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Abstract: The study aimed to investigate the effects of temperature and dissolved oxygen on juvenile
largemouth bass during transportation. The experiment involved four temperature groups: 20, 15, 10,
and 5 ◦C. We analyzed the effects of acute and uniform cooling on fish behavior to determine the
optimal approach for cooling. Then, we simulated transport under different temperature conditions
while measuring the dissolved oxygen level and metabolic rate until all the fish died. The results
showed that acute cooling significantly influenced the tail-beat frequency of fish compared with
uniform cooling, while abnormal behaviors such as increased swimming, attempted jumping out
of the water, and loss of balance were observed. As the transport temperature reduced, the oxygen
consumption rate of fish significantly changed at 10 ◦C, being 2.6 times lower than at 15 ◦C, with
values of 0.10 ± 0.02 and 0.47 ± 0.07 mg·g−1·h−1, respectively. The critical oxygen threshold (Pcrit)
of fish were 1.90 ± 0.12, 1.61 ± 0.04, 1.15 ± 0.09, and 1.12 ± 0.25 mg·L−1 at 5, 10, 15, and 20 ◦C. In
addition, below Pcrit, hypoxia-led behavior changes and oxygen consumption rate reduction were
observed at every transport temperature. The findings suggest that the optimal low temperature can
reduce metabolism and improve the hypoxia tolerance of juvenile largemouth bass. We recommend
transporting largemouth bass at an optimal low temperature (15 ◦C), monitoring fish behavior, and
maintaining oxygen levels above Pcrit during transport to prevent stress.

Keywords: live transport; behavior; oxygen consumption rate; hypoxia tolerance; temperature

Key Contribution: 1. The cooling method significantly influences largemouth bass tail-beat frequency
and behavior. 2. Low-temperature transport can reduce largemouth bass metabolic rate and Pcrit,
improving hypoxia tolerance. 3. With oxygen reduction, largemouth bass behavior changes relevant
to hypoxia when below Pcrit. 4. We demonstrate that behavioral and respiratory metabolism can
reflect the effects of temperature and dissolved oxygen on largemouth bass.

1. Introduction

Live transport is an integral component of aquaculture [1], encompassing the trans-
portation of juvenile fish from hatcheries to farms and adult fish from farms to markets [2,3].
During transportation, fish are exposed to various environmental factors that can signif-
icantly impact their survival and physiological well-being, presenting challenges to this
process [4].

Temperature plays a critical role in the transportation of live fish [5]. Proper temperature
control can significantly reduce the harm caused by environmental factors to fish and improve
their survival rates [6]. For instance, when transported for 30 h at a temperature ranging from
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1.6 to 2.7 ◦C, the survival rate of Chinese sturgeon is notably higher than that at temperatures
from 4 to 6 ◦C [7]. Prior temporary low-temperature rearing can lower the stress response of
fish during transportation, enhancing their survival rates. However, the temporary rearing
temperature should be much lower than the living temperature of fish [8,9]. Rapid changes
in environmental conditions can affect fish and trigger their immune mechanism, which is
detrimental to subsequent transportation [10]. Therefore, it is necessary to select an appropriate
cooling method for the temporary low-temperature rearing of fish. Furthermore, temperature
jointly affects the metabolic intensity and dissolved oxygen saturation of fish [11]. An increase
in temperature reduces the solubility of oxygen in water and increases the metabolic rate of
fish [12,13]. A reduction in oxygen levels in water to below 2 mg·L−1 is defined as hypoxia,
which can have detrimental effects on fish physiology, metabolism, antioxidant capacity, and
immune function [11,14]. Hypoxia triggers the release of catecholamines, cortisol, and other
hormones in fish [15], leading to oxidative stress and the accumulation of reactive oxygen
species (ROS) free radicals in cells [14]. Fish under stress exhibit a decline in their oxygen
consumption rate, which persists as oxygen levels drop below a critical threshold (Pcrit) [16,17].
In addition, a range of behavioral responses to hypoxia was exhibited in fish, enabling them
to maintain oxygen uptake and aerobic metabolism even at hypoxia [18–20], which also
indicated the stress condition.

