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Abstract: Understanding the spatial distribution of fishing activity and suitable fishing areas is
important for improving sustainable fisheries management and protecting vulnerable fish stocks.
To identify climate-related habitat changes and variations in the distribution of fishing activity for
squid-jigging vessels in the Northwest Pacific Ocean, two types (weighted arithmetic mean method,
weighted-AMM; weighted geometric mean method, weighted-GMM) of habitat suitability index
(HSI) models were developed in this study with marine environmental data at different depths.
The boosted regression tree (BRT) model was adopted to access the monthly important environmental
variables and the relative influence of the corresponding variables. The results showed that the
weighted-AMM has better prediction performance than the weighted-GMM. The suitable fishing
areas showed significant seasonal changes in both spatial location and coverage area. The hotspot
map showed that the suitable fishing area for squid-jigging vessels was located in the scope of
42◦ N∼44◦ N, 155◦ E∼170◦ E throughout the year during 2012∼2019, which suggests that high
squid-jigging fishing pressure should be given more attention in fishery management. The HSI model
also had good prediction performance for the fishery data of Chinese companies, except for June and
July. Additionally, fishing efforts could be used as alternative data for fishery research. The study
has also suggested that fishery data are restricted by spatial and temporal distribution and fishing
experience, which probably biases the results of the research.

Keywords: automatic identification system; squid-jigging vessel; Ommastrephes bartramii; boosted
regression trees model; habitat suitability index model

Key Contribution: Vessel trajectory data were used to highlight the suitable fishing area and high
fishing pressure area, and indirectly present the potential habitats for marine species.

1. Introduction

In recent years, fisheries resource management has faced many monitoring and en-
forcement challenges, particularly illegal, unregulated, and unreported (IUU) fishing activi-
ties [1]. The increase in fishing in developed and developing countries has complicated
global fisheries management. Therefore, understanding the spatial distribution and hot
spots of fishing activity is important for improving sustainable fisheries utilization and
protecting vulnerable fish stocks. Currently, fishery data, observer data, and the vessel mon-
itoring system (VMS) provide high-quality fisheries information, but these heterogeneous
data only cover a portion of fishing vessels and are not publicly available, limiting our
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results. Due to the high cost and small scope of regulation, it is difficult to comprehensively
and effectively monitor the activities of fishing vessels and the effectiveness of fisheries
management has been controversial on high seas. Thus, there is an urgent requirement for
a new type of data to complement the above issues.

The automatic identification system (AIS) provides global pelagic vessel tracking data
to quantify the behaviour of individual fishing vessel or global fishing vessels, providing
a good alternative data source for the monitoring and management of marine fishing
activities and ecological pressure assessment. AIS has been applied to mine high spatial
and temporal resolution fishing intensity information for understanding the spatial pattern
of fishing activities [2–7], and map and assess marine ecological pressures [8,9]. These
patterns generally present a spatial and temporal distribution and are related to the marine
environment [10,11]. However, few studies have investigated the spatio-temporal pattern of
squid-jigging vessel fishing activity and suitable fishing areas related to the environment in the
Northwest Pacific Ocean.

The main species fished by squid-jigging vessels is Ommastrephes bartramii in the North-
west Pacific Ocean. O. bartramii has high commercial value [12] and is important for sustain-
ing or increasing global fisheries production. The annual catch of O. bartramii is 15× 104 tons
in the Northwest Pacific Ocean [13], but squid production was unstable. Additionally,
O. bartramii is an important component in the marine food web, serving as a predator for
small marine organisms and prey for larger organisms [14]. O. bartramii are characterized
by rapid growth and high fecundity, but they have a short life cycle of only one year [15].
In particular, O. bartramii are extremely sensitive to climatic events and marine environmental
variations in the habitat [16]. Brander et al. [17] indicated that the quality of habitats for fish
has been profoundly influenced by large-scale climate variability interacting with regional
ocean conditions, which indirectly impacts the human management of fisheries resources.
The current management measure in the North Pacific Ocean is boarding inspection. There
are no other management measures and no quotas. Observers or offshore law enforcement
fleets should be pertinently deployed for closely monitoring fishing hotspots and ecologically
vulnerable areas, and even establishing protected areas, which can significantly enhance pro-
tection efficiency under limited regulatory conditions. Therefore, understanding the spatial
pattern of fishing activity for squid-jigging vessels is essential for the long-term management,
effective conservation and efficient utilization of O. bartramii stocks.

The habitat suitability index (HSI) has widely been used in marine species to indicate
the target habitat suitability of target species [18]. Currently, there are two main empirical
algorithms for HSI modeling, which are the arithmetic mean method (AMM) [19] and the
geometric mean method (GMM) [20], respectively. In this study, the weighted-AMM and
the weighted-GMM were used to develop the two types of HSI models, and two different
models were compared for selecting a type of better performance. For obtaining the HSI
model of a better performance, the boosted regression tree (BRT) model was applied to
obtain important environmental variables and their weights. The better HSI model was
adopted to evaluate the correlation between fishing activity and the environment and to
predict the suitable fishing areas for squid-jigging vessels in the Northwest Pacific Ocean.
Hotspot maps were plotted to identify the high-pressure fishing area throughout the year.
To address the potential application of the fishing effort in the habitat suitability index for
O. bartramii, the prediction validation of fishery data and fishing effort data was compared.
The results could help to manage high-pressure areas under limited regulatory power, and
support the use of fishing effort data in fishery resource applications.

2. Materials and Methods
2.1. Study Area

The activity areas of squid-jigging vessels are divided into two parts by approximate
170◦ E longitude lines (Figure 1). A large number of fishing vessels are concentrated in the
western area at 35◦ N∼50◦ N, 140◦ E∼170◦ E, and only a few fishing vessels occur in the
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eastern area. Thus, we chose the western area with 35◦ N∼50◦ N, 140◦ E∼170◦ E as the
study area.
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Figure 1. Spatial distribution of traditional fishing ground for the winter–spring cohort of neon flying
squid in the North Pacific Ocean.

2.2. Fishing Effort Data and Fishery Data

Fishing effort data were downloaded from Global Fishing Watch (GFW, https://
globalfishingwatch.org/, accessed on 6 June 2022). The original data include the Maritime
Mobile Service Identity (MMSI), type of vessel, date, latitude, longitude, and fishing effort.
The spatial and temporal scales of the original data were 0.1◦ × 0.1◦ and daily, respectively.
The GFW project has developed convolutional neural network (CNN) algorithms to dis-
tinguish fishing from non-fishing activities and identify the fishing effort distribution for
different fishing gear types at high spatial and temporal resolution [5,21]. Information on
squid-jigging vessels in the study area was selected based on the type of vessel. The tempo-
ral range of the dataset is from January to December during 2012∼2020. The fishing effort
of squid-jigging vessels is at a low level from January to May and in December in each year
(Figure 2). Thus, the fishing effort data from June to November were adopted in this study.
Previous studies have suggested that the optimal spatial and temporal scales for studying
O. bartramii stocks are 0.5◦ × 0.5◦ and monthly, respectively [22,23]. Therefore, the spatial
and temporal scales of the original fishing effort data were processed into 0.5◦ × 0.5◦ and
monthly, respectively.

The fishery data were from the commercial fishing data of squid-jigging fishery in
the North Pacific Ocean of China. However, we only obtained the data for 2018 due to
confidentiality. Commercial fishing data include date (year-month-day), latitude, longitude,

https://globalfishingwatch.org/
https://globalfishingwatch.org/
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and catch (unit: ton). The spatial and temporal scales of the fishery data were also integrated
as 0.5◦ × 0.5◦ and monthly, respectively.
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Figure 2. Temporal distribution of fishing effort for squid-jigging vessel from 2012 to 2020.

