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Abstract: Frass–the by-product of the larva meal industry–was recently shown to be a sustainable
ingredient for use in diets of several fish species. Additionally, because of its possible immunomodu-
latory activity and anti-microbial properties, frass may have great potential as an organic method of
pathogen control in aquaculture. Five diets containing 0, 5, 10, 20 and 30% frass from black soldier
fly larvae, Hermetia illucens, were fed to channel catfish (5.24 ± 0.04 g) in quadruplicate aquaria to
apparent satiation twice daily. At the end of the 10-week feeding trial, blood samples were collected
from all groups to measure hematological and immune parameters, and to determine the effects of
dietary frass on resistance to Flavobacterium covae infection. Hematological parameters (red blood
cell count, hemoglobin, and hematocrit)—but not white blood cell count—were improved with the
inclusion of frass. Serum glucose levels were significantly lower in fish on the diet with frass than fish
on the diet without frass. Fish fed the highest dietary levels of frass (30%) had a significantly higher
serum cholesterol level than fish on the control diet. Serum complement activity was significantly
higher in fish on diets containing frass at levels of 10% and 20%. No significant differences were
observed in other measure serum components including albumin, alkaline phosphatase, alanine
aminotransferase, amylase, calcium, phosphorus, potassium, total protein, globulin, thyroxine and
lysozyme activity. Even though overall mortality was low (0–17%), fish on the diets containing
frass at levels 20% or more showed significantly higher survival than that of control fish or fish on
lower levels of dietary frass. The use of frass in the catfish diet may prove beneficial by improving
hematological parameters, and select serum immune effectors, and the overall resistance of juvenile
channel catfish against F. covae infection.

Keywords: insect larvae frass; alternative feeds ingredient; catfish; immune responses; disease resistance

1. Introduction

The channel catfish, Ictalurus punctatus, industry is a well-established aquaculture
industry in the United States [1]. Economically, the channel catfish industry alone con-
tributed about $447 million USD in sales in 2022 [2]. Catfish are relatively hardy and highly
adaptable to a wide range of environmental conditions and culture systems. However,
increasing the production of channel catfish and other farmed aquatic animals for human
consumption leads to intensification and the subsequent magnification of fish stressors,
which can heighten the risk of disease. Disease-related mortalities are considered a major
threat to aquaculture production and account for tremendous annual economic losses [3,4].
The interplay between nutrition and the immune system is well recognized. Therefore, im-
proved feeding regimes, together with the continuous enhancement of fish immunity, will
have a great impact on fish growth and profitability throughout the production cycle [5].

In recent years, insects have received wide attention as a potential source of protein
both for humans and livestock. Insect-based protein meals can be used as a more sustainable
alternative to conventional protein (fish or plant protein meals) used in aquaculture [6–9].
The most promising, well-studied candidates for industrial feed production are black sol-
dier fly larvae, yellow mealworms, silkworms, grasshoppers, and termites [10,11]. The
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production of insect-based feed requires less space and natural resources than traditional
farm animals, while also valorizing organic wastes, which reduces landfill usage and green-
house gas emissions [12]. Their successful use as a partial replacement for fishmeal has been
studied in several fish species [13–17]. Following the harvest of the larvae, considerable
amounts of the larval by-product, “frass”, is left behind. We recently demonstrated that
larval frass from the by-product of black soldier fly larvae (BSFL) has a growth-promoting
effect on channel catfish through increasing palatability and feed intake [18]. Besides
its promising value as a feed ingredient for several fish species, such as channel catfish
(Ictalurus punctatus) [18,19], hybrid tilapia (Oreochromis niloticus × O. mozambique) [20], and
Florida Pompano (Trachinotus carolinus L.) [21], frass contains abundant nutrients, chitin—a
naturally occurring biopolymer from invertebrate shells—and beneficial microbes [22,23].
In fact, the use of frass in tilapia diets have shown to be beneficial by improving innate
immune components and subsequently, the resistance of hybrid tilapia against bacterial
infection [20] as well as increasing the serum antibacterial effect of Pacific white shrimp,
Litopenaeus vannamei, against Vibrio parahemolyticus [24].

