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Abstract: Accurate fish individual recognition is one of the critical technologies for large-scale fishery
farming when trying to achieve accurate, green farming and sustainable development. It is an
essential link for aquaculture to move toward automation and intelligence. However, existing fish
individual data collection methods cannot cope with the interference of light, blur, and pose in
the natural underwater environment, which makes the captured fish individual images of poor
quality. These low-quality images can cause significant interference with the training of recognition
networks. In order to solve the above problems, this paper proposes an underwater fish individual
recognition method (FishFace) that combines data quality assessment and loss weighting. First, we
introduce the Gem pooing and quality evaluation module, which is based on EfficientNet. This
module is an improved fish recognition network that can evaluate the quality of fish images well,
and it does not need additional labels; second, we propose a new loss function, FishFace Loss,
which will weigh the loss according to the quality of the image so that the model focuses more on
recognizable fish images, and less on images that are difficult to recognize. Finally, we collect a dataset
for fish individual recognition (WideFish), which contains and annotates 5000 images of 300 fish. The
experimental results show that, compared with the state-of-the-art individual recognition methods,
Rank1 accuracy is improved by 2.60% and 3.12% on the public dataset DlouFish and the proposed
WideFish dataset, respectively.

Keywords: deep learning; convolutional neural network; biometric recognition; fish individual
recognition

Key Contribution: We propose a method for the recognition of underwater fish individuals that
combines data quality assessment and loss weighting to address the interference that low-quality
images can bring to the training of recognition networks.

1. Introduction

Industrialization is the new trend in aquaculture, and precision aquaculture is at the
forefront of this industrial revolution. Disease detection, the accurate estimation of fish
length and weight, as well as fish behavior recognition are all vital components of precision
aquaculture [1]. At the core of these processes lies the precise recognition of individual fish,
which serves as the foundation for achieving optimal results in the industry [2].

Traditional fish recognition primarily relies on radio frequency technology (RFID)
tagging for each fish [3]. However, this approach has several drawbacks. The installation
of these low-cost tags at the tail of the fish through perforation is time-consuming and
labor-intensive for farming organizations. Furthermore, this method can significantly harm
the fish’s well-being. Additionally, due to the aquatic environment in which fish reside, the
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presence of water weakens magnetic field strength, thus resulting in a limited reading and
writing range for RFID technology (which is typically used up to a maximum of 10 cm).
Consequently, RFID technology is unsuitable for precise individual fish recognition tasks.

Current research on individual fish recognition utilizes face recognition methods for
the purpose of fish recognition [4]. The overall process, as illustrated in (Figure 1), consists
of two main steps: fish detection and fish recognition. The fish detection is based on finding
the position and boundary of the fish in the picture, and the fish recognition is based on
judging the individual based on its features. However, the application of face recognition
methods to the practice of fish recognition poses challenges. The primary reason for this is
that the accuracy of face recognition heavily relies on the quality of face images [5]. Better
image quality translates to improved performance in recognition tasks. Unfortunately, most
fish images are captured underwater, where they are susceptible to various interferences
such as illumination, blur, and pose. Consequently, the collected dataset often contains
numerous low-quality images. During the training process of the recognition network,
these low-quality images act as noise. If not properly addressed [6], they can degrade the
overall performance of fish recognition.

Bob

David Lisa

James

Face Detection Face Recognition

Fish Detection

Fish_Bob

Fish_David

Fish Recognition

Our Work

Face

Face

Face

Face

Figure 1. Flowchart of the face recognition and fish individual recognition processes.