2.3. Marine Environmental Data

Previous studies have emphasized that the distribution of O. bartramii stocks is influ-
enced by multiple environmental variables [15,24–30]. Several environmental variables
were selected as predictor variables in this study (Table 1). Furthermore, diel vertical
swimming is an extremely important habit of O. bartramii, and it mainly inhabits the ther-
mocline at depths of 0∼40 m at night. During the day, O. bartramii lives in deep water, and
its maximum depth of swimming is approximately 300 m [31]. Hence, we downloaded
environmental data from 0∼300 m depth with an interval of 50 m to explore the impact of
environmental factors in deep water on squid-jigging vessels (Table 1).

Table 1. Marine environmental variables.

Variables Abbreviation Units

Water temperature (dm) Td
◦C

Chlorophyll-a (dm) Chlad mg ·m−3

Salinity (dm) Sd 10−3 (dimensionless)
Primary production (dm) PPd mg ·m−3 · day−1

Dissolved oxygen (dm) DOd mmol ·m−3

Phytoplankton concentration (dm) Phycd mg ·m−3 · day−1

Sea surface high SSH m
Mixed layer depth MLD m

Eddy kinetic energy EKE m2 · s−2

d = 0, 50, 100, 150, 200, 250, 300; Unit: m.

The environmental data were downloaded from Copernicus Marine Service (https:
//resources.marine.copernicus.eu/?option=com_csw&task=results, accessed on 6 June
2022). Here, the spatial and temporal scales of the environmental data also were integrated
as 0.5◦ × 0.5◦ and monthly, respectively, to correspond to fishing effort data.

The formula for calculating eddy kinetic energy (EKE) is as follows [32]:

EKE =
u2 + v2

2
(1)

where u and v are the zonal and meridional components of the geostrophic currents,
respectively.

https://resources.marine.copernicus.eu/?option=com_csw&task=results
https://resources.marine.copernicus.eu/?option=com_csw&task=results
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2.4. BRT Model

The BRT models were constructed using two steps in this study. In the first step, BRT
models were adopted to obtain the important predictor variables that influence fishing effort
and the relative influence of these variables for each month. Here, the top six variables
with the highest relative influence were retained as monthly important environmental
variables. In the second step, the BRT models were used to assess the relative influence of
each important predictor variable for each month.

The BRT model was implemented by using the “gbm.step” function within the “gbm”
package in the R language environment. There are three important parameters in the
“gbm.step” function: learning rate (lr), tree complexity (tc), and bagging fraction (bf).
Elith et al. [33] considered that higher tree complexity and lower learning rate are the
preferable combination, and the bagging fraction is proposed to be set at 0.5∼0.75. In view
of the above conclusions, (i) the learning rate was preset to 0.01, 0.005 and 0.001, (ii) the
tree complexity was preset to 5, 6, 7, and 8, and (iii) the bagging fraction was set to 0.5.
Predictive deviance was used to measure which combination of parameters was optimal.
After the optimal parameters were selected, we used the 10-fold cross-validation to train
the model. The area under the receiver operating characteristic curve (AUC) value was
applied to determine the performance of the BRT model and select the optimal model.
Manel et al. [34] indicated that if the AUC value of a model is higher than 0.7, then the
model performance is good.

2.5. HSI Model

The monthly important environmental variables were used for modelling the HSI
models. Here, the data during 2012∼2019 were used as input data for developing the
model and the data in 2020 were used as test data for validation. SI values are assessed by
dividing the total effort for each environmental class by the maximum effort for a given
class in a specific month. The SI values were used to fit the SI curve. The SI curve fitting
formula of the environmental variable x is [35]

SIx = exp[α · (x− β)2], (2)

where α and β are parameters, which are calculated using the least squares estimation.
The Python 3.9.2 was applied for fitting SI curves.

