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Abstract: Deep-sea cage aquaculture (DSCA) is an important way to expand new space for marine
aquaculture, promote the transformation and upgrade of the fishery industry, and optimize the
structure of marine aquaculture. Using the panel data of DSCA in China’s coastal areas from 2013 to
2021, this study constructs the SBM–Malmquist model to measure the DSCA production efficiency
and analyzes its total factor productivity. The results show that the overall DSCA production efficiency
exhibited an increasing trend in spite of a sharp decline in 2019. The efficiency exhibited regional
differences, being the strongest in the Bohai Sea region, followed by in the Yellow Sea, the South China
Sea, and the East China Sea regions. The overall total factor productivity remained generally stable,
although a large fluctuation occurred between 2019 and 2021. Both pure technological efficiency
and scale efficiency promoted the total factor productivity in 2019–2021, while the efficiency of
technological changes in societal aspects declined. This study shows that the DSCA production
efficiency is significantly influenced by input factors such as labor and capital investment. In addition,
natural disasters inhibit the improvement of the production efficiency to some extent.

Keywords: deep-sea cage aquaculture (DSCA); SBM–Malmquist model; production efficiency; total
factor productivity

Key Contribution: An increasing trend of the DCSA production efficiency in China is observed and
can be attributed to input factors such as labor and capital. Notably, total factor productivity remains
consistent, bolstered by pure technological and scale efficiencies, yet is offset by technological shifts.

1. Introduction

Deep-sea aquaculture (DSA) is one of the important means to move aquaculture out-
side traditional boundaries, which can mitigate the pressure on shallow-water aquaculture,
improve the marine ecological environment, and promote the sustainable development of
marine aquaculture in the new era. With these advantages, DSA has become a major point
of interest to both government and marine fishery researchers [1,2].

Developed countries have conducted extensive research and practices on DSA, with
the United States being the first to start in the 1980s. In 1995, the US Federal Office of
Technology Assessment stated that “offshore aquaculture” is a potentially effective method
for increasing fishery production [3]. In addition, other countries with developed fisheries,
including Norway, Japan, and Sweden, etc., have also been exploring [1].

The significance of DSA for oceanic economic development has been recently acknowl-
edged by Chinese researchers. Studies have pointed out that developing and utilizing
DSA is becoming urgent due to the increasing scarcity of oceanic resources [4,5]. An ex-
ample of the Yellow Sea Cold Water Mass being used for DSA specifically demonstrates
this practice [6]. The significance of deep-sea industries and offshore economies for fish-
ery development has also been emphasized by some studies [7–9]. It has been argued
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that expanding new space for seawater aquaculture is essential for improving China’s
nearshore ecological environment, ensuring food safety, and effectively utilizing oceanic
resources [10].

However, challenges in this field remain outstanding. Despite China’s increased in-
vestment in technology, the utilization rate of deep-sea fisheries is still not high enough [11].
The development of China’s deep-sea fishery is constrained by multiple factors, such as
industry experience and infrastructure, as well as long-term strategies [5,12,13]. A fur-
ther study showed that DSA is facing several challenges, including high natural risks,
weak technical systems, limited remote management experience, and a subpar level of
industrialization [14].

To improve the efficiency of DSA, it is of utmost importance to measure its current
production efficiency and total factor productivity. Analyses so far for the DSA efficiency
can be generally classified into two categories: (1) the measurement of the efficiency of the
entire deep-sea fishery industry, such as in the study by Kim et al. [15], which measured the
efficiency of multi-input and -output deep-sea fishery in Korea; and (2) the measurement
of the economic efficiency of specific varieties. Examples of the latter category include
a study by Hassanpour et al. [16], which measured the total factor productivity (TFP)
growth of rainbow trout production in Iran and found that changes in technical efficiency
were the only source of growth, and a study by Vassdal et al. [17], which measured the
changes in total factor productivity for Norwegian Atlantic salmon from 2001 to 2008 and
concluded that the technological level of the Atlantic salmon industry has plateaued [16,17].
Additionally, Kiet et al. [18] investigated the efficiency of the extensive, intensive, and semi-
intensive models of prawn cultivation in the Mekong Delta and found that the extensive
model is more efficient than the intensive and semi-intensive models [18].