Due to concerns regarding antibiotic resistance, costs, and the residue accumulation
of antibiotics, the past decade has seen a search for alternatives to antibiotics. Numerous
strategies have been evaluated to limit antibiotic usage, some of which may serve as
functional dietary supplements in commercial fish feeds. Many substances from a variety
of sources (bacterial components, chemical agents, animal, plant extracts, etc.) have been
studied as prospective immunostimulants for fish [25,26]. Recent advances in immune-
nutrition studies have revealed that some nutrients are linked to the immune status of
fish [27]. Non-specific defense mechanisms are rapidly activated by immuno-stimulants
and can be rapidly readied to protect fish against pathogens [28]. Thus, one of the most
promising methods for controlling diseases in a sustainable aquaculture industry involves
strengthening the defense mechanisms of fish through the prophylactic administration of
immunostimulants.

The current manuscript is an extension of a growth trial of dietary larval frass that
was previously reported [18]. Five diets containing 0, 50, 100, 200 and 300 g frass per
kg diet as partial replacements of a combination of soybean meal, wheat short and corn
meal on an equal protein basis were fed to channel catfish (5.24 ± 0.04 g) in quadruplicate
aquaria twice daily to apparent satiation. Besides its promising value as a feed ingredient
for several fish species, including catfish, frass could serve as potential immunomodulatory
functional feed ingredient due to the presence of bioactive components and beneficial
microbes. This article expands on that trial to test the effect of the dietary inclusion of BSFL
frass on the hematology, blood chemistry, immune system and susceptibility of channel
catfish to columnaris disease.

2. Materials and Methods
2.1. Experimental Fish

Marion strain channel catfish, Ictalurus punctatus, fingerlings were spawned and
maintained at the USDA-ARS, Aquatic Animal Health Research Laboratory (Auburn, AL,
USA) on commercial fry and fingerling diets and were acclimated to the experimental basal
diet for 2 weeks before stocking. At the end of the acclimation period, fish (average weight
of 5.24 ± 0.04 g) were randomly stocked into 20, 110 L aquaria at a density of 50 fish per
aquarium. The aquaria were supplied with flow-through dechlorinated, heated (28 ◦C) city
water with a flow rate of about 0.7 L/min. Water was continuously aerated using air stones.
Water temperature and dissolved oxygen in three randomly chosen aquaria were measured
once every other day in the morning, using a YSI model Pro DO meter (Yellow Spring
Instrument, Yellow Spring, OH, USA). During the trial, the water temperature averaged
26.8 ± 1.12 ◦C, and the dissolved oxygen averaged 6.35 ± 0.53 mg/L. The photoperiod was
maintained at a 12:12 h light/dark schedule.
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2.2. Experimental Diets, Feeding and Sampling

A nutritionally complete, practical basal diet was formulated to contain approximately
31.5% crude protein and 6.2% lipid based on feedstuff values reported in NRC [29] (Table 1).
Five diets containing frass (0, 5, 10, 20 and 30%) as partial replacements of a combination
of soybean meal, wheat short and corn meal on an equal protein basis were prepared.
Frass from black soldier fly, Hermetia illucensas, fed dried distiller’s grain with solubles
(DDGS), was donated from EnviroFlight LLC, Yellow Springs, OH, USA. Carboxymethyl
cellulose (CMC) was added to all diets as a binding agent. Dry ingredients were thoroughly
mixed for 10 min in a Hobart mixer before the oil was added. After the oil was diffused,
approximately 300 mL of deionized water per kg of the diet was added. The moist mixture
was extruded through a 3 mm diameter die in a Hobart meat grinder. The resulting moist
pellets were air-dried at room temperature to a moisture content of about 10%. Pellets were
ground into small pieces, sieved to obtain approximate sizes and stored frozen in plastic
bags at −20 ◦C until fed. Nutritive value and fatty acid profile of black soldier fly larval
frass used in the experiment is shown in Table 2. Fish in four randomly assigned aquaria
were fed one of the five experimental diets twice daily (between 07:30 and 08:30 h, and
15:00 and 16:00 h) to apparent satiation for 10 weeks.

Table 1. Percentage composition of experimental diets.