The next step was to combine all the SI models into an HSI model. The equations of
weighted-AMM and the weighted-GMM in this study, respectively, were

HSIAMM =
1

∑n
i=1 ωi

·
n

∑
i=1

SIi ·ωi, (3)

HSIGMM =

(
n

∏
i=1

SIi
ωi

) 1
∑n

i=1 ωi , (4)

where SIi is the suitability value of i-th environmental variable; ωi is the weight of the
variable based on the relative influence (%) of different important environmental variables
according to BRT results; and n is the number of environmental variables included in
the HSI model. HSI values range from 0 to 1. The areas with HSI > 0.6, 0.2 < HSI 6 0.6,
and HSI 6 0.2 were defined as suitable, normal, and poor habitats for O. bartramii, respec-
tively [36].

The final step was to validate the HSI model. Each SI model was statistically evalu-
ated. The root mean square error (RMSE), mean absolute error (MAE), and coefficient of
determination (R2) was used to evaluate each SI model. Their formula is as follows:

RMSE =

√
∑n

i=1(yi − ỹi)
2

n
, MAE =

1
n

n

∑
i=1
|yi − ỹi|, R2 = 1− ∑n

i=1(yi − ỹi)
2

∑n
i=1(yi − ȳ)2 , (5)
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where yi is the observed value; ȳ is the average of the observed values; and ỹi is the
estimated value. The data from June to November in 2020 were used to validate the
weighted-AMM models and weighted-GMM models. Furthermore, we counted the fishing
effort and frequency of fishing activity under different HSI levels in 2020.

2.6. Suitable Fishing Areas for Squid-Jigging Vessels

The monthly average HSI values in 2012∼2019 were calculated to explore the potential
suitable areas related to environmental fishing activities for squid-jigging vessels. Persis-
tence is a measure of the number of months that a location was classified as a suitable
habitat throughout the year. The yearly HSI during 2012∼2019 was calculated, and the loca-
tions with HSI > 0.6 were classified as 1. To identify areas where favourable environmental
conditions for fishing are most stable throughout the year, persistence maps were plotted.

2.7. Evaluating O. bartramii Potential Habitat

To address whether the fishing effort could be an alternative way to understand the
habitat suitability index for O. bartramii, the prediction map in 2018 was overlaid with
fishery data and compared with fishing effort data, and the statistical index was computed
as poor, normal, and suitable habitats regions, respectively.

3. Results
3.1. Parameters and Performance of the BRT Models

The optimal parameters for the first and second BRT models are shown in Table S1
according to predictive deviance (Figures S1a–f and S2a–f). The AUC values of the monthly
BRT models in the first modelling were all greater than 0.8 (Figure 3a). The AUC values of
the monthly BRT models in the second modelling were all greater than 0.74 (Figure 3b).
The performance of monthly optimal BRT models was considered to be good [34].
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Figure 3. (a) AUC values of the monthly optimal BRT model in first modelling. (b) AUC values of
the monthly optimal BRT model in second modelling.

3.2. Relative Influence of Environmental Variables

The relative influences of important environmental variables in each month are shown
in Figure 4. The fishing effort of squid-jigging vessels has a significant seasonal preference
for oceanographic conditions. DO0 and T0 have an important influence on the distribution
of fishing activity in most months.
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Figure 4. The relative influence of important environmental variables (%) for each month.

3.3. Analysis of SI Curves

Table S2 showed that the SI model of important environmental variables for each
month has excellent statistical performance from June to November. The results showed
that the RMSE and MAE of each SI model were low, and the coefficients of determination
of the models were high, all above 0.6 (Table S2). Figure S3a–f showed the SI curves for
monthly important environmental variables. The favourable ranges of different variables
for fishing effort are shown in Table S3.

3.4. Analysis of Different HSI Models

The predicted spatial distribution maps of the HSI values for two different models
are shown in Figure 5a,b. Figure 5a,b showed that the spatial distribution of HSI values
predicted by weighted-GMM was more significantly variable relative to weighted-AMM.
The high fishing effort mainly occurred in the areas with high HSI value, and a few fishing
effort occurred in the areas with low HSI value. By comparing the two types of models, the
distribution of the areas with high HSI were similar, but they had different performances in
low-value regions, especially in July.

The Fishing Effort/Frequency Graphs (Figure 6a,b) showed the fishing activities
mainly occurred in the areas with high HSI value. As HSI increased, there was an increasing
trend in the frequency of corresponding fishing activities. The results of the weighted-AMM
model showed that the fishing effort was mainly distributed in the areas with HSI > 0.5,
with a very small percentage in the areas with HSI < 0.5. Conversely, more fishing activities
occurred in the areas with HSI > 0.5 based on weighted-GMM. The results of the weighted-
AMM model showed that 73.43% of fishing activities and 56,159.1 h of fishing efforts
occurred in the suitable habitat areas (Figure 6a). For the weighted-GMM, 52.91% of fishing
activities and 46,893.7 h of fishing effort were located in the suitable habitat areas (Figure 6b).
The predicted results of the weighted-GMM model were lower than the weighted-AMM
model results in the high value range, but higher than the weighted-AMM results in the low
value range. This indicated that the results of the weighted-GMM model underestimated
the suitable areas for squid-jigging vessel activity. Therefore, according to the previous
study [35], the weighted-AMM model was considered to have a better performance for
predicting the suitable operation areas.
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Figure 5. Monthly distribution of fishing effort for squid-jigging vessel in the Northwest Pacific
Ocean in 2020, overlaid on the HSI maps which were predicted by using weighted-AMM (a) and
weighted-GMM (b), respectively, based on environmental data from 2020.
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Figure 6. (a) Fishing effort and frequency of fishing operations in 2020 based on AMM. (b) Fishing
effort and frequency of fishing operations in 2020 based on GMM.

3.5. Spatial Distribution of Hotspots for Fishing

The prediction hotspots for squid-jigging vessels during 2012∼2019 were distributed
in the area of 40◦ N∼45◦ N in June, August, and September (Figure 7). The hotspots were
located in the northeast, which was above approximately 42◦ N in July. The hotspots
gradually extended to the south in October and November. The favourable area covered
most of the study area in November.
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Figure 7. Monthly distribution of hotspots for squid-jigging vessels during 2012∼2019.

A suitable fishing region from 2012 to 2019 was observed in the strip area of 40◦ N∼45◦ N
(Figure 8). The most suitable fishing area (cumulative frequency = 6) for squid-jigging
vessels was distributed in the scope of 42◦ N∼44◦ N, 155◦ E∼170◦ E during 2012∼2019
(Figure 8).
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Figure 8. The frequency of locations with HSI > 0.6 from June to November during 2012∼2019.

3.6. Revealing Squid Potential Habitat

The weighted-AMM model was adopted to predict the habitat map in 2018, and
overlaid with fishery data for O. bartramii. O. bartramii was mainly caught in suitable
habitat areas from August to November, but no catches in June and July were observed in
suitable habitat areas (Figure S4). A total of 58.1% of fishing activities, with a corresponding
catch of 5716.4 t, was located in suitable habitat areas (Table 2). The poor habitats yielded
very low catches and fishing efforts.

Compared to fishery data, the fishing efforts in 2018 within different habitat classes
(poor, normal, and suitable habitats) were examined. The frequency of fishing activities
in poor, normal, and suitable habitats was 5.7%, 37.9% and 56.4%, respectively (Table 2).
The fishing efforts rarely occurred in poor habitats (Figure S5). These findings suggest a
consistent spatial distribution of fishing activities, catch, and habitat quality, implying the
excellent prediction performance of the HSI in our model for fishing habitats.

Table 2. Yield and frequency of catch and fishing effort within different habitat classes.

Habitat Class
Effort Catch

Yield (h) Frequency (%) Yield (t) Frequency (%)

Poor 866.6 5.7 194.9 10.8
Normal 11,116.5 37.9 604.5 31.1
Suitable 34,355.5 56.4 5716.4 58.1

4. Discussion

Understanding the spatial distribution and hot spots of fishing activity is important for
improving sustainable fisheries management and protecting vulnerable fish stocks. In this
paper, we explore the spatial ecology of the distribution of squid-jigging vessels fishing in
the Northwest Pacific Ocean by constructing the HSI models of fishing distribution from
satellite-based AIS data from GFW. The BRT was used to determine which environmental
variables were selected and their weights based on their relative importance in the HSI
modeling. The results provide an approach to identify areas in the Northwest Pacific Ocean
where favorable environmental conditions for squid-jigging vessels fishing are most stable.
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4.1. Model Construction

In the previous literature, the input variables in the HSI model were limited to a few
surface oceanography factors. We described the distribution of squid-jigging vessels as
characterized by a set of environmental and statistical variables in this study. Studies have
shown that the vertical structure of variables such as temperature profoundly influences
the distribution of squid in the water column [37]. Incorporating a third dimension relating
to the vertical positions of marine species into the models could improve their precision
and utility [38,39].

Sakurai et al. [40] indicated that different oceanographic conditions may lead to var-
ious impacts on squid stocks. Due to the lack of information about the importance of
different variables, all environmental variables are considered to have equal importance
and are assigned equal weights in establishing the HSI model, which is obviously unreal-
istic. Xue et al. [41] applied the BRT model to evaluate the relative influence of different
environmental variables. To assess the optimum HSI model, the BRT model was adopted
to obtain the important variables and their weights. The HSI model had a good capacity to
predict habitat suitability for squid-jigging vessels based on the validation results.

4.2. Influence of Oceanographic Conditions

The selected environmental variables and their relative explanatory variable impor-
tance fluctuated each month, which suggests that different environmental variables explain
the distribution of squid-jigging fishing efforts during different times of the year. Squid-
jigging vessels mainly capture O. bartramii in the Northwest Pacific Ocean. The selected
environmental factors mainly reflect the physiological and ecological habits of the tar-
geted species.

Sea surface temperature (T0) is an important factor that influences the distribution of
habitats for O. bartramii [16,25,42]. The overall suitable range of T0 is 14∼19 ◦C in this study,
which is similar to the O. bartramii habitat [29,35,42]. Fishing effort was highly concentrated
in waters with low T0 in July. It seems possible that these results are due to the fact that the
O. bartramii stock migrates northwards to the subarctic boundary for feeding during May
to July [14], which indirectly leads to the favourable T0 for fishing efforts being lower in
July. Notably, the results of this study found that the influence of T0 was not significant in
certain months, which might be due to the small difference in temperature in the area of
fishing vessel activity in certain months.

Figure 4 showed that the fishing effort was evidently influenced by dissolved oxygen
at different depths, from June to September. The hatching period for the winter–spring
cohort is mainly from January to May, but extends to August, and O. bartramii matures from
July to October [43]. It is prudent to speculate that individuals during the early growth
period, and the later mating and spawning processes, requires the consumption of a large
amount of dissolved oxygen for energy conversion. In addition, squid spawn their eggs on
the sea surface for hatching [44], which is possibly an explanation for the more prominent
influence of DO0.

Yu et al. [29] indicated that variations in the concentration of chlorophyll-a were
related to the food availability of squid and mainly influenced the growth of squid pop-
ulations. Primary production has potential impacts on the distribution and abundance
of O. bartramii [45]. According to the diel vertical swimming characteristics of squid, they
often feed at night on the surface or in shallow water [14]. Therefore, the above conditions
may be responsible for the significant influence of chlorophyll concentration, primary
production, and phytoplankton on the fishing effort of squid fishing vessels in shallow
water areas during the squid growing season from June to October.