The DSA efficiencies in China are currently less evaluated, and most of the existing
literature is based on seawater aquaculture. There have been some studies which calculated
the efficiency of seawater aquaculture in Chinese coastal provinces over different periods
and concluded that there is still significant room for improvement in efficiency among
different sea areas. Among the coastal provinces, Shandong, Guangdong, and Fujian have
relatively higher comprehensive efficiency levels [19–21].

In terms of the total factor productivity analysis, the conclusions become less consistent.
It was found that the overall total factor productivity has improved, with technical progress
as the main influencing factor [22]. In the study conducted by Zhang and Ji [23], the SBM-
GML (Slack-Based Measure–Global Malmquist–Luenberger) model was employed to gauge
the comprehensive productivity of various elements between 2008 and 2017. Notably, an
innovative approach was adopted to dissect the productivity into four distinct dimensions,
namely, pure technical efficiency, scale technical efficiency, pure technical change, and scale
technical change. The investigation yielded a noteworthy finding wherein the overall total
factor productivity experienced an upward trend, primarily attributable to advancements
in pure technical change. On the other hand, Zhang et al. [24] measured the data from 2006
to 2012 and found that the total factor productivity had generally declined. The different
conclusions can be attributed to a variety of reasons including the period of measurement,
selection and calculation methods of indicators, etc.

In addition to the above-mentioned economic significance of DSA, another advantage
that DSA can have is that it avoids areas with high residence times such as fjord systems.
High residence times increase the effect of intense harmful algal blooms, such as those that
recently occurred in Chile [25] and Norway [26], with severe impacts on salmon farming.
DSA could help reduce the impacts generated by HABs.

As one of the most important means of DSA, deep-sea cage aquaculture (DSCA) is
emerging as an investment direction. China’s “14th Five-Year Plan for National Fishery
Development” emphasizes the need to encourage the development of facility-based DSA
and large-scale smart DSA fisheries [27]. However, this emerging form of aquaculture
also poses many challenges. Firstly, the DSCA in China is a new frontier and calls for
development of advanced technologies and equipment. Furthermore, due to geographical
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restrictions, DCSA depends on large-scale automated deep-sea net cages, which can lead to
high costs. With limited financial resources, it is essential to investigate factors that affect
the production efficiency of the DSCA in China to attain the maximum potential.

Given the rapid development of DCSA and the relatively deficient utilization rates
and insufficient relevant industry expertise in China, there is a clear need to measure the
current economic efficiencies of DCSA in China. This study aims to quantify the production
efficiency and the total factor productivity of DSCA based on the panel data from the
input–output analyses of DSCA in Chinese coastal provinces from 2013 to 2021. The study
shall shed light on the future development of DSCA.

2. Materials and Methods
2.1. Materials

The input–output indicator system for DSCA in China’s coastal provinces consists of:
(1) Input indicators: These are categorized into three aspects—labor, capital, and land.

Typically, the stock of human capital is used to measure labor input, and, in this study,
the number of employees engaged in DSCA is used. The capital input is indicated by the
registered capital (in RMB) of DSCA enterprises. To obtain these values, data on registered
capital and the number of insured personnel were accumulated annually for 65 relevant
enterprises engaged in DSCA. Land input is measured by the volume of the deep-water
net cages (in cubic meters). The gravity-based polyethylene cages, floating rope cages, and
butterfly cages used in DSCA have a volume of several hundred cubic meters and operate
in water depths of more than 20 m;

(2) Output indicators: These are split into output volume and value. Due to price fac-
tors and differences in the base period, output values may be biased. Therefore, this study
uses the output volume (in tons) of DSCA in each provincial area as the output indicator.

The research is focused on eight coastal provinces in China: Liaoning, Shandong,
Jiangsu, Zhejiang, Fujian, Guangdong, Guangxi, and Hainan. The geographical location of
the study area is shown in Figure 1. The marine environments of different provinces vary,
and these differences ultimately affect the results and yields of aquaculture. Specifically,
Liaoning and Shandong are located on the rim of the Bohai and Yellow Sea with the marine
aquaculture environment being affected by the relatively cold Yellow Sea Cold Water
Mass. Zhejiang and Jiangsu are close to the East China Sea, with the marