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Abstract: Brycon moorei is an opportunistic omnivorous species. It is not known what its nutritional
requirements are at any stage of its development; this study determined the influence of diet on the
zootechnical parameters and enzyme activity of these fish. In a completely randomized quintuplicate
design, an ad libitum dietary protocol was applied, which included Prochilodus magdalenae larvae,
Artemia salina and balanced feed with increasing inclusion levels (35 to 55% crude protein (CP)).
Larvae 22 h post-hatching (HPH), with an average initial weight and length of 3.07 ± 0.69 mg and
6.069 ± 0.22 mm, respectively, were seeded at a density of 17 larvae L−1 in tanks with an effective
volume of 60 L. The main zootechnical parameters, water quality and enzyme activity were analyzed
with respect to the experimental diets. Significantly, the best diet was that of 45% CP when compared
with the other CP levels used. Specific serum enzyme activity was found from hatching, with
fluctuating values, the specific pepsin-like activity started at 111 HPH. B. moorei larvae can receive a
dry diet from 124 HPH and their requirement corresponds to 48.5% CP.

Keywords: dorada of the Magdalena basin; trypsin; chymotrypsin; amylase; pepsin-like; ontogeny

Key Contribution: The article outlines the feeding protocol and the best protein inclusion level to be
used in diets for B. moorei and, being mainly the activity of the pepsin-like enzyme, it may mark the
initiation of the dry diet in the early stages of development of this species.

1. Introduction

The constant production of quality larvae and juveniles in Neotropical species is a
limiting factor for the development of aquaculture programs, as well as for studies related
to the actions of preservation and recovery of these species in their environments [1,2].
In fact, the larviculture of Neotropical species is mainly carried out in semi-intensive
systems [3] with rather poor results due to the availability of food and predation [4,5].
Similarly, larvae with altricial development [6] and exacerbated cannibalism have difficulty
accepting dry diets, as is the case of Brycon moorei [7,8], a species endemic to Colombia
and currently classified as vulnerable (A2d), due to factors such as the rapid loss of its
natural environment [9]. Therefore, it is necessary to find new cultivation strategies and
feeding techniques [10,11] and to rely on ontogenetic studies to understand the changes
in structures related to feeding and digestive capacities that help to determine the type
of nutrients that are best assimilated by the larvae [12,13]. In this sense, the evaluation of
the presence and level of digestive enzyme activity can be used as an indicator for several
productive parameters in fish larvae [14].

Little is known about the nutritional requirements in fish larvae [15], due to difficulties
associated with size, variability, rapid changes, growth rates, among others [16]. Although
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there are some reports on enzyme activity in marine [17] and freshwater [2] fish larvae,
it has been shown that enzyme activity and its modulation may be related to dietary
items [18]. In this regard, there are no known reports on the influence of diets on zootechni-
cal performance and enzyme activity in larvae and juveniles of B. moorei. Therefore, the
aim of this work was to understand the effect of the feeding protocol, the influence of diets
on zootechnical parameters and the activity of some enzymes in this species.

2. Materials and Methods
2.1. Location

The experimental phase was carried out at the Doradal Fish Farming Station (Estación
Piscícola Doradal) located at coordinates 5◦52′59.5′′ N and 74◦47′03.6′′ W; 165 km from
Medellín, in the village of Doradal, in the Municipality of Sonsón, Antioquia, Colombia; at
an altitude of 150 m.a.s.l.; average relative humidity of 75% and a temperature between
24 ◦C and 35 ◦C.

2.2. Environmental Parameters and Larval Collection

For larval collection and management, protocols were followed as proposed by
David-Ruales and colleagues [9–11]. Larvae with an average initial weight and length of
2.97 ± 0.23 mg and 6.19 ± 0.029 mm, respectively, were kept in a recirculation system (RS)
with 30 rectangular experimental units (EU) of 65 L effective volume. The RS maintained
environmental parameters within comfort ranges for the species (Table 1); water quality
monitoring was performed daily at 7:00 am, with a Hachh FF2 Kit and a YSI multiparameter
probe (Professional plus). The inlet flow rate of each tank was controlled by flowmeters
(Parker MR) and maintained at 3.5 L min−1.