The largemouth bass (Micropterus salmoides) is an economically significant freshwater fish,
originally from the United States, which was introduced to China in 1983 [21]. Its cultivation
is widespread globally, with an annual output of 610,000 tons in China alone [22,23], making
it one of the fastest-growing varieties. Hence, comprehending the influence of transportation
on largemouth bass is of utmost significance. However, systematic scientific research on live
transport is still in its early stages [5], and the effect of transport temperature and dissolved
oxygen concentration on the oxygen consumption rate and behavior of largemouth bass is
still not fully understood. This study aimed to investigate the effects of temperature and
dissolved oxygen changes on the behavior and respiratory metabolism of juvenile largemouth
bass. The results contribute to a deeper understanding of the respiratory metabolism and
related behaviors of juvenile largemouth bass and provide essential data and a theoretical
underpinning for its live transport management.

2. Materials and Methods
2.1. Fish Preparation

Juvenile largemouth bass, with a body length ranging from 13 to 15 cm and a weight of 15
to 30 g, were procured from a local aquaculture company in Zhoushan. The specimens were
then transported in oxygenated bags to the National Marine Facility Aquaculture Engineering
Technology Research Center laboratory of Zhejiang Ocean University. The bass were temporarily
housed in a circulating water aquaculture tank for two weeks. Before use, the water body was
thoroughly aerated, and the water quality was monitored daily to maintain a dissolved oxygen
concentration of no less than 7 mg·L−1. The water temperature was maintained at 23 ◦C, while
the pH was maintained at 7.5. The fish were fed twice daily, and the pool was regularly cleaned
to remove excrement. All experimental and sampling procedures were conducted according to
the Guidelines of the Animal Care of the Zhejiang Ocean University and were approved by the
Ethics Committee of the university (number 2023088).

2.2. Experiment Equipment

The experiment equipment is shown in Figure 1. The simulation of transport involves
a high-power chiller (Hitachi Home Appliances (China) Co., Ltd., Guangzhou, China), a
submersible pump (DC-1020 200 L·h−1 Sensen Group, Zhoushan, China), and a simulated
transport tank. The transport box comprises an outer water tank measuring 84.5 × 53 × 51 cm
and a sealed tank measuring 43 × 31.8 × 26 cm. The outer transport box is filled with water
cooled by a high-power chiller. The fish were placed within the sealed tank, and the submersible
pump simulated the water exchange during the transport process, creating a certain impact on
the test object.
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Figure 1. Experiment equipment: (a) computer, (b) HD camera, (c) high-power chiller, (d) submersible
pump, (e) simulated transport tank, and (f) dissolved oxygen sensor.

The data collection equipment, consisting of a Lenovo Thinkpad, an HD camera
(Nikon, Beijing, China), and a dissolved oxygen sensor (Raymond Instrument, Shanghai,
China), was used to record relevant behavioral data of test subjects, as well as changes in
dissolved oxygen levels in the transport water during cooling and simulating transportation.
The dissolved oxygen sensor was placed inside the sealed tank and connected to external
data collection devices using sealed connectors. The concentration of oxygen molecules was
calculated based on the fluorescence quenching principle by measuring the phase difference
between the excitation red light and the reference light and comparing it with the internal
calibration value. This method provides stable results, requires less frequent cleaning,
is less prone to interference, and has a faster response time than traditional methods for
measuring dissolved oxygen.

2.3. Experiment Design

Juvenile largemouth bass, with an average weight of 25.60 ± 4.60 g, were meticulously
selected and placed in an aquaculture water tank. Before the commencement of the
experiment, the bass were kept in the tank for 48 h without any feeding while changing the
water once every 24 h and inflating the air pump. The water temperature was maintained
at 23 ◦C throughout the experiment. The bass exhibited no signs of physical injury and
displayed normal behavior.

For the cooling experiment, four temperature groups were formed: 20, 15, 10, and
5 ◦C. For each temperature group, three parallel groups were established, and each group
consisted of eight fish. Three fish were randomly chosen from each parallel group to calcu-
late their tail-beat frequency. The test object was directly placed in the simulated transport
tank at the corresponding temperature. In the uniform cooling group, the temperature was
gradually decreased to the desired level at a rate of 1 ◦C per hour. The tail-beat frequency
and other abnormal behaviors of largemouth bass were compared between two cooling
methods, and the cooling method that had less impact was selected for the follow-up test.

For the simulated transport, we set four different temperatures (20, 15, 10, and 5 ◦C)
and established three parallel groups for each temperature. Each group contained eight
fish, which were placed in a transport box and cooled down to the test temperature (water
volume 20 L transport density 10 g·L−1). The transport box was sealed, and the submersible
pump was turned on to simulate transportation. During the test, the transport box was
shaken every hour to replicate the shaking that occurs during transportation. We recorded
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any abnormal behavior of the fish during the test and measured the dissolved oxygen
concentration using a dissolved oxygen sensor until all the test subjects had died and the
test ended.

2.4. Determination of Tail-Beat Frequency

To ensure the well-being of the specimen, it is imperative to transfer it promptly
from the circulating water aquaculture tank to the transport container to ensure optimal
comfort levels. The tail-beat frequency of the specimens was measured at various intervals
based on temperature. These intervals consisted of 0–1 min (early), 2–3 min (middle), and
4–5 min (late). The average number of tail fin movements per minute was calculated as the
tail-beat frequency.

2.5. Relate Index

The oxygen consumption rate was measured using closed respirometry [24]. The term
“Oxygen consumption rate” refers to the volume of oxygen consumed per hour and is
determined using formula (1). “Don” represents the concentration of dissolved oxygen in
the transportation container throughout a specific period (mg·L−1), where “n” denotes a
specific hour after the initiation of the experiment, “v” represents the volume of the sealed
tank (L), and “w” denotes the body mass of the juvenile largemouth bass (g). The critical
oxygen threshold (mg·L−1) is the concentration of dissolved oxygen that corresponds to
the beginning of a consistent reduction in the oxygen consumption rate of the test subject.
During an experiment, the average oxygen consumption rate (mg·g−1·h−1) is calculated
from the start of the experiment until the critical oxygen threshold. Formula (1) is used to
calculate this value. The time taken to reach the critical oxygen threshold is denoted by
“t” (h). If the test subject dies, the dissolved oxygen concentration at the time of death is
called the death concentration (mg·L−1). In order to ensure accurate measurements, we
confirmed the absence of microbial respiration by measuring dissolved oxygen in a sealed
tank without fish [25].

Ro =
(DOn+1 − DOn)×v

w × t
, (1)

2.6. Statistical Analysis

The results were analyzed using the SPSS 23.0 statistical software package. Experimen-
tal data were expressed as mean ± SEM (standard error of the mean). A one-way analysis
of variance was used to analyze the tail-beat frequency and oxygen consumption rate,
followed by Duncan’s multiple range tests to identify specific differences between pairs of
means. We referred to the measurement method in [26] to determine the critical oxygen
threshold (Pcrit) for this experiment. Specifically, a piece-wise regression was conducted on
the oxygen consumption rate measurements every hour; when the result was significant
between both points, the second was regarded as Pcrit (p < 0.05).

3. Results
3.1. Effects of Cooling on Juvenile Largemouth Bass Behavior and Tail-Beat Frequency

The experiment conducted aimed to investigate the effects of temperature variation
on fish behavior. The results indicated that a decrease in water temperature from 23 ◦C
to 20 ◦C did not significantly affect fish behavior. The fish remained stationary at the
bottom of the water tank or swam occasionally, irrespective of whether the cooling was
direct or uniform. However, when the temperature was acutely cooled to 15 ◦C, the
fish demonstrated continuous slow behavior that persisted throughout the experiment.
Nonetheless, there was no marked change in their behavior when uniformly cooled to
15 ◦C. Conversely, when the temperature was acutely cooled to 10 ◦C, there was a significant
increase in abnormal behavior among the subjects. These included heightened swimming
activity, attempts to leap out of the water surface, and loss of balance in their bodies.
Similarly, when uniformly cooled to 10 ◦C, the subjects briefly lost their balance. Lastly,
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when the temperature was rapidly cooled to 5 ◦C, the subjects attempted to leap out of the
water surface but ultimately became motionless at the bottom of the tank. They showed
minimal gill movement and no response when lightly touched on their bodies. Under
uniform cooling conditions at 5 ◦C, only immobility at the bottom with no response to light
touches was observed.

The impact of rapid and uniform cooling on the tail swing frequency of largemouth bass is
illustrated in Figure 2. As demonstrated in Figure 2a, when the temperature drops rapidly to 5
and 10 ◦C, the tail-beat frequency at the outset significantly increased compared with that at
15 and 20 ◦C (p < 0.05) with an average value of 1.11 ± 0.21 and 1.26 ± 0.19 Hz, respectively.
Nonetheless, the tail-beat frequency in the mid and late stages tended to approach zero. This
was due to the loss of balance in the fish’s body and resting on the bottom. The tail-beat
frequency in the early stage was significantly (p < 0.05) higher than that at 20 ◦C, and the
tail-beat frequency in the middle and late stages decreased with the increase in adaptation time,
but it was higher than other temperatures. When the temperature dropped quickly to 20 ◦C, the
tail wagging frequency was lower than the other temperatures, as the temperature was close
to the temporary water temperature, and the juvenile largemouth bass were not affected by
the temperature change. Figure 2b demonstrates the tail-beat frequency for uniform cooling.
The tail-beat frequency of the test subjects was not affected by uniform cooling, indicating that
controlling the temperature change rate is beneficial for largemouth bass to adapt to different
transport temperatures.
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Figure 2. Effect of different cooling methods on the tail-beat frequency of largemouth bass: (a) acute
cooling and (b) uniform cooling. The same letter indicates no significant difference (p > 0.05); capital
letters indicate different periods of the same temperature; and lowercase letters indicate different
temperatures at the same time.

3.2. Effects of Temperature and Dissolved Oxygen on Juvenile Largemouth Bass
3.2.1. Effects of Temperature and Dissolved Oxygen on Oxygen Consumption Rate

The present study investigates the effect of transport temperature on the average
oxygen consumption rate of juvenile largemouth bass. Figure 3 displays the results of
this study, which reveal that the average oxygen consumption rate increased with rising
temperatures. Specifically, the rate increased from 0.19 ± 0.02, 0.18 ± 0.02, 0.47 ± 0.07,
to 0.52 ± 0.08 mg·g−1·h−1 at 5, 10, 15, and 20 ◦C, respectively. It was found that the
average oxygen consumption rate at 15 and 20 ◦C was significantly higher than at 5 and
10 ◦C (p < 0.05). The rate increase was especially pronounced between 10 and 15 ◦C, with
the latter being 2.6 times higher than the former. Figure 4 presents the oxygen consumption
rate at different dissolved oxygen concentrations. It was observed that the rate continued
to decrease as the dissolved oxygen concentration decreased under the conditions of 5, 10,
15, and 20 ◦C. These findings suggest that transport temperature plays a crucial role in
determining the oxygen consumption rate, with higher temperatures leading to an increase
in oxygen consumption rate.
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Figure 4. The oxygen consumption rate of largemouth bass at different dissolved oxygen concen-
trations: (a) oxygen consumption rate of 5 ◦C, (b) oxygen consumption rate of 10 ◦C, (c) oxygen
consumption rate of 15 ◦C, and (d) oxygen consumption rate of 20 ◦C. The oxygen consumption rate
at each data point in the figure corresponds to different levels of dissolved oxygen concentration, and
the curve is derived through linear regression analysis of the relationship between dissolved oxygen
concentration and oxygen consumption rate.
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Figure 5 depicts the critical threshold of oxygen and the concentration at death for
juvenile largemouth bass at different transport temperatures. The critical oxygen thresholds
at 5, 10, 15, and 20 ◦C were 1.12 ± 0.25, 1.15 ± 0.09, 1.61 ± 0.04, and 1.90 ± 0.12 mg·L−1,
respectively. The Pcrit demonstrated a decreasing trend as the temperature decreased, with
5 and 10 ◦C being significantly lower (p < 0.05) than 15 and 20 ◦C. The corresponding
death concentrations at 5, 10, 15, and 20 ◦C were 0.58 ± 0.22, 0.54 ± 0.09, 0.48 ± 0.10, and
0.62 ± 0.31 mg·L−1, respectively. No significant difference was observed among the
different temperatures (p > 0.05).
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3.2.2. Effect of Temperature and Dissolved Oxygen on Behavior

Table 1 presents the results of an experiment that examined the effects of decreasing
concentrations of dissolved oxygen on the behavior of largemouth bass. The experiment
observed that at temperatures of 5, 15, and 20 ◦C, no abnormal behavior was observed at
the critical oxygen threshold. However, at 10 ◦C, some test subjects exhibited abnormal
behavior, including floating heads and increased swimming. As the concentration of
dissolved oxygen further decreased to 0.72, 0.90, and 1.49 mg·L−1 at 5, 15, and 20 ◦C,
respectively, the experimental subjects exhibited abnormal behavior, such as increased
swimming, floating heads, and gill movement. Moreover, at 10 ◦C, when the dissolved
oxygen concentration ranged from 0.99 to 0.61 mg·L−1, the test subjects remained stationary
in the water. It is important to note that if the dissolved oxygen concentration continued to
fall, similar abnormal behavior would be observed as in the other temperatures.

Table 1. Description of abnormal behavior of largemouth bass after Pcrit.

Temperature ◦C Oxygen Level mg·L−1 Behavior Description

20
2.02 to 1.49 Normal
1.49 to 0.62 Increased swimming, floating head, gill movement amplitude and frequency

15
1.65 to 0.90 Normal
0.90 to 0.54 Increased swimming, floating head, gill movement amplitude and frequency

10
1.22 to 0.99 Increased swimming, floating head
0.99 to 0.61 Standing still in the water
0.61 to 0.48 Increased swimming, floating head, gill movement amplitude and frequency

5
1.41 to 0.72 Normal
0.72 to 0.62 Floating head and gill movement increased in amplitude and frequency
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4. Discussion

Lowering temperature before transport is essential to reduce fish metabolic intensity and
prevent the deterioration of water quality [27]. However, as shown in this study, acute cooling
can lead to abnormal behaviors such as increased swimming, attempts to jump out of the water,
and loss of balance. These changes in behavior are due to the impact of rapid temperature
changes on the membrane excitability and synaptic transmission sensitivity of fish, which can
negatively affect the normal functioning of the central nervous system [28,29]. Additionally,
in a study of Atlantic salmon (Salmo salar), acute cooling from 8 to 1 ◦C significantly changed
cardiorespiratory physiology and swimming capacity compared with those acclimated at
1 ◦C [25]. Acute cooling can damage the plasma membrane of fish, as demonstrated in a study
of killifish (Fundulus heteroclitus) [30]. However, controlling the cooling rate can improve the
adaptability of plasma membrane lipids, helping fish maintain the function of ion transport
regulation and adapt to temperature changes to reduce abnormal behaviors [31]. In this study,
uniform cooling from 1 ◦C per hour to 20, 15, 10, and 5 ◦C had no significant effect on the
tail-beat frequency of largemouth bass.

Several studies have demonstrated that observing fish behavior can effectively aid
in managing water quality and assessing fish living conditions in aquaculture [9,32,33].
Tail-beat frequency is a crucial metric in monitoring the physiological status of fish and
evaluating the impact of environmental changes on them [34]. In Bartolini’s study [35],
the effect of ethanol on zebrafish (Danio rerio) tail-beat frequency was investigated, and
the results revealed that a high ethanol concentration significantly reduces fish movement,
indicating ethanol’s adverse effect. In another study, Xiao calculated the tail-beat frequency
of crucian fish exposed to three glyphosate concentrations, and the results indicated that
this index can be used to monitor environmental changes and their impact on fish [36].
Additionally, this study revealed that largemouth bass’s tail-beat frequency significantly
increases when the temperature rapidly drops to 20, 15, 10, and 5 ◦C. Thus, the tail-beat
frequency can be used as an evaluation index to regulate cooling rates and mitigate adverse
temperature effects when assessing the impact of cooling on largemouth bass.

The oxygen consumption rate of fish is directly influenced by temperature and reflects
all the biochemical processes in fish [37]. Within an appropriate temperature range, fish
demonstrate a rapid increase in the rate of oxygen consumption. For instance, the Mar-
cian fish (Tor tambroides) exhibits a four-fold increase in oxygen consumption at 30 ◦C as
compared with 28 ◦C, which indicates that 30 ◦C is the optimal temperature for normal
physiological activities in this species [38]. Our study results demonstrate that temperature
significantly impacts the average oxygen consumption rate of juvenile largemouth bass,
with the rate at 20 ◦C being significantly higher than at 5 and 10 ◦C (p < 0.05). Moreover,
15 ◦C is 2.6 times higher than at 10 ◦C. It is noteworthy that the normal physiological activ-
ity of juvenile largemouth bass can be maintained above 15 ◦C, as per other research [39].
Therefore, the transportation temperature of 15 ◦C is suitable for juvenile largemouth bass
as it facilitates their normal respiratory metabolism. However, during uniform cooling, it
was observed that largemouth bass experienced an imbalance and reduced responsiveness
to touch as the temperature dropped to 5 and 10 ◦C, respectively. These findings align
with Wang’s research [40], which showed that juvenile largemouth bass exhibit abnormal
behaviors such as loss of balance, abnormal breathing, struggling, split gills, and reduced
transportation survival rates when the temperature drops to 10 ◦C and 4 ◦C. These results
suggest that excessively low temperatures can have a detrimental effect on fish.

The respiratory metabolism of fish is impacted by the levels of oxygen present in their
environment [17,20]. Fish that maintain a consistent oxygen consumption rate, regardless
of changes in dissolved oxygen concentrations, are called “oxygen conformers”. In contrast,
those that exhibit a decrease in oxygen consumption rate with a decrease in dissolved
oxygen concentration are known as “oxygen regulators” [41]. As dissolved oxygen levels
decline, fish may display symptoms of hypoxia and transition from being “oxygen regula-
tors” to “oxygen conformers”. For instance, when the levels of dissolved oxygen drop to
1.9 and 2.6 mg·L−1 at temperatures of 15 and 20 ◦C, respectively, the Yellowtail Kingfish
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(Seriola lalandi) shifts from being an “oxygen regulator” to an “oxygen conformer”, indicat-
ing the onset of hypoxia [26]. Our study on juvenile largemouth bass showed that their
oxygen consumption rate remains relatively stable when the dissolved oxygen concentra-
tion is sufficient. However, the oxygen consumption rate declines when this concentration
falls below a certain point, known as Pcrit, indicating the onset of hypoxia. This has been ob-
served in other fish species, such as Atlantic salmon, which also exhibit a decline in oxygen
consumption rate as the dissolved oxygen concentration falls [17]. Hypoxia triggers fish
cells to increase the synthesis of reactive oxygen species (ROS), leading to oxidative stress,
which can have a detrimental effect on the growth and survival of fish [42]. Therefore, it is
essential to maintain the dissolved oxygen concentration adequately.

The effect of temperature on the tolerance of fish to hypoxia is significant. Lower
temperatures can slow down metabolic rates and increase oxygen saturation concentration
in water, which can delay hypoxia damage in fish. Studies have shown that increasing
temperature in low-oxygen environments can lead to the apoptosis of liver and gill tissues
of juvenile largemouth bass, resulting in a decline in hypoxia tolerance [43]. This research
examined Pcrit levels for juvenile largemouth bass at 5, 10, 15, and 20 ◦C and found that
these thresholds were 1.12 ± 0.25, 1.15 ± 0.09, 1.61 ± 0.04, and 1.90 ± 0.12 mg·L−1, indicat-
ing increased hypoxia tolerance that is temperature-dependent. Furthermore, this study
observed changes in behavior such as surfacing, increased frequency and amplitude of gill
movement, and abnormal swimming by juvenile largemouth bass under hypoxia, which
attempt to augment oxygen intake and adapt to a hypoxic environment during transport.
These hypoxia-induced changes in behavior are similar across various fish species, includ-
ing tilapia (Oreochromis niloticus), zebrafish, and Dover sole (Solea solea) [44–46]. Therefore,
it is crucial to oxygenate the environment during transportation when the dissolved oxygen
concentration drops to the Pcrit of the corresponding temperature. Additionally, one should
observe abnormal behaviors such as surfacing, increasing frequency and amplitude of gill
movement, and abnormal swimming to prevent hypoxia’s impact on juvenile largemouth
bass during transportation.

5. Conclusions

Compared with fish at the farm, live transport, including the effects of cooling and
hypoxia, represented the main stressor in our study. The cooling method, temperature,
and oxygen levels likely contributed to the effect on the behaviors and metabolism of
juvenile largemouth bass. It was found that keeping transport temperatures low can lead
to a decrease in the respiratory metabolism and Pcrit of juvenile largemouth bass while
enhancing their hypoxia tolerance. Nevertheless, it is worth noting that abrupt temperature
fluctuations may have a significant impact on the tail-beat frequency and trigger unusual
behavior. In addition, the unusual behavior and respiration metabolism found after Pcrit,
which caused by hypoxia. We demonstrate that behavioral and respiratory metabolism can
reflect the effects of temperature and dissolved oxygen on largemouth bass. Therefore, to
reduce the effects of cooling stress and improve hypoxia tolerance, we suggest transporting
juvenile largemouth bass at an optimal low temperature (15 ◦C). At the same time, we
suggest using uniform cooling to reduce temperature and supervising behaviors and
oxygen levels (above Pcrit).
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