To address the aforementioned challenges, Wang proposed a novel method for the
real-time individual recognition of swimming fish, which is based on an improved version
of YOLOv5 [7]. This method utilizes a convolutional neural network with an embedded
attention module to detect and recognize fish in underwater images. Petrellis [8] pro-
posed a shape alignment technique based on a regression tree ensemble machine learning
method to solve the problem where fish are almost indistinguishable from the background
in low-contrast underwater images. Khan [9] presented the design of FishNet, an auto-
mated monitoring system capable of identifying, localizing, and predicting aquatic species
and their functional traits; in addition, they open sourced a massively diverse dataset
containing 94,532 well-organized images from 17,357 aquatic species. Similarly, Yin in-
troduced LIFRNet, a lightweight backbone network designed specifically for fish visual
feature extraction [10]. By incorporating deformable convolution and edge feature learning,
LIFRNet adapts to different fish shapes and poses while enhancing feature discrimination.
Additionally, Gao proposed FIRN, a new network dedicated to fish detection [11]. FIRN
leverages an anchor-free approach and a feature pyramid network to improve accuracy and
speed. While these methods demonstrate excellent performance in identifying individual
fish under ideal conditions, they often overlook the challenges posed by real underwater
environments, such as variations in lighting, blurring, and fish pose. Furthermore, there
is currently no robust solution to mitigate the negative impact of low-quality fish data on
model training results.
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To leverage the potential of low-quality individual fish images in environments where
obtaining clear images is challenging, this paper presents FishFace, an underwater fish
individual recognition method that incorporates data quality assessment and loss weighting.
Through an in-depth analysis of existing individual fish recognition methods, FishFace
addresses the limitations by modifying the existing ArcFace loss function [12] to account
for the quality factors of underwater input images. The key component of the FishFace
loss function is an adjustable hypersphere radius that dynamically adapts based on the
calculated image quality index. This adaptive adjustment enables more accurate fish
individual recognition, even in low-quality images. Furthermore, FishFace incorporates a
quality assessment module in the network architecture to calculate the image quality index
used by the FishFace loss. The main contributions of this paper are as follows:

• We designed a fish individual recognition network with a quality assessment module,
which can evaluate the quality of fish images well and does not require additional labeling.

• We propose a new loss function named FishFace Loss, which will weigh the loss
according to the quality of the image so that the model focuses more on recognizable
fish images and less on ideas that are difficult to recognize.

• We collected a dataset for fish individual recognition (WideFish), which contains and
annotates 5000 images of 300 fish. This dataset was created to help train and test the
fish individual recognition method.

2. Material and Methods
2.1. Data Preparation

Data collection: To meet production needs, it was necessary to construct datasets for
training the model on actual aquaculture environments. In this study, we created a fish
individual recognition dataset (WideFish), which includes images taken from real scenes
and images downloaded from video websites. The real scene videos was taken from the
puffer fish breeding pond of Dalian Tianzheng Industrial Co. (Dalian, China), and the
acquisition device is shown in Figure 2. The size of the breeding pool was 10 m × 10 m,
the water depth was 1.5 m, and the distance of the lamp from the pool was 3.5 m. Two
8-megapixel underwater cameras were equipped, which were located at the center of the
pool and the top of the inner wall on one side for acquiring the video data, which were then
captured and uploaded through the monitoring equipment. The data downloaded from the
website came from video platforms such as Instagram, YouTube, and Bilibili. The size of all
collected videos ranged from 640 × 480 to 1920 × 1080 pixels depending on the source of
the image. We extracted frames from all collected video clips at 1 fps, as well as manually
removed blurred and duplicated images to obtain images as those shown in Figure 3a. It is
worth noting that no color calibration was performed during the shooting process.

Data cropping: The images obtained during the data collection phase contained
multiple fish while we required single fish images for our final training. Therefore, we
needed to crop the data. The cropping method employed was a semi-automatic approach.
Specifically, we utilized the YOLOv8 network [13] to detect objects in the processed images.
Figure 3b illustrates the detection results of YOLOv8, and then the detected fish were
automatically cropped into individual images as shown in Figure 3c.

Data labeling: The cropped images were first collected and then resized to
224 × 224 pixels. We manually organized fish images with the same ID into corresponding
folders, which were named 1 to 300 in sequential order. This process completed the con-
struction of the WideFish dataset. The final dataset consists of 5000 fish images of different
qualities, including 1300 koi images, 1200 puffer fish images, 1100 clown fish images, and
1400 grass carp images. The sample distribution of the dataset is shown in Figure 4. In order
to facilitate training and testing, we divided the 5000 images into a training set and a testing
set. The training set contains 4000 fish images and the test set contains 1000 fish images.
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Figure 2. Experimental setup for fish image acquisition in real aquaculture scenarios.

Figure 3. WideFish dataset production process (a–c).

           

                           

                  

   
      
     
          

Figure 4. Sample distribution of the WideFish dataset.

2.2. The Proposed Method

In order to solve the problem that low-quality images can bring interference to the
training of recognition networks, this paper designed a fish individual recognition network
framework (FishFace) with a quality evaluation module, as shown in Figure 5. The whole
process is divided into 4 steps.

Step 1: The input of the model is a 224 × 224 image of an individual fish, and the
features of the image are first extracted by a backbone network (EfficientNet-B5) [14] to
obtain a feature map with information about the individual fish, wherein the last layer of
the backbone network is a fully connected layer.
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Step 2: The feature maps learned by the backbone network are passed to the quality
assessment module to calculate the fish image quality si.

Step 3: The feature maps obtained from the backbone network and the fish image
quality si are passed into the FishFace loss program for model parameter optimization.

Step 4: The final weights are obtained by the network through multiple iterations,
and the final weights can be effective for the individual recognition of different quality
fish images.
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Figure 5. FishFace network structure diagram.

2.3. Improved Feature Extraction Module

The feature extraction part of FishFace was chosen from EfficientNet-B5, a convolu-
tional neural network model proposed by Tan, which achieves a higher performance and
efficiency by adjusting the depth, width, and resolution of the network throughout the
model. The network structure of Efficientnet-B5 is based on the reverse bottleneck residual
block [15] and squeeze-and-excitation [16] block of MobileNetV2 [17], which has 39 con-
volutional layers and 4 fully connected layers. Compared with other feature extraction
models, such as ResNet and DenseNet [18], etc., Efficientnet-B5 uses an AutoML-based
model scaling method to find the best network structure under different resource con-
straints, thus improving accuracy and efficiency. And it uses mixed precision training and
tensor cores, which can accelerate the training process. Furthermore, in our preliminary
experiments, we found that EfficientNet-B5 provided a good balance between accuracy and
efficiency for our fish recognition task, thus making it ideal for our proposed framework.

Unlike the original EfficientNet, we changed all of the global average pooling (GAP)
in the network to GeM pooling [19]. The purpose of doing so is that GAP would dilute
the combinatorial relationship between the relative positions of different features, which
may lead to the loss of some spatial information. And GAP would treat all features equally,
which may ignore some of the parts that have more differentiation and robustness.

On the other hand, GeM pooling can retain the essential attributes of the input feature
map while amplifying the activation of features with a greater intensity so as to improve
the differentiation and robustness of individual fish features. The specific GeM pooling
equation is as follows.

f(g) =
[
f(g)
1 . . . f(g)

k . . . f(g)
K

]>
, f(g)

k =

(
1
|Xk| ∑

x∈Xk

xpk

) 1
pk

(1)

where k represents the index of elements in the feature vector and K is the total number
of elements in the feature vector. For each feature map Xk, we obtain the long vector
representation of the image by varying pk, where pk → +∞ is the max pooling and pk = 1
is the average pooling. In this paper, the best experimental results were obtained for pk = 3.

The improved EfficientNet-B5 network structure is shown in Table 1. We can see
that the network mainly consists of 39 MBConv modules and GeM pooling. Among
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them, MBConv is a kind of inverted residual module, which includes the following: a
1 × 1 expansion convolution that expands the input channel number by n times; a 3 × 3
depthwise separable convolution that performs convolution operations on each channel; a
squeeze-and-excitation module that adaptively re-weights each channel; a 1 × 1 compres-
sion convolution that restores the output channel number to its original size; and a residual
connection that adds the input and output. It is worth noting that MBConv1 expands the
input channel number by 1 times, and MBConv6 expands the input channel number by
6 times.

Table 1. Improved EfficientNet-B5 network architecture.

Modules Resolution Number of
Channels

Number of
Layers

1 Conv 3 × 3 224 × 224 32 1
2 MBConv1, 3 × 3 112 × 112 24 3
3 MBConv6, 3 × 3 56 × 56 40 5
4 MBConv6, 5 × 5 28 × 28 64 5
5 MBConv6, 3 × 3 14 × 14 128 7
6 MBConv6, 5 × 5 14 × 14 176 7
7 MBConv6, 5 × 5 7 × 7 304 9
8 MBConv6, 3 × 3 7 × 7 512 3
9 Conv 1 × 1 and Gempooling and FC 7 × 7 1280 1

2.4. Quality Assessment Module

We designed the quality assessment module (shown in Figure 6) as a branch of the
backbone to evaluate the quality of fish pictures. The whole quality assessment module
is divided into two parts: the first part is shown in Equation (2), specifically the 1 × 1
convolution layer and Softmax; the second part is shown in Equation (3), specifically two
1 × 1 convolution layers, where a BN layer with ReLU activation function is added after
the first convolution layer. A Sigmoid layer was added after the second convolution layer.
Finally, the image quality output Si takes values in the range of [0, 1].

yi = Sigmoid(W1xi) + xi (2)

Si = Sigmoid(W3ReLU(LN(W2yi))) (3)

where xi is the feature map passed in through the fully connected layer, yi is the feature
map with contextual information, W1, W2, W3 are both examples of a 1 × 1 convolution, the
Sigmoid and ReLU are activation functions, and LN is the BatchNorm.

The design idea of the quality assessment module comes from SENet [16], which can
adjust the interdependencies between the channels by a weight calibration of different
channels based on global contextual information. Currently, some researchers have used
SENet to evaluate the quality of images. However, we found, in our design, that SENet
includes a downscaling process in the fully connected layer to obtain contextual information,
which destroys the direct correspondence between channels and their weights.

To solve this problem in SENet, we designed a quality assessment module by replacing
the original fully connected layer of SENet with a 1 × 1 convolution layer, which will not
destroy the spatial structure of fish images. In addition, after passing into the quality
evaluation module, the feature maps were firstly passed through a 1 × 1 convolution with
a Sigmoid layer, which created the feature maps that were involved in image quality evalu-
ation with global contextual features. The purpose of this was to improve the sensitivity
and adaptability of the feature maps to image quality changes, as well as to enhance the
interaction and information transmission between the feature maps.
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Figure 6. Quality assessment module.

2.5. FishFace Loss

First, before introducing the FishFace Loss proposed in this paper, we need to briefly
describe the two most common loss functions in face recognition: Softmax loss [20] and
ArcFace Loss.

The traditional classification loss is usually a Softmax loss, as shown in Equation (4).
Softmax loss has features such as easy optimization and fast convergence for classifica-
tion tasks.

Let fi ∈ Rd denote the feature vector of the sample xi, which belongs to the yi-th class.
The feature vector dimension d is typically 512. Let Wi ∈ Rd denote the j-th column of the
weight W ∈ Rd×n, and let bi ∈ Rn denote the bias term. Let the class number be n. The
softmaxloss is expressed as follows:

LSoftmax = − 1
N

N

∑
i=1

log
eWT

yi fi+byi

∑n
j=1 eWT

j fi+byi
(4)

However, the results are often poor when the Softmax loss is directly used in face
recognition tasks. The reason for this is that Softmax loss aims to maximize the log
likelihood of all categories in the probability space, i.e., to ensure that all classes are correctly
classified. However, it cannot explicitly optimize inter-class and intra-class distances like
metric learning.

In response, Deng proposed ArcFace loss, as shown in Equation (5); it is based on
Softmax loss, and it is a loss function that is designed to improve the inter-class differentia-
bility while reducing the intra-class distance. Specifically, first, the ArcFace loss makes the
bias b of Softmax equal to 0. Then, WT

i fi is changed to a ‖Wi‖‖xi‖ cos(θi) conversion. θi
represents the angle between Wi and xi. Second, the weights are normalized to the features,
i.e., ‖Wi‖ = ‖ fi‖ = 1. In this case, the prediction depends only on the angle between the
features and the weights. Then, the features are multiplied by a constant, i.e., we learn that
the features are distributed over a hypersphere of radius S. Finally, an additional boundary
penalty m is added to the angle between Wi and fi. The boundary penalty m is added to the
angle theta between the feature vector and the corresponding weight vector of the correct
class. The purpose of adding the boundary penalty is to increase the margin between the
classes, thus making the decision boundary more distinct. The range of the m value can
vary depending on the application and dataset. In general, the value of m is chosen based
on the characteristics of the dataset and the complexity of the classification problem. A
larger value of m may be suitable for more complex datasets with larger variations in the
feature vectors, while a smaller value may be sufficient for simpler datasets.
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Larcface = − 1
N

N

∑
i=1

log
eS(cos(θyi+m))

eS(cos(θyi+m)) + ∑j 6=yi
eS cos(θj)

(5)

By combining all marginal penalties, CosFace [21], SphereFace [22], and ArcFace were
all implemented in a federated framework with m1, m2, and m3 as hyper-parameters:

Larcface = − 1
N

N

∑
i=1

log
eS(m1 cos(θyi+m2)−m3)

eS(m1 cos(θyi+m2)−m3) + ∑j 6=yi
eS cos(θj)

(6)

However, the ArcFace loss was set on the premise that the quality of the face pictures was
the same and does not take into account the quality differences between samples; thus, it is
not suitable for individual fish recognition tasks.

In response to the problems of ArcFace Loss, this paper propose a loss function
FishFace loss, as shown in Equation (7). The loss can enhance the intra-class distance while
reducing the inter-class difference on the one hand, and it can allow the quality weight to
be well quantified on the other hand.

Lours = −
1
N

N

∑
i=1

log
esiS(m1 cos(θyi+m2)−m3)

esiS(m1 cos(θyi+m2)−m3) + ∑j 6=yi
esiS cos(θj)

(7)

where Si is the output of the quality evaluation module with a value range between [0, 1].
S is a fixed value, which is equivalent to the inverse of the minimum variation value in
Gaussian distribution, and S takes the value of 64. m1, m2, and m3 are hyper-parameters.
During the training process, low-quality fish pictures have a smaller Si and high-quality
pictures have a larger Si. In FishFace loss, each sample can be used as its weight according
to its own quality, which can improve the recognition accuracy.

2.6. FishFace Training Strategy

The model training process is shown in Figure 7, which is divided into three main
steps and is different from the traditional deep learning training methods.

Start

1.Let the image 

quality Si=1 and train 

the backbone network

2.Fixed backbone 

network parameters, 

training Si

3.Retraining the 

backbone network with 

the trained Si

End

Convergence?

Yes

No

×

Figure 7. FishFace network training flow chart.
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Step 1: In this step, the image quality si is fixed at 1 for all training images, which is
consistent with the normal training process for individual fish recognition. The primary
objective is to train the feature extraction model (M). It is important to note that the quality
assessment module does not play a role in this step.

Step 2: Here, the feature extraction model (M) is fixed, and the quality assessment
module is incorporated into the training process. The loss function used in this step is
given by Formula 6. The main goal is to learn the relevant gradients within the quality
assessment module.

Step 3: With the relevant parameters of the quality assessment module fixed, the
backbone network is retrained by taking into account the individual fish image quality si
that corresponds to each sample. The quality assessment module actively participates in
the training process.

Once the training process is completed, an evaluation is conducted to determine if
the model has converged. If convergence has not been achieved, Steps 2 and 3 need to be
iterated until convergence is attained.

The FishFace network adopts a three-step training instead of an end-to-end training
approach to avoid the problem of individual fish quality si approaching 0. If si = 1 is not
set first, the whole network will train si to tend to 0 in order to minimize the loss function.
This will cause all fish body images to have very low quality values and no difference.
Therefore, we need to set si = 1 at the beginning stage of training to train the backbone
network. After training for a period of time, the backbone network parameters are fixed
and si is learned. In this way, the image quality values obtained have large differences and
good discrimination. By using this three-step training method, the FishFace network can
effectively extract individual fish features and perform classification.

2.7. Experimental Setup

The experiments in this paper were conducted in a software environment of Python 3.7
and PyTorch 1.8 on Windows 10 with a computer configured with an Intel Core i7-9700K
CPU, 16 GB of RAM, and a GeForce RTX 2080 Ti GPU. Our model training employed
the self-made dataset WideFish and the public dataset DlouFish [10]. Data augmentation
operations included rotation, translation, scaling, and flipping, which were performed on
both datasets. The whole network is initialized as a Gaussian distribution with the mean of
the weights being 0 and the standard deviation being 0.1. The loss function is FishFace loss,
the optimizer is SGD, the Momentum is 0.9, and the Batchsize is 64. The initial learning
rate is 0.01. In the FishFace loss function, through repeated tuning trials, we used m1 = 1.0,
m2 = 0.3, and m3 = 0.2, where m1, m2, and m3, respectively, control the angular residuals,
the scale factor, and the feature normalization. The algorithm evaluation metrics are Rank1
accuracy and Rank5 accuracy. Specifically, Rank1 accuracy is the percentage of times
that the system correctly identifies the fish as the top match, and Rank5 accuracy is the
percentage of times that the system correctly identifies the fish among the top five matches.

3. Results
3.1. Performance Comparison between External Models

To evaluate the effectiveness of our FishFace fish individual recognition method, we
conducted experiments on DlouFish [10] and WideFish, and then compared our results
with state-of-the-art face recognition methods such as Center Loss [23], SphereFace, Ar-
cFace, VGGFace2 [24], Confidence Loss [25], as well as with individual fish recognition
methods like LIFRNet and FIRN. Center Loss minimizes the distance between each sample
and its corresponding class center while maximizing the distance between different class
centers; SphereFace forces the features to be distributed on a hyperspherical manifold by
applying an angular margin between the features and the weights of the softmax classifier;
ArcFace adds an additional angular margin to make the decision boundaries clearer; VG-
GFace2 improves feature extraction by improving the VGG network; and Confidence Loss
incorporates the confidence of each sample into the softmax loss to minimize the effect of
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noisy or hard samples. LIFRNet employs a lightweight deformable convolutional network
as the backbone network for recognition, thus effectively capturing the edge information
of the fish, which, consequently, enhances fish discrimination. FIRN introduces dilated
convolution in the residual block, thus increasing the receptive field and improving the
feature extraction. The results are summarized in Table 2, and it shows that our method
outperformed all the other methods in terms of Rank1 accuracy with an improvement
of 2.60% and 3.12%, and Rank5 accuracy with an improvement of 2.21% and 2.71%. In
addition, our algorithm processes an image in an average of only 0.05 seconds, which
is second only to ArcFace in terms of speed when compared to comparative methods.
These results show that our algorithm can achieve highly accurate and fast fish individual
recognition in underwater environments.

Table 2. Performance evaluation of different methods on the WideFish and DlouFish datasets.

Family Method
WideFish Dataset DlouFish Dataset

Fps
Rank1 Rank5 Rank1 Rank5

Face Recognition Method

Center Loss 87.17 89.72 89.38 91.54 18.5
SphereFace 89.21 90.24 91.01 92.12 19.3

ArcFace 90.43 92.38 93.21 93.49 20.1
VGGFace2 91.72 90.83 92.09 92.11 16.2

Confidence Loss 91.44 94.94 92.27 94.50 18.5

Fish Recognition Method LIFRNet 91.34 93.13 90.04 91.10 19.1
FIRN 90.10 91.17 91.32 92.06 17.6

Proposed method Ours 94.83 97.64 95.81 96.61 19.4

In order to evaluate the robustness of the method proposed in this paper, experiments
were conducted to be compared with three other state-of-the-art algorithms—Center Loss,
ArcFace, and VGGFace2—on three commonly used face datasets: LFW [26], CALFW [27],
and CPLFW [28]. The results of these experiments are presented in Table 3, and it can
be seen from the table that the proposed method performed best or second best in terms
of accuracy in Rank1 compared to the other algorithms. These results demonstrate the
effectiveness and robustness of the proposed method in handling facial recognition tasks
on these datasets. It is worth adding that the datasets commonly used for experiments on
low-quality face recognition algorithms are LFW, CALFW, and CPLFW.

Table 3. Performance verification of the FishFace method with different face datasets.