Table 1. Environmental parameters in the RS. DO: dissolved oxygen; Alk/Hard: alkalinity and
hardness; T: temperature; NH3: non-ionized ammonia.

Parameter Comfort Index

DO (mg L−1) 5.5 ± 0.5
pH 6.5 ± 0.8

T (◦C) 26 ± 0.4
Alk/Hard (mg L−1 CaCO3) 20.8 ± 1.7

NH3 (mg L−1) 0.002 ± 0.00001

2.3. Feeding Protocol Design

The feeding protocol for B. moorei was carried out for a period of 15 days in the RS,
using 1 day post-hatching (DPH) larvae; the fish were fed 5 times a day as follows: during
the first 3 days with recently hatched Prochilodus magdalenae forage larvae (FL), from day 4
Artemia salina nauplii (A) were used and, from day 6, a dry diet (C) was offered with
increasing inclusions of crude protein (CP) (35, 40, 45, 45, 50 and 55%); completing the
transition to C from the thirteenth day onwards. All food items were offered ad libitum for
a period of 5 min per EU; Table 2 shows the modified strategy of David and Castañeda [11].
Tanks were cleaned depending on the accumulation of residues or variations in water
quality factors, mainly nitrogenous; each diet trial was performed in quintuplicate in order
to sustain the number of larvae per number of samples for each treatment.

Table 3 displays the ingredients and the centesimal composition for each crude protein
level; the diets were formulated based on the work of de Lazo (2000) [19] with a (CP) energy
ratio of approximately 1:10. The product was developed in the Nutrition Laboratory of the
Aquaculture Institute of the Universidad de los Llanos. Proximate and energy analyses
were carried out in the Nutrition Laboratory of the Corporación Universitaria Lasallista,
under the guidelines of the “Association of Official Agricultural Chemists” [20].
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Table 2. Feeding protocol for B. moorei. DPH: (days post hatching); FL (forage larvae); A (Artemia
salina nauplii) and Dd (dry diet).

DPH
Feeding Timing

(Hours)
7 9 11 13 15

1 FL FL FL FL FL
2 FL FL FL FL FL
3 FL FL FL FL FL
4 A A A A A
5 A A A A A
6 A A A + Dd A A
7 A A A + Dd A A
8 A A A + Dd A A
9 A + Dd A A Dd A + Dd
10 A + Dd Dd Dd A + Dd Dd
11 Dd Dd A + Dd Dd Dd
12 A + Dd Dd Dd Dd Dd
13 Dd Dd Dd Dd Dd
14 Dd Dd Dd Dd Dd
15 Dd Dd Dd Dd Dd

Table 3. Dietary composition and proximate analysis of the experimental diets used in the experiment.

Ingredient
Protein Level%

55 50 45 40 35

Fish meal a 65.0 56.4 49.0 41.0 31.0
Earthworm meal b 11.7 11.7 11.7 11.7 12.7
Whole egg flour c 4.3 4.3 4.3 3.0 4.3

Pregelatinized starch d 0.3 8.9 20.8 34.3 37.0
Alpha-cellulose e 0.0 0.0 0.0 0.0 5.8

Fish oil f 6.5 6.5 3.0 0.5 0.1
Canola oil g 3.2 3.2 2.2 0.5 0.1

Soy lecithin h 1.1 1.1 1.1 1.1 1.1
Choline chloride e 3.2 3.2 3.2 3.2 3.2

Dicalcium phosphate e 0.5 0.5 0.5 0.5 0.5
Premiz Vit/Min i 4.1 4.1 4.1 4.1 4.1

Vit C j 0.2 0.2 0.2 0.2 0.2
Proximate analysis (dry basis)