Experimental Diets (%) 1

1 2 3 4 5

Menhaden fish meal 8 8 8 8 8
Soybean meal 45 44 43 41 39

Frass -- 5 10 20 30
Wheat short 24 20.4 16.9 9.8 2.5
Corn meal 14 13.8 13.5 13.0 12.8

Corn oil 4 3.8 3.6 3.2 2.8
Dicalcium phosphate 1 1 1 1 1

CMC 3 3 3 3 3
Vitamin premix 2 0.5 0.5 0.5 0.5 0.5
Mineral premix 3 0.5 0.5 0.5 0.5 0.5

CMC = carboxymethyl cellulose. Frass is a by-product of the black soldier fly (Hermetia illucens) larva meal
industry. 1 Diets 1, 2, 3, 4 and 5 contained 0, 5, 10, 20 and 30% frass, respectively. 2 Vitamin premix, diluted in
cellulose, provided by following vitamins (mg/kg diet): vitamin A (520,400 IU/g), 7.7; vitamin D3 (108,300 IU/g),
18.5; vitamin E (250 IU/g), 200; vitamin K, 10; thiamin, 10; riboflavin, 12; pyridoxine, 10; calcium pantothenate, 32;
nicotinic acid, 80; folic acid, 2; vitamin B12, 0.01; biotin, 0.2; choline chloride, 400; and L-ascorbyl-2-polyphosphate
(35% vitamin C activity), 172. 3 Trace mineral premix provided by following minerals (mg/kg diet): zinc (as
ZnSO4_7H2O), 150; iron (as FeSO4_7H2O), 40; manganese (as MnSO4_7H2O), 25; copper (as CuCl2), 3; iodine (as
Kl), 5; cobalt (as CoCl2_6H2O), 0.05; and selenium (as Na2SeO3), 0.09.

Table 2. Nutritive value and fatty acid profile of experimental Hermetia illucens larval frass.

Nutritive Value (%)

Moisture 7.2
Protein 21.6

Fat 6.3
Ash 9.3
Fiber 7.0
Starch 35.0

Fatty acid profile (% of crude fat)
C12:0 Lauric acid 0.2

C14:0 Myristic acid 0.1
C16:1 Palmitic acid 13.7
C17:0 Margaric acid 0.1

C18:0 Stearic acid 2.5
C18:1 Oleic acid 28.3
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Table 2. Cont.

Nutritive Value (%)

C18:2 Linoleic acid 50.5
C18:3 Alpha Linoleic acid 1.3

C20:0 Arachidic acid 0.5
C20:1 Eicosenoic acid 0.7
C20:2 Eicosnoic acid 0.3

C20:3 Eurcostrienoic acid 0.2
C20:5 Eicosapentaenoic acid 0.2

C24:0 Lignoceric acid 0.3
C22:6 Docosahexaenoic acid 0.2

2.3. Hematological Assay

At the end of the feeding period, four fish were randomly chosen from each tank and
netted into a sedating dose of 150 mg/L tricaine methanesulfate (MS-222) for 1–5 min.
Blood samples were collected from the caudal vasculature with dried heparinized (100 IU)
tuberculin syringes (22–26 gauge, 3/8” needle) for hematological assays. Red and white
blood cell counts were performed in duplicate for each sample by diluting whole blood
(1:10,000) and enumerating in a Spencer Bright Line hemacytometer. The hematocrit of each
fish was determined using the microhematocrit method [30]. Hemoglobin was determined
using the cyanomethemoglobin method (Point Scientific, St. Louis, MO, USA). Hemoglobin
values were adjusted using the cyanomethemoglobin correction factor for channel catfish
described by Larsen [31]. After the blood sampling, fish were killed in 300 mg/L MS-222.

2.4. Serum Biochemical Parameters

An additional four fish per tank were bled using non-heparinized tuberculin syringes
and allowed to clot at 4 ◦C overnight. Serum samples were collected following centrifuga-
tion and stored at −80 ◦C until used for the determination of serum biochemical parameters
(albumin, alkaline phosphatase, alanine aminotransferase, amylase, calcium, phosphorus,
glucose, potassium, total protein, globulin, cholesterol and thyroxine) and nonspecific
immune parameters (lysozyme assay and complement activity assay). Serum chemistry
was performed using an Abaxis, VetScan VS2 analyzer (Zoetis, Parsippany, NJ, USA).
T4/cholesterol profile rotors were used to assay the serum cholesterol and thyroxine levels.
For the rest of the plasma chemistry profiles, comprehensive diagnostic reagent rotors
were used.

2.5. Nonspecific Immune Responses

Lysozyme activity was performed as described in Yildirim-Aksoy et al. [32]. Serum
from each of the four fish per tank was assayed in duplicate for lysozyme activity. Serum
lysozyme activity was determined by the method of Litwack [33], as modified by Sankaran
and Gurnani [34], by measuring the lytic activity of the catfish serum against bacterium
Micrococcus lysodeikticus (Sigma Chemical Co., St. Louis, MO, USA).

Serum natural hemolytic (alternative pathway) complement activity was adapted
from Sunyer and Tort [35] and modified for use in microtiter plates as described in Yildirim-
Aksoy et al. [32], except 0.85% phosphate-buffered saline (PBS) containing MgCl2, CaCl2
and gelatin (PBS3+) was used instead of GVB2+ as the assay solution. This assay is based
on the hemolysis of sheep erythrocyte (Remel Inc., Lenexa, KS, USA) by the comple-
ment present in fish serum. Briefly, sheep erythrocytes were washed and standardized to
5 × 107 cells/mL in PBS3+ before use. The sheep erythrocyte cell suspension was added to
the serially diluted (1:2) serum in PBS3+ in a round-bottom 96-well microtiter plate. Positive
(100% lysis) and negative controls (spontaneous lysis) were also processed in each plate
by replacing serum with distilled water and buffers, respectively. Samples were incubated
at room temperature (22 ◦C) for 1 h with regular shaking. The plates were centrifuged
at 800× g for 10 min at 4 ◦C to avoid unlysed cells. Supernatants were transferred to a
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flat-bottom microtiter plate, and the absorbance measured at 415 nm using an enzyme-
linked immunosorbent assay plate reader. Complement hemolytic activity is expressed as
an ACH50 value (Alternative Complement Hemolysis), which represents the volume of
serum necessary to produce lysis of 50% of the target cells under standard conditions, and
the results are presented in units/mL.

2.6. Bacterial Challenge

A standard frozen glycerol stock of ALG-00-530 strain of Flavobacterium covae (formerly
known as F. columnare), a genomovar II isolate, originally isolated from a diseased channel
catfish in Alabama, was used. F. covae the primary causative agent of columnaris disease in
catfish. The frozen material was inoculated into 25 mL modified Shieh broth and grown
at 28 ◦C for 24 h with shaking at 135 rpm. Following 24 h culture, 200 µL of the culture
was inoculated into 200 mL of broth and cultured at 28 ◦C (135 rpm) until optical density
reached 0.3 at 540 nm. The challenge doses were determined by diluting and plating the
culture, enumerating colonies, and calculating the CFU/mL, following standard practices.

To determine the optimum bacterial cell concentration to be use in the experimental
challenge, groups of 15 fish that were held in separate aquaria and fed the control diet for
8 weeks, were challenged with 0; 2.5 × 108; 5 × 108; 1 × 109; 2 × 109; and 4 × 109 F. covae
cells/mL. For bacterial exposure, fish were held in 15 L of aerated water containing the
challenge inoculum for 30 min before water flow was restored at 0.5 L/min. Fish were
monitored twice per day, at which time moribund and dead fish were removed. The LD50
(50% lethal dose) was calculated to be 1 × 109 cells/mL and utilized for challenging. At the
end of the 10-week feeding period, 15 fish from each aquarium with 4 replicate tanks per
diet were randomly selected and exposed to 1 × 109 cells/mL of F. covae by immersion, as
described above. Each group of fish continued to receive their respective diets. Mortality
was recorded twice daily for 7 days.

2.7. Statistical Analysis

Data were analyzed by one-way ANOVA using the general linear model. If there
was a significant F-test, subsequent comparisons of treatment means were determined
using the Dunnett’s multiple range test. Differences were considered significant at the
0.05 probability level. All statistics were performed using Graphpad Prism 9.0 (San Jose,
CA, USA).

Over-time survival data after bacterial challenge and the comparison of two group
survival curves (control vs. each level of frass) were analyzed using Graphpad Prism by
Kaplan–Meier Log Rank Survival Analysis.

3. Results

The inclusion of frass resulted in the improvement of hematological (red blood cell
(RBC) count, hemoglobin, and hematocrit) parameters (Table 3). The RBC count of fish
fed with 10% or higher frass diet was significantly (p ≤ 0.01) higher than that of the
control fish. Fish offered diets containing the highest level of frass had the significantly
(p ≤ 0.001) highest RBC counts. White blood cell (WBC; ×105/µL) count was unaffected by
dietary frass, irrespective of the inclusion level. Hemoglobin concentration and hematocrit
increased at each incremental level of dietary frass, but the values were significantly
(p ≤ 0.05) higher only at the highest dietary frass level. Values for mean corpuscular
volume (MCV; p ≤ 0.05), which define the size of the red blood cell and mean corpuscular
hemoglobin (MCH; p ≤ 0.01) and quantifies the amount of hemoglobin per red blood cell,
were significantly lower in fish fed dietary frass at levels from 10 to 30% than those of the
fish fed the control diet. The mean corpuscular hemoglobin concentration (MCHC) was
similar across all the treatments.
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Table 3. Hematological values of channel catfish fed diets containing various levels of frass for
10 weeks 1.

Dietary Levels RBC WBC Hb Ht MCV 2 MCH 2 MCHC 2

of Frass (%) ×106/µL ×105/µL (g/dL) (%) (fl) (pg) (%)

0 2.28 1.81 7.22 30.50 138.50 32.70 23.80
5 2.75 2.56 7.34 32.00 117.17 26.96 23.10
10 3.10 ** 2.63 7.70 32.75 111.32 * 25.35 ** 23.58
20 3.10 ** 2.38 7.91 34.67 113.28 * 25.75 * 22.85
30 3.28 *** 2.73 7.83 * 36.17 * 111.23 * 24.03 ** 21.66

Pooled SEM 0.399 0.363 0.369 2.229 11.277 3.191 0.798
1 RBC = red blood cell count; WBC = white blood cell count; Hb = hemoglobin; Ht = hematocrit; MCV = mean
corpuscular volume; MCH = mean corpuscular hemoglobin; and MCHC = mean corpuscular hemoglobin
concentration. Values are means of one determination per fish, four fish per tank and four tanks per treatment.
Asterisks indicate significant difference between the control and frass-fed groups. Number of asterisks represent
degree of statistically significant difference from control: *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. 2 MCV = Ht
(%)/RBC (×106) × 10; MCH = Hb (g)/RBC (×106) × 10; MCHC = Hb (g)/Ht (%) × 100.

Serum levels of albumin (ALB), alkaline phosphatase (ALP), alanine aminotransferase
(ALT), amylase (AMY), calcium (CA), phosphorus (PHOS), potassium (K), and thyroxine
(T4) were not significantly (p ≥ 0.05) different from dietary frass levels (Table 4). However,
serum glucose (GL) levels were significantly (p ≤ 0.01) lower in fish fed a diet with frass
than that of fish fed a diet without frass. Fish fed the highest dietary levels of frass (30%)
had significantly (p ≤ 0.05) higher serum cholesterol levels than fish fed a diet without
frass (control diet) (Table 4). Both serum total protein (TP) and globulin (GLOB) levels were
highest in fish fed highest the 30% dietary frass treatment; however, these differences were
not significant (Figure 1).

Table 4. Serum chemistry values of channel catfish fed diets containing different levels of frass for
10 weeks 1.

Dietary Levels
of Frass ALB ALP ALT AMY CA PHOS GL K Cholesterol T4

(%) g/dL u/L u/L u/L mg/dL mg/dL mg/dL mm/L mg/dL ug/dL

0 2.27 56.83 7.42 18.83 13.14 11.33 98.45 4.93 185.50 0.30
5 2.29 51.42 6.25 18.83 12.96 10.97 81.91 ** 5.03 213.38 0.23

10 2.27 52.83 6.42 18.33 13.02 10.40 79.67 ** 5.13 213.13 0.28
20 2.26 54.08 5.92 21.42 13.13 10.72 82.91 * 5.32 201.25 0.20
30 2.26 49.33 7.33 20.00 13.24 11.09 78.42 ** 5.18 218.25 * 0.38

Pooled SEM 0.014 2.934 0.672 1.240 0.112 0.348 7.851 0.143 10.782 0.050
1 ALB = albumin; ALP = alkaline phosphatase; ALT = alanine aminotransferase; AMY = amylase; CA = calcium;
PHOS = phosphorus; GL = glucose; K = potassium; T4 = thyroxine. Values are means of one determination per
fish, four fish per tank and four tanks per treatment. Asterisks indicate significant difference between the control
and frass-fed groups. Number of asterisks represent degree of statistically significant difference from control:
*, p ≤ 0.05; **, p ≤ 0.01.

There was no significant difference among the lysozyme activity (mg/mL) of fish in
different treatments (Figure 2). Serum complement activity (unit/mL) was significantly
higher in fish fed diets containing frass at levels of 10% (p ≤ 0.05) and 20% (p ≤ 0.01). All
fish fed the diets containing 20% and 30% frass showed significantly better survival than
those fed a diet with a lower dietary level of frass and control diet. Cumulative mortality
F. covae post-challenge was not significantly (p ≤ 0.05) different between the control diet
and 10% or lower levels of dietary frass (Figure 3). However, the overall mortality was low,
with mortality ranging from 0 to 20%.
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Figure 2. Lysozyme activity (a) and natural hemolytic complement activity (b) of channel catfish fed
diets supplemented with different levels of frass for 10 weeks. Asterisks indicate significant difference
between the control and frass-fed groups. Number of asterisks represent degree of statistically
significant difference from control: *, p ≤ 0.05; **, p ≤ 0.01. Data are presented as mean ± standard
error of means (SEM) from four replicates.
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Figure 3. Percent survival of channel catfish challenged with Flavobacterium covae fed different levels
of frass for 10 weeks. Values are means of four replicates per treatment. Asterisks indicate significant
difference between the control and frass-fed groups at p < 0.05.

4. Discussion

Hematological, biochemical and immunological indexes could be utilized to recognize
probable nutritional effects on the general health status and physiological stress responses
of aquatic animals. The effects of insect meal inclusion in the fish diet on hematological and
immunological parameters have been studied in several fish species. For example, Taufek
et al. [36] reported significantly higher hemoglobin and hematocrit in African catfish, Clarias
gariepinus, fed cricket meal than those of fish fed fish meal. However, there is no study that
has examined the effects of feeding frass on the hematological parameters of catfish. Our
results showed a clear and significant increase in hematological parameters (RBC count,
hematocrit and hemoglobin). Mean corpuscular volume (MCV), which is the average size
of the erythrocyte, and mean corpuscular hemoglobin (MCH), which is the quantity of
hemoglobin present in a single red blood cell, values were lower in fish fed dietary frass.
However, this difference was no longer significant when normalized to the hemoglobin
content per unit volume of red blood cells (mean corpuscular hemoglobin concentration
(MCHC)). Improved hematological values of fish fed dietary frass may be related to the
increased iron level in the liver of catfish, as shown in our previous study [18]. These
improved hematological values may allow blood to absorb more oxygen during periods of
reduced oxygen to maintain optimum health. Similarly, the inclusion of mealworm frass to
replace 25% commercial concentrate feed improved hematological parameters of sheep [37].
Studies with hybrid tilapia [20] and Nile tilapia [38] fed dietary frass of up to 30% and
insect meal, however, showed no influence on hematological values.

Blood parameters are important for detecting the physiological stress response (due
to factors such as temperature, photoperiod, density, salinity or nutrition) as well as the
general health of the fish. Elevated levels of ALP and ALT in the blood are most commonly
related to liver damage [39–42]. The present study showed that serum biochemical indices,
except for glucose and cholesterol, were not affected by dietary frass treatments. The
results of no influence on serum ALT and ALP activities by dietary frass suggested that
frass might not cause negative effects to liver health. ALP and ALT are enzymes found
in the liver that help break down proteins and convert proteins into energy for the liver
cells, respectively [43]. Similarly, no negative effects to the liver of hybrid tilapia fed
with up to 30% dietary frass was detected [20]. The glucose level of the treated groups
was significantly lower than that of the control group. The level of carbohydrates and
cholesterol in serum may be attributed to the level of glucose and cholesterol in diets,
respectively. In general, foods that cause blood glucose levels to rise the most are those
that are high in carbohydrates. The dietary influence in plasma biochemicals was also
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reported between cultured seabass fed an artificial feed and wild sea bass fed on natural
foods [44]. We reduced the vegetable oil in the diets while maintaining isonitrogenous and
isolipidic levels since larvae frass had 6% crude lipid, which is higher than replacement
ingredients (SBM, CM and WM). Cholesterol is the most abundant sterol in insects. This
explains the significant increase in cholesterol levels in fish fed the highest dietary inclusion
level of frass. Ekpo et al. [45] studied the content of cholesterol in the fat of the termite
Macrotermes bellicosus and the caterpillar Imbrasia belina. They found that the average
cholesterol content in the lipid fraction was 3.6%. Increased plasma cholesterol content was
reported in yellow catfish, Pelteobagrus fulvidraco, fed a diet containing BSFL meal at high
replacement levels [46].

