues
to seasonality are changes in temperature and day length [24]. Some researchers have
suggested that photoperiod is a more reliable cue in predicting seasonal changes [25]. We
intervened and controlled for this factor to explore how seasonal photoperiod affects fish
physiology. In this study, Huanghe carp stimulated by the winter photoperiod gained
significantly more weight than the control group with the same feeding strategy in both
groups, but there was no difference in other morphometric indicators, such as body length.
Thus, we do not conclude that the winter photoperiod promoted Huanghe carp growth.
Meanwhile, the increase in HSI under the winter photoperiod implied that the liver is a
key organ in response to photoperiodic changes. As the most important metabolic organ
in aquatic animals, the liver is susceptible to the influence of the external environment,
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which induces changes in lipid metabolism resulting in metabolic disorders and damaging
aquatic animal health.

Few studies have elucidated changes in lipid metabolism in fish during different
seasonal photoperiods. Visceral fat accumulated by male estuarine fish (Menidia beryllina)
under short-light (light duration of 9.5 h) exposure was significantly higher compared to
long-light (light duration of 15 h) exposure [26]. In the present study, the expression levels
of liver lipogenic genes (SREBP-1C, FAS, and ACCα) were significantly up-regulated under
winter photoperiod conditions in Huanghe carp. As an important transcription factor, sterol
regulatory element binding protein-1C (SREBP-1C) is involved in encoding and catalyzing
enzymes in the fatty acid and TG synthesis pathways, such as fatty acid synthase (FAS)
and acetyl coenzyme A carboxylase alpha (ACCα) [27]. Over-expression of SREBP1C may
lead to liver TG accumulation [28]. In a study of mud crab Scylla paramamosain juveniles,
crabs reared under constant darkness had significantly higher TG and TC levels compared
to natural photoperiods, and lipogenesis-related genes such as fatty acid synthase, sterol
regulatory element binding protein-1, and acetyl-CoA carboxylase in the crab were up-
regulated [4]. In our study, TG was significantly increased under the winter photoperiod.
The high mRNA expression levels of lipogenesis-related enzymes and transcription factors
suggested that the winter photoperiod promoted lipid synthesis and accumulation in
Huanghe carp. Lipoprotein lipase (LPL) catalyzed the hydrolysis of chylomicron particles
and triacylglycerol present in very low-density lipoprotein (VLDL) [29]. In the present
study, the liver gene expression level of LPL was elevated under winter photoperiod
exposure. As a rate-limiting enzyme for fatty acid β-oxidation, the liver gene carnitine
O-palmitoyltransferase 1 (CPT1) showed the same trend [30]. The present study indicated
that exposure to the winter photoperiod simultaneously promoted lipogenesis, lipolysis,
and oxidation. The large increase in TG indicated liver fat accumulation in the Huanghe
carp, which may be one of the important reasons for high body weights after prolonged
exposure to winter photoperiods.

Accumulation of fat is one of the causes of induced oxidative stress in the liver. In our
study, antioxidant-related enzyme activities (T-AOC, GSH-Px, and GSH) were elevated
under winter photoperiodic exposure. Similarly, Wei et al. found that total antioxidant
capacity, superoxide dismutase, and glutathione peroxidase were the highest in the liver
of juvenile gibel carp (Carassius auratus) in the short-day-length groups [6]. This is in
accordance with our findings. T-AOC can be used as a comprehensive measure of an
organism’s antioxidant capacity. GSH-Px and GSH are readily induced by oxidative
stress and enzyme activity levels, which can be used to quantify oxidative stress [31–33].
Organisms respond to oxidative damage by coordinating stress responses. Increased levels
of antioxidant components in the liver are a crucial part of the oxidative stress response.
Winter photoperiod exposure induced oxidative stress in the liver of the Huanghe carp
with a significant increase in MDA, which is a product of lipid peroxidation [34]. GSH-
Px, an important peroxidative catabolic enzyme, showed significantly higher activity
in carp exposed to the winter photoperiod as compared to the control group, probably
due to the effect of winter photoperiod exposure on the cellular function of carp, which
synthesizes a large amount of GSH-PX to protect cellular structure and function from
the effects and damage of oxidants [35]. Evidence supports the protective role of the
lysosomal system, considered as one of the targets of reactive oxygen species, which
prevents oxidative damage through autophagy [36]. Thus, activation of the autophagy
pathway may occur during oxidative stress. Under normal conditions, autophagy in teleosts
plays an important role in maintaining cellular homeostasis through complex and diverse
molecular mechanisms [37]. Mild oxidative stress can induce the autophagy pathway to
initiate cell survival and repair mechanisms [38]. There is evidence that environmental
conditions such as hypoxia affect cell survival and physiological functions by triggering
oxidative stress-induced autophagy [39]. Studies have shown that autophagy levels in
hamster epididymis were significantly increased by short-term sunlight exposure [40].
Similar results were found in the present study. This study suggested that autophagy-
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related genes including BNIP3, BCL2, BCL2L1, GABARAPL1, ATG9, and MTMR3 were
induced at the transcriptional level in response to prolonged stimulation of the winter
photoperiod. This reflected the possibility that autophagy is induced as a survival response
to oxidative stress.