Dry matter 92.5 91.6 92.8 91.8 92.5
Crude protein 54.4 48.9 44.3 38.7 34.5

Crude fat 18.3 17.3 16.3 14.7 12.1
Ashes 7.6 7.5 7.1 7.0 6.9

Free nitrogen 11.1 10.1 9.1 7.9 5.5
Crude fiber 1.1 7.8 16.0 23.5 33.5

Energy kcal/kg 5022.0 4904.0 4546.0 4180.0 3805.0
a Fish meal (Agromat, Medellín, Colombia). Protein: 71.73%, fat: 11.09%, ashes: 16.74%. b Worms (Visalia, CA,
USA-GMP certificated). Protein: 50 a 55%, fat: 6.56%, fiber: 3.3%, ashes: 7.59%, nitrogen-free extract: 17.6%, Ca:
0.5%, P: 0.9%, gross energy 4060 kcal Kg−1. c ALSEC (La Estrella, Antioquia, Colombia). Protein 50%, fat 38%,
ashes 5%. d Starch 1500. Protein 9.7% (Colorcon®, Bogotá, Colombia). e Sigma-Aldrich (St. Louis, MO, USA).
f Scott’s Emulsion® (GlaxoSmithKline, Medellín, Colombia). g Aceite Gourmet® Balance. (Team Foods, Bogotá,
Colombia). h Team® Colombia (Bogotá, Colombia). i Rovimix vitamin (Lab. Roche S.A, Bogotá, Colombia): Vit.
A 8 × 106 UI; Vit. D3 1.8 × 106 UI, Vit. E 66.66 g, Vit. B1 6.66 g, Vit. B213.33 g, Vit. B6 6.66 g, Pantothenic acid
33.33 g, Biotin 533.3 mg, Folic acid 2.66 g, Ascorbic acid 400.0 g, Nicotinic acid 100.0 g, Vit. B12 20.0 mg, Vit. K3
6.66 g, Mg 91.66, Zn 21.66, Fe 28.33 g, Cu 2.5 g, I 0.17 g, Selenium 66.66 g, Mn 2.5 g, Inositol F.G. 58.33 g, LuctanoxE
25 g; j Stay-C® DSM Nutritional Products, Bogotá, Colombia S.A.

2.4. Zootechnical Parameters

For the growth analyses, 10 larvae were randomly sampled (wet weight) before
offering the first daily feed ration [21,22]. For each sample the following were recorded:
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weight (mg), length (mm), weight gain (WG-mg); length gain (LG-mm), daily weight
gain (DWG-mg), feed conversion (FC), specific growth rate (SGR-%), condition factor (K),
survival (S%) and consumption (C mg/day/larva). The records and calculations of the
zootechnical parameters were based on the work of several authors [23–25].

WG, Weight gain = final weight (mg) − initial weight (mg);

DWG, Daily Weight Gain = Weight gain/T;

LG, Length gain = final length (mm) − initial length (mm);

FCR, Feed Conversion Ratio = Total feed intake (mg)/Weight gain (mg);

SGR, Specific growth rate (%/d) = 100 × (lnBW2 − lnBW1)/(T2 − T1);

Survival Rate (%) = 100 × Nf/Ni;

CF, Condition Factor (%) = (Weight/Lengthˆ3) × 100;

I, Intake = feed intake (mg)/day/larva,

where BW1 and BW2 represent the initial and final body weights of each fish (in mg), T1
and T2 represent the times corresponding to those weights and Ni and Nf represent the
initial and final numbers of fish, respectively.