Even though no significant differences were observed, both serum protein and im-
munoglobulin levels were highest in fish fed 30% frass. Increased serum protein level
was also observed in sheep fed a high level of mealworm frass [37]. Similarly, lysozyme
did not show any significant difference between dietary treatments, but a tendency for
higher activity in fish fed diets with frass compared to fish fed diet without frass was
observed. Henry et al. [47] observed increased lysozyme activity, albeit not significant, in
European sea bass fed mealworm meal compared to fish fed a control diet. A significant
increase in complement activity was obtained in catfish fed the diet with 10% and 20%
frass. Fish fed the diets containing 20 and 30% frass also showed better survival against
an F. covae (formerly known F. columnare) challenge as compared to the control or lower
dietary levels of frass. Complement-dependent bacterial killing is one of the most rapid
ways to eliminate an invading bacterium [48]. A significant increase in complement activity
and better survival against F. covae and Streptococcus iniae challenges was also observed in
tilapia fed the diet with 30% frass [20].

Insects are one of the richest sources of antimicrobial peptides/proteins (AMPs) [49],
might have played an important role in increasing fish resistance to F. covae infection. AMPs
have a broad range of antimicrobial activity against bacteria, fungi and viruses (reviewed
by Lei et al. [50]). Using extracts of hemolymph, antimicrobial activity has been demon-
strated in vitro against several Gram-negative bacteria [51–54], Gram-positive bacteria and
yeast [55]. In general. peptides have weak membrane permeability, thereby limiting their
bioavailability during oral administration. However, Wong et al. [56] demonstrated the
BSFL proteins can be easily absorbed by the GI tract. Serum from shrimp fed dietary frass
(20%) significantly increased the inhibition of Vibrio parahaemolyticus growth [24].

It is well known that dietary insect meal and frass have an abundance of chitin—
a fairly potent adjuvant—which is also capable of activating the immune system [57].
The benefits of dietary chitin and/or chitosan has been reported in fish and shellfish (re-
viewed by Sakai [25]). Incorporating chitin into fish diets has been reported to stimulate
macrophage activity in rainbow trout (Oncorhynchus mykiss) [25], increased lysozyme and
respiratory burst activities in common carp (Cyprinus carpio) [58] and enhanced immune
activity through the non-specific modulation of hemolytic complement activity, leucocyte
respiratory burst activity and cytotoxicity in gilthead seabream (Sparus aurata L.) [22].
Furthermore, chitin may function as a prebiotic (non-digestible by the host) by selecting
autochthonous bacteria that may have the potential to prevent the growth and colonization
of pathogenic bacteria in the digestive tract. Dietary insect meal elicits species-specific dif-
ferential responses of structural and functional dynamics in gut microbial communities [59].
Few studies have indicated that the inclusion of insect meal modulates the composition of
fish gut microbiota diets [18,60–63] and improves the distal histomorphology in catfish [19].

5. Conclusions

In conclusion, the dietary inclusion of larval frass, particularly at higher levels, appears
to be beneficial in improving hematological and immunological indexes, and in increasing
the resistance of channel catfish to F. covae infection. However, the composition of larval
frass, and thus their nutritional value, are highly dependent on the insect species [64],
the substrate used to feed the insects [65], and its preparation and processing before
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consumption [17]. Additionally, knowledge on the effect of larval frass or larvae meal
itself on the immune system is very limited. Therefore, the effects of dietary larval frass on
transcriptomics and the immunological gene expression of systemic and mucosal immunity
of fish need further investigation.
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