The suitable MLD gradually increases from September to November. Yu et al. [28]
indicated that squid tend to congregate if the MLD is in the range of 5∼60 m. The deep
mixed layer entrains nutrient-rich water and enhances photosynthesis, which results in
good feeding conditions for paralarvae and juveniles [15]. Alabia et al. [42] suggested that
the mesoscale variability in the upper ocean inferred from EKE was also influential on squid
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potential fishing grounds and is presumably linked to the augmented primary productivity
from the nutrient enhancement and entrainment of passive plankton. Yu et al. [28] regarded
that areas with a high abundance of O. bartramii tend to occur in areas of low EKE. This is
similar to our results. Sea water salinity affects the spawning grounds of O. bartramii [24].
The salinity in deeper waters has a significant influence on fishing effort, which might be
caused by the southwards migration of squid for spawning from October to November.

4.3. Comparison for HSI Model

For HSI models, the performance of individual SI models significantly affects the
reliability of the HSI model [20]. Moreover, different HSI models yield different spatial
distributions of HSI values [46]. In this study, two types of HSI models were developed
using the weighted-AMM and weighted-GMM, respectively. The results suggest that the
weighted-AMM models were more suitable to evaluate the influence of environmental
change on the fishing effort of squid-jigging vessels, and could be applied to predict
variations in the dynamics of potential habitat for O. bartramii. The AMM was based
on the assumption that high HSI values on one variable could compensate for low HSI
values on another variable [46]. The SI variables in the GMM model were assumed to be
independent but also compensative [19]. Yu et al. [35] emphasized that the results of the
HSI model developed using the GMM will be underestimated, and the HSI values may be
very low. This is consistent with the results of this study. In fact, the HSI value in some
areas was underestimated by weighted-GMM according to Figure 5b, which indicated
that the weighted-GMM model was also unable to effectively evaluate the influence of
environmental change on the fishing effort of a squid-jigging vessel and inapplicable to
predict variations in the dynamics of potential fishing areas for a squid-jigging vessel.

4.4. Analysis of the Suitable Fishing Area for Squid-Jigging Vessels

The monthly persistence maps also help identify areas that are not classified as envi-
ronmentally suitable for fishing throughout the year, which provides valuable information
about which areas may be experiencing less fishing pressure. The optimal area for fishing
activities was located in the scope of 42◦ N∼44◦ N, 155◦ E∼170◦ E (Figure 8). The spatial
distribution of monthly suitable fishing areas for squid-jigging vessels has an obvious
seasonal variation. Overall, the suitable fishing areas shifted to the north from June to
August and shifted to the south from September to November (Figure 7), which is caused
by the the north–south migration of O. bartramii stocks for feeding and spawning. The areas
where the value was low had strong seasonal variations. Igarashi et al. [47] suggested that
the interaction of the warm and nutrient-poor Kuroshio current and the cold and nutrient-
rich Oyashio current could provide favorable conditions for the foraging of O. bartramii in
unseasonally suitable fishing areas. The higher value reflected the high fishing pressure on
ecology. Therefore, greater protection and regulation efforts should be focused on these
areas than on the areas where the value is low. Moreover, the areas where the value was
low have strong seasonal variations, and seasonal management should be adopted for
these areas.

4.5. Fishing Effort in Comparison to Catch

Prior studies have indicated that the CPUE-based HSI model tended to overestimate
the ranges of optimal habitats and almost all the study area was classified as optimal
habitats, which led to difficulty in analysing monthly changes in squid habitat [20]. Yu and
Chen [36] suggested that the CPUE-based HSI model was not applicable to the short-lived
O. bartramii stock. In this study, fishing effort was defined as the time of fishing activities
for squid-jigging vessels at a location, which reflects the level of satisfaction of fishermen
with the catch in the area [48]. If the catch in an area is low, fishing vessels do not remain
there for an extended period of time [20]. Therefore, if the fishing vessel spends a longer
time fishing, this reflects the fact that a large number of fishing vessels were gathered in an
area, which might indicate that environmental conditions in the area were favourable for
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squid and consequently drove massive squid aggregations and attracted fishing vessels [49].
According to the above considerations, it is reasonable and appropriate to use the HSI
model based on fishing efforts for detecting suitable habitats [46].