2.5. Enzyme Extraction and Total Soluble Protein Dosing

For the analyses of each experiment, 1 g of larvae and/or juveniles (wet weight) was
collected before offering the first daily feed ration. At time 0, and until the fifth day post-
hatching, the complete larvae were arranged in perforated plastic conical cylinder tubes,
assigned a code and immediately placed in liquid nitrogen, where they were preserved
until the enzymatic assays. After the fifth day, samples were collected on a daily basis [26].
Larvae and tissues were homogenized in ultrapure cold water (1:10 weight/volume with
Ultra-Turrax IKT25, AMEX® homogenizer); total soluble protein was obtained according to
the protocol of Lowry and colleagues (1951) [27].

2.6. Enzyme Activity Assays

To measure trypsin activity, Na-Benzoyl-dl-arginine-4-p-nitroanilide (BAPNA) (Sigma-
Aldrich St. Louis, MO, USA) was used as a substrate in a final concentration of 1 mM in
50 mM TRIS-HCL buffer, pH 8.2, following the protocol of Erlanger and colleagues [28]. To
measure chymotrypsin, the substrate N-Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (SAPNA)
(Sigma-Aldrich St. Louis, MO, USA) was used, at a final concentration of 1 nM, in 100 mM
phosphate buffer, pH 7.8, according to the protocol of DelMar and colleagues [29]. For both
enzymes, the reading was carried out at an absorbance of 410 nm. A unit of enzyme activity
(U) was defined as the amount of enzyme catalyzing 1 µmol of substrate min−1 [29].

To determine amylase activity, the substrate used was 2% (m/v) starch in 100 mM
acetate buffer, pH 7.5, following the protocol of Noelting and colleagues [30]. One unit of
amylase activity (U) was defined as the amount of 1 µmol of glucose formed per min−1

determined from the standard glucose curve.
Pepsin-like activity, with 2% (w/v) bovine hemoglobin as a substrate, at a final concen-

tration of citrate-phosphate substrate-buffer 100 mM, pH 3.0, was determined according
to the protocol of Anson [31]. An enzyme unit (U) was defined as the amount of enzyme
responsible for altering absorbance by 0.001 Optical Density Units (ODU/min). Readings
were carried out in a microplate spectrophotometer (TECAN-Infinite pro, San Diego, CA,
USA); all enzyme assays were performed in the Biochemistry laboratory of the Federal
University of Santa Catarina (UFSC), Brazil.
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2.7. Statistical Analysis

A completely randomized experimental design was applied, with 5 treatments and
6 replicates per treatment. To determine the optimal protein level, the polynomial regression
model was used, reflected in the equation Y = B0 + B1t + B2t2 + E, where: Y is the answer,
B0 is the model intercept, B1 the linear regression coefficient associated with the treatment t,
B2 corresponds to the quadratic regression coefficient associated with the treatment t2 and
E to the experimental error [32]. The data of the treatments in terms of their zootechnical
variables were tested for homoscedasticity by Levene’s test, and normality by the Shapiro–
Wilk test, then analyzed by one-way ANOVA, followed by Tukey’s test. If normality was
not found in the data, significant differences were determined using the nonparametric
Kruskal–Wallis and Mann–Whirney U tests. Percentage data were transformed by Arc-
Sin. The 5% significance level was used for all tests (p < 0.05). The software used was
Statgraphics Centurion V7, licensed to the Corporación Universitaria Lasallista.

3. Results

The feeding protocol (P) led to satisfactory results for the management of the species,
with a weight gain of 3258.7% and a length gain of 328% in 15 days. Table 4 shows the
zootechnical variables that were analyzed in relation to the level of protein inclusion.

Table 4. Effect of protein levels on zootechnical parameters of the feeding protocol (n = 105 per CP
level), different letters (a–c) indicate significant differences (p < 0.05).

Variables
Protein Levels (%)

35 40 45 50 55

WG (mg) 62.8 ± 31.6 bc 61.5 ± 20.4 c 176.2 ± 61.3 a 69.3 ± 27.7 bc 114.0 ± 50.0 bc
DWG (mg) 4.1 ± 2.1 bc 4.09 ± 1.3 c 11.7 ± 4.1 a 4.6 ± 1.8 bc 7.6 ± 3.3 bc
LG (mm) 0.4 ± 0.2 b 0.5 ± 0.2 b 0.7 ± 0.2 a 0.5 ± 0.1 ab 0.3 ± 0.1 b

DLG (mm) 0.03 ± 0.01 b 0.03 ± 0.01 b 0.05 ± 0.01 a 0.03 ± 0.01 ab 0.02 ± 0.01 b
FC 0.9 ± 0.06 b 0.9 ± 0.04 b 0.6 ± 0.03 a 1.2 ± 0.06 c 0.5 ± 0.07 a

C (mg/day/larva) 5.6 ± 0.4 c 5.4 ± 0.2 c 10.2 ± 0.5 a 8.3 ± 0.4 bc 5.7 ± 1.6 c
SGR (%) 7.4 ± 3.2 b 6.6 ± 2.3 b 13.0 ± 1.7 a 7.4 ± 1.9 b 9.8 ± 3.9 ab

K 1.08 ± 0.2 1.09 ± 0.4 1.1 ± 0.06 1.1 ± 0.23 1.1 ± 0.2
S% 43.7 42.8 45.6 39.9 43.5

Comparing the different diets, for most parameters, the 45% CP diet was significantly
the most effective; there were no significant differences in any of the diets for K and survival;
thus the DWG was 1.54 times higher than the 55% diet and 2.87 times higher than the 40%
one. The best feed conversion was found in the 55% diet, with a value of 0.5 ± 0.07; there
was no significant difference with the 45% CP diet (0.6 ± 0.03), but there were significant
differences with the 35%, 40% and 50% CP diets.

Protein requirements in the early development of B. moorei were estimated at a value
of approximately 48.5% CP; the polynomial model presented a coefficient of determination
of 75%. Figure 1 shows the results.

The lowest value for all diets was found at 71 HPH, when the item offered was forage
larvae (FL) (0.025 ± 0.0038 mU mg of protein−1). The specific activity for chymotrypsin
was also present from hatching (12.1923 ± 1.66 mU mg of protein−1). The maximum value
found was 12.23± 0.41 mU mg of protein−1 at 111 HPH, when larvae were fed with Artemia
salina (A). The lowest value was reached at 243 HPH (0.6264 ± 0.03 mU mg of protein−1)
and corresponds to the time of feeding with Dd for the 40% CP diet. The ratio between
trypsin and chymotrypsin (T:C) decreased from 0.96 to 0.02 when the dietary item was
changed from FL to A, that is, between 0 and 123 HPH, maintaining low values until the
end of the experiment, with the lowest value for the 50% CP diet being 0.029—T:C and
the highest value for the 45% CP diet, being 0.061—T:C, without any clear trend. Figure 2
shows the T:C ratio with respect to the HPH and the feeding protocol.
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(35 to 55% CP), the hours post-hatching (HPH) and the food item: forage larva (FL), Artemia salina
nauplii (A); A + dry diet (Dd) and dry diet (Dd).

As for specific amylase activity, this was also present from the time of hatching
(0.1895 ± 0.01 mU mg of protein−1). The highest values are observed at the time of transi-
tion to the dry diet (A + Dd) (2.59 ± 0.09 mU mg of protein−1), specifically, at 195 HPH for
all diets and then at 219 HPH, only when Dd (2.09 ± 0.16 mU mg of protein−1) is offered,
for the 35% CP diet. The lowest values are observed for the 55% CP diet (0.0 mU mg of
protein−1) at 219 and 267 HPH, respectively. Figure 3 shows the variations in enzymatic
activity of these three enzymes.
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Figure 3. Specific trypsin, chymotrypsin and amylase activity (mU mg of protein−1) in relation to
the inclusion levels in the experimental diets (35 to 55% CP), the hours post-hatching (HPH) and
the food item: vitelline larva (VL), forage larva (FL), Artemia salina nauplii (A); A + dry diet (Dd)
and dry diet (Dd). STA: specific trypsin activity. SCA: specific chymotrypsin activity. SAA: specific
amylase activity.