Method LFW CALFW CPLFW

Center Loss 98.75 85.48 77.48
ArcFace 99.83 95.45 92.08

VGGFace2 99.43 90.57 84.01
Ours 99.71 95.91 93.02

3.2. Validation of Internal Modules

To verify the effectiveness of the quality assessment module proposed in this paper,
we performed a quality assessment on 16 fish images, which were automatically calculated
by the quality assessment module in the FishFace network. The module outputs the quality
value of each input image, which ranges from 0 to 1. The quality score optimizes the
training process in two ways. First, the value is used as the weight of the FishFace single
fish recognition loss, that is, the higher the quality, the greater the loss. In this way, the
network learns to pay more attention to high-quality images and ignore low-quality images
during the training process. This also conforms to the intuition that high-quality images
contain more fish individual recognition information than low-quality images. Secondly,
the image quality is used to adjust the sampling strategy of the training data. We use
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the image quality as the sampling probability of each sample, which means that high-
quality samples have more chances to be selected in the training batches than low-quality
samples. This sampling strategy ensures that the model is trained on more representative
and informative samples, as well as avoids the negative effects of noise and low-quality
samples. The evaluation results are shown in Figure 8. It can be seen that the higher the
quality of the fish images, the higher the score; conversely, the lower the quality, the lower
the score. In addition, for the same fish, the more positive the image shooting angle, the
higher the quality score. And by comparing the training process of Figure 9 and ArcFace,
the effectiveness of the quality assessment module was verified.

Image Quality Score：0.9123 Image Quality Score：0.902 Image Quality Score：0.7321 Image Quality Score：0.8627

Image Quality Score：0.3621 Image Quality Score：0.2168 Image Quality Score：0.4213 Image Quality Score：0.3614

Image Quality Score：0.8033 Image Quality Score：0.7421 Image Quality Score：0.5123 Image Quality Score：0.6923

Image Quality Score：0.9123 Image Quality Score：0.902 Image Quality Score：0.7321 Image Quality Score：0.8627

Image Quality Score：0.753 Image Quality Score：0.863 Image Quality Score：0.8021 Image Quality Score：0.7827

Image Quality Score：0.5887 Image Quality Score：0.5412 Image Quality Score：0.5581 Image Quality Score：0.4954

Figure 8. Results of the image quality assessment of fish faces with different qualities.
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Figure 9. Comparison of the FishFace loss and ArcFace loss training processes (a–d).

In addition to this, we designed a variant model without the quality assessment
module, as shown in Table 4, and the performance of the model had a large fallback in
recognition accuracy when the model was not incorporated with the quality assessment
module. The experimental results show that the recognition effect of adding the quality
assessment module was better than that without the quality assessment module in terms of
accuracy and robustness, which proves the effectiveness of the quality assessment module
in the fish body recognition problem.
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Table 4. Impact of the QA module on performance.

Method
WideFish Dataset DlouFish Dataset

Rank1 Rank5 Rank1 Rank5

W/O Quality Assessment Module 91.34 92.18 92.35 93.49

W/ Quality Assessment Module 94.83 97.64 95.81 96.61

To verify the effectiveness of the FishFace Loss, we compared it with the state-of-the-
art loss function ArcFace Loss. We trained two fish individual recognition networks using
different loss functions on the same network structure, and we evaluated their performance
on the same test dataset. The comparison results are shown in Figure 9. We can clearly
see that, under the same network structure, our designed FishFace Loss had better test
accuracy and convergence speed than ArcFace Loss. This indicated that FishFace Loss can
better optimize the fish feature space, thus making the distance between different categories
larger and the distance within the same category smaller.

To verify the effectiveness of the step-by-step training method for the fish body recog-
nition network proposed in this paper, we compared it with the traditional training method.
Specifically, the step-by-step training method trains 90, 20, and 90 rounds for the respective
three stages. The traditional training method is to train the whole model for 200 rounds.
The comparison results are shown in Figure 10. The traditional training method reached a
loss value of 1.15 at round 80 and then no longer decreased, while the step-by-step training
method was able to reduce the loss value to 0.5. This experiment proves that the distributed
training algorithm can better reduce the training loss value and improve the fish body
recognition accuracy.
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Figure 10. Loss comparison between the traditional training method and our training method.