It has been shown that external stimuli regulate the expression of FOXO target genes
associated with apoptosis [15]. In response to stress or photoperiodic stimuli, FOXO
proteins undergo post-translational modification (PTM) in the NLS and NES structural
domains and are translocated from the cytoplasm to the nucleus to regulate the expression
of a range of genes. FOXO transcription factors have been demonstrated to be involved
in oxidative stress resistance and regulation of metabolic homeostasis [41]. Another study
suggested that the FOXO signaling pathway may be involved in temperature acclimation
in tiger grouper and Jinhu grouper [42]. The FOXO signaling pathway in the Huanghe
carp liver in this study was significantly up-regulated in response to winter photoperiod
stimulation. Activation of FOXO1 disrupts mitochondrial metabolism and lipid metabolism
via the heme oxygenase1/sirtuin1/Ppargc1α pathway [43,44]. Overexpression of FOXO
contributes to the accumulation of hepatic lipids. FOXO1 improves β-cell proliferation by
inducing CyclinD1 expression and stimulates antioxidant mechanisms to prevent β-cell
failure upon oxidative damage [45]. In contrast, CyclinG2, an unconventional cyclin and a
direct target of FOXO proteins, causes blockage of the G2/M phase. Meanwhile, there is
growing evidence that FOXO acts as a transcription factor that binds to promoter regions
and transactivates the expression of autophagy genes, or regulates autophagic activity to
induce autophagy by directly interacting with autophagy proteins in the cytoplasm as well
as through epigenetic mechanisms [46]. Autophagy is a process that utilizes lysosomes to
degrade its cytoplasmic proteins and damaged organelles, preventing cellular damage and
thus maintaining health. This process is an important mechanism for cell survival, growth,
and development and for the maintenance of homeostasis in the body [47]. Xiong et al.
found that the autophagy-related gene Atg14, which is regulated by the FOXO transcription
factor and circadian rhythms, plays an important role in hepatic lipid homeostasis [48].
There is also evidence that some other autophagy genes such as Bnip3 and Gabarapl1 are
rhythmically regulated through C/EBPβ [49], which is consistent with our results.

5. Conclusions

In conclusion, the short photoperiod (winter photoperiod) disrupted liver lipid metabolism
and oxidative stress in Huanghe carp. The significant increase in the final body weight and
hemoglobin index of Huanghe carp under winter photoperiod conditions compared with
summer photoperiod conditions was attributed to the fact that the winter photoperiod pro-
motes lipid metabolism and induces hepatic fat deposition. The increase in lipids might be
the cause of oxidative stress in the liver caused by the winter photoperiod. Genes regulated
by the FOXO signaling pathway were up-regulated in the liver under a short photoperiod,
which might be a result of FOXO mediating the expression of cell cycle proteins to stimulate
antioxidant mechanisms in response to stress. Meanwhile, FOXO mediated autophagic
response in response to oxidative stress under winter light. Our results have limitations for
demonstrating that the FOXO signaling pathway is fundamentally quantitatively altered in
the liver, and thus we would like to validate the role of the FOXO signaling pathway in
photoperiodic changes with additional experiments. The present study provided evidence
for changes in lipid metabolism and oxidative stress response in the liver of Huanghe
carp under seasonal photoperiodic stimulation. Nevertheless, whether light cycles are
the causative factor for lipid metabolism dysregulation is unknown to us. The above
results emphasized the importance of light in fish culture for the physiological regulation
of fish, and provided a theoretical basis for optimizing feeding protocols or environmental
conditions to improve the artificial culture of Huanghe carp.
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