As for the specific pepsin-like activity, it can be seen that it was not initiated from
the moment of hatching. Its activity starts to develop at 111 HPH, with A as the food
item and with the lowest value recorded (0.00267 ± 0.0002 mU mg of protein−1). This
increases slightly up to 195 HPH (0.03798± 0.0007 mU mg of protein−1) across the different
diets. When the transition is made to a dry diet (A + DD) from 219 HPH, there is a strong
tendency for an increase in specific activity, with the highest values at 243 HPH for the 50%
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(0.9998 ± 0.17 mU mg of protein−1) and 55% CP (0.9471 ± 0.03 mU mg of protein−1) diets
(Figure 4).
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4. Discussion

The larval state is the stage with the biggest transformations in the lives of fish [33];
these changes can be modulated in nature by environmental influences and ethological
factors [34,35], but in closed systems, these factors can be controlled through feeding
protocols that respond to the needs of the species; in this case, P. magdalenae larvae were
used for several reasons. First of all, it is a species that cohabits with B. moorei, it belongs
to a low trophic level (detritivorous) and in terms of association by fishery, it represents
over 80% of the catches in the Magdalena river basin, forming the food base of species
with superior habits [36]. The second reason is based on the success reported by several
authors of the use of P. magdalenae larvae in first feeding protocols for fish of the genus
Brycon [11,37,38]. The third reason can be found in the allometric growth ratios with
respect to the maximum mouth opening for B. moorei [13], which imply for the species a
differentiation in the size of the prey from larger to smaller proportions with respect to its
development. The successful use of Artemia salina nauplii has been extensively tested as a
first feeding strategy in freshwater [39] fish larvae, including B. moorei [7,11,40]. Finally, the
design of dry diets must be in accordance with the capability of the larvae to assimilate
them and with the quality of the ingredients in meeting the requirements of the species; it
is understood that, in early stages of development, these needs are high [41]. In the present
study, all diets were formulated with high quality ingredients in order to meet the needs of
the species, relating their use to the time of development of the larvae’s digestive system.

For B. moorei, in the present study, better survival and weight gain values were found
(43% and 221.44 ± 64.56 mg, respectively), compared to those reported for the same
species [11]; these differences can be explained by the variations in the feeding protocol.
Although the survival value may be low compared to other Neotropical species, it is known
that the family Bryconidae, and specifically B. moorei, shows the highest level of cannibalism
recorded for freshwater species [7,8,38,42]. Therefore, it is important to establish a feeding
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protocol that is in line with the nature of the species; in this regard, in B. sinuensis [37] and
Brycon siebenthalae [43], these findings are also reported.

However, the production system can also affect these results. In general, larviculture
of Neotropical species is mainly carried out in semi-intensive systems [3], but with low
survival rates due to food availability and predation [4,5]. Nevertheless, recently, the focus
has shifted to studies on recirculation for Neotropical freshwater species [26,44–47]. In
this respect, the economic viability of intensive systems has been demonstrated for the
species Piaractus mesopotamicus [4,48] and for B. moorei [11]. It has been shown that co-
feeding strategies and gradual transition to a dry diet leads to better results than traditional
production systems [49–54], and it is recognized that substituting live feed with commercial
rations before day six generally leads to lower survival rates [52]. This study reports results
consistent with those for species with indirect development.

Given that protein is the main nutrient for development in fish [12,55] and that deter-
mining amino acid requirements in larvae is complex [56], for better results, it is recom-
mended that nutritional, physiological and management strategies be combined [15,55,57].
For example, in Piaractus mesopotamicus larvae, positive effects were found by managing a
12-day transition time to a dry diet [48], with a CP level of 38%, fed to larvae over 10 mg [58].
The results of the present study indicate a transition from day 6, with full Dd from day 13,
reflecting positive effects with a 45% CP diet.