4. Discussion
4.1. Analysis of the Experimental Results under Different Backbone Networks

To verify the performance of our backbone, we compared it with several other com-
monly used convolutional neural networks, including Vgg16 [29], ResNet50 [15], Mo-
bilenNet v3 [30], and SqueezeNet v2 [31]. We conducted experiments on two datasets,
namely the WideFish dataset and DlouFish dataset, which are both large-scale datasets for
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fish recognition. The experimental results are shown in Table 5. We can clearly see that
Efficient-B5 achieved the highest respective accuracy for both Rank1 and Rank5 on both
datasets, and it placed higher than the second place ResNet50 by 1.27%, 2.29%, and 3.48%,
2.29%. This showed that our improved Efficient-B5 has stronger feature extraction and
generalization abilities, and that it can adapt to different fish images.

Table 5. Performance comparison of the different backbones.

Backbone Parameter Quantity FLOPs
WideFish Dataset DlouFish Dataset

Rank1 Rank5 Rank1 Rank5

VGG16
ResNet50

MobileNet v3
SqueezeNet v2

Efficient-B5

138.1 M
25.6 M
2.15 M
1.24 M
5.3 M

15.5 G
3.8 G

0.22 G
0.15 G
0.39 G

90.51
93.56
91.11
92.33
94.83

92.69
95.35
93.18
93.66
97.64

88.41
92.33
90.97
91.23
95.81

90.24
94.32
92.17
91.68
96.61

4.2. Analysis of the Experimental Results of Different Background Environments

This section examines how the background environment affected the similarity dis-
tance of the fish individuals, which is an indicator of the model’s fish recognition ability
based on the similarity between two fish images. The lower the similarity distance, the more
similar the fish are. We applied a deep learning-based method to remove the backgrounds
from different fish images, retaining only their outline and texture. Figure 11 shows the
similarity distance before and after background removal. We observed that removing
the background from one image slightly changed the similarity distance of a single fish.
The distance decreased slightly, thus suggesting that the background environment had
a minor effect on the model’s recognition ability. Removing the background from both
images yielded a similar distance value as to that without background removal. This
indicated that the background color had a negligible impact on the model. Our method
mainly extracted texture features from a single fish, rather than learning features from
the background. Therefore, we concluded that the background environment had little
influence on the similarity distance of fish individuals, and that the model could effectively
distinguish different fish with high accuracy.

Distance：0.032

Distance：0.035

Distance：0.032

Distance：0.144

Distance：0.148

Distance：0.144

Figure 11. Experimental results of the different background environments.

5. Conclusions

We propose an underwater fish individual recognition method (FishFace) that com-
bines data quality assessment and loss weighting. First, we designed a fish individual
recognition network with a quality assessment module, which can evaluate the quality
of fish images well and does not require additional labeling; second, we proposed a new
loss function, FishFace Loss, which will weigh the loss according to the quality of the
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image so that the model focuses more on recognizable fish images and less on images that
are difficult to recognize. Finally, we collected a dataset for fish individual recognition
(WideFish), which contains and annotates 5000 images of 300 fish. The experimental results
show that, compared with the state-of-the-art individual recognition algorithms, Rank1
accuracy was improved by 2.60% and 3.12%, and Rank5 accuracy was improved by 2.21%
and 2.71% on the public dataset DlouFish and the proposed WideFish dataset, respectively.

The main advantage of FishFace over existing algorithms is its ability to adaptively
adjust to image quality factors. It can handle the problem of individual fish recognition
in low-quality images, which has great significance in real life. For example, fish images
in aquaculture monitoring videos are often affected by various factors such as lighting
conditions, motion blur, and noise, thus making individual fish recognition more difficult.
Using FishFace can improve the recognition accuracy of these low-quality images. However,
FishFace still has some limitations. First, FishFace needs to calculate the image quality index,
which may require additional computing costs and time. Second, FishFace’s performance
may be affected by the image quality evaluation method. If the image quality evaluation
method is inaccurate, the calculated image quality index may also be inaccurate, thereby
affecting the performance of FishFace. In addition, FishFace is only for low-quality fish
individual images. If the image quality is high, it may not be the best choice.

In our future research, we plan to design a super-resolution fish individual recognition
network and change the overall model training to end-to-end so that the fish individual
recognition model can be more accurate and faster. In addition, we also plan to combine
image segmentation techniques with individual fish recognition to identify individual
fish with the background removed, thus reducing environmental interference in recogni-
tion tasks.
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