The spatial distribution of Chinese vessel activity is different from the global fishing
effort, especially in June and July (Figures S4 and S5). The spatial distribution of fishery
data represents most of the fishing activity for the Chinese squid-jigging vessels because
the captains operate based on experience and they may exchange experience with each
other. Chinese squid-jigging vessels contributed to the fishing efforts located in the high
seas in June and July (Figure S4). This also suggests differences in the distribution of fishing
activity between countries or regions. The fishery data from one country or region are
restricted by spatial and temporal distribution and fishing experience, which probably
biases the results of the study. Alabia et al. [42] suggested that the assessment of a potential
fishing habitat for squid may be biased due to limitations in the spatial coverage of fisheries
data. This reveals that fishing effort data derived from AIS data could be used as an
alternative in fisheries research.

4.6. Perspectives for Fisheries Management

Perspectives for management policy: In the Northwest Pacific Ocean, the regional
fisheries management organisations have adopted the boarding inspection method to
inspect whether the fishing vessel is conducting operations in accordance with regulations.
Additionally, there were no fishing quotas or establishment of protection zones in the areas,
aince boarding inspection has high costs and supervision coverage is limited. Thus, it is
not possible to fully and effectively monitor the operation of fishing vessels. Under the
limited fisheries regulatory force, identifying the hotspot areas of fishing activities for squid-
jigging vessel and targeted dispatch of high seas enforcement fleets to focus on monitoring
fishing hotspots and ecologically vulnerable areas can significantly provide efficiency in
the regulation of fishing vessels. Furthermore, in the areas of high fishing pressure, the
establishment of protection zones, closure of certain fishing areas, and implementation of
conservation measures for marine species can increase the efficiency in protecting marine
organisms and revive the ecological balance of the area.

This study considered the lack of representativeness of fisheries data, which possi-
bly leads to incomplete researches for fisheries resources and management. Therefore,
identifying the hotspot areas and its dynamic variation, and dispatching fishery observers
to the hotspot areas, were significantly important for improving the representativeness
of fisheries data. Meanwhile, the spatial accuracy of fisheries data should be focused on
checking. Moreover, some satellite-based data can also complement traditional fisheries
data, such as AIS and VMS (vessel-monitoring systems).

5. Conclusions

In this study, the fishing efforts derived from AIS data were used to analyse the
suitability of fishing areas for squid-jigging vessels. The BRT model could be effectively
used to obtain the weights for the HSI model; the weighted-AMM has a better predicting
performance and it was well-suited for predicting suitable fishing areas. The predicted
suitable areas and fishery data exhibited excellent spatial consistency. The HSI model, based
on fishing effort, could be used to explore potential habitats for O. bartramii. The results
also showed a new approach to support fishery management for addressing IUU issues.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fishes8100530/s1, Figure S1: Predictive deviance under different
learning rates and complexities for each month when the BRT model was first developed; Figure S2:
Predictive deviance under different learning rates and complexities for each month when the BRT
model was second developed; Figure S3: The SI curves of important variables for each month;
Figure S4: Monthly distribution for O. bartramii in the Northwest Pacific Ocean in 2018, overlaid
on the habitat class map which was predicted by using weighted-AMM based on environmental
data from 2018; Figure S5: Monthly distribution of fishing effort for squid-jigging vessel in the
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Northwest Pacific Ocean in 2018, overlaid on the habitat class map which was predicted by using
weighted-AMM based on environmental data from 2018; Table S1: Optimal parameters for the first
and second construction of the BRT model; Table S2: Statistical parameters for each SI model; Table S3:
The favorable range of different variables for fishing effort.
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