The main proteases responsible for protein hydrolysis in the intestine of fish are trypsin
and chymotrypsin. Although their importance is recognized, there is still uncertainty re-
garding the specific contribution of each enzyme to the process of protein metabolism [59];
these enzymes, including amylase, may be present in the early stages of ontogenetic devel-
opment, as has been described in several species [26,45,60]. In B. moorei these enzymes are
present from hatching; the same behavior was observed in larvae of the species Centropo-
mus undecimalis [61], Centropomus nigrescens [62], Centropomus viridis [63], Pseudoplatystoma
punctifer [46] and Pseudoplatystoma fasciatum [64]. Each case, including the species being
studied, showed peaks of activity which are specific to each species and may be the re-
sult of predetermined genetic factors [65], specific substrate requirements or variations
in diet [66,67], feeding protocol [68], as well as physical factors such as temperature and
species-specific differences, among others [18,69–75]. Fish are known to exhibit plasticity in
the production of digestive enzymes in response to the type of diet [72,73], therefore, larvae
could modulate enzyme production, reducing metabolic expenditure [16]. Furthermore, in
larvae that do not have a stomach at the beginning of their ontogeny, the enzymes trypsin
and chymotrypsin [14,66,73] are responsible for protein hydrolysis. Other authors state
that these enzymes play an important role in the process of chorion rupture at hatching
and in the cleavage of yolk proteins [74,75] or, in the case of amylase, it may be related to
the presence of glycogen reserves in the yolk sac [76], which could explain the findings of
this study. In the present study, no trends between variations in serum enzyme activity
and protein inclusion levels were found in this regard; the contribution of each enzyme to
protein hydrolysis in the fish intestine is still unclear and subject to debate [59,77]. However,
with respect to the T:C ratio, a strong tendency to decrease was observed relative to the
feeding protocol, specifically when switching from FL to A; it has been determined for
other species that, when this ratio drops, it coincides with low growth rates [78,79].

This study showed a gradual increase in pepsin-like specific activity after five DPH and,
with large variations in relation to protein inclusion from day eight onwards, indicating the
presence of gastric glands and therefore a functional stomach; a morphological feature that
could suggest that larvae of B. moorei are able to digest the formulated diet. Similar results
have been found in other freshwater species with incomplete ontogenetic development, but
with large differences in the time of gastric gland development [22,80–84]; in B. moorei the
glandular stomach appears at 122 HPH [85] and, in this regard, several features associated
with the maturity of this organ are considered. Some authors consider that certain species
can develop a stomach early, as is the case in the species Solea senegalensis, without implying
functionality [86]; in the species Paralichthys olivaceus, a storage function is suggested
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first, prior to acid proteolytic activity [87]. Other authors point out that, although the
gastric glands may indicate acid digestion, it may take some time before they are actually
functional [88]. It is therefore suggested that a developed stomach implies functional gastric
glands, in accordance with the increase of pepsin-like enzyme activity, which is when the
transition to formulated diets can be initiated.

5. Conclusions

In B. moorei, a gradual transition to a dry diet is essential. Therefore, applying the feed-
ing protocol as described above improves the results in terms of zootechnical parameters.
The serum enzyme activity started at hatching and no relationship was found between
the peaks of enzyme activity with respect to the inclusion of the protein level in the diet.
However, a tendency to decrease was observed in the T:C ratio with respect to the feeding
protocol. Also, the development and maturity of the digestive system must be taken into
account, which, together with the onset of acid digestion, allows the larvae of this species to
be fed from 123 HPH onwards, with a minimum of CP of 45% and a maximum of 50%, with
larvae having a minimum total length of 11.38 mm and a minimum weight of 15.28 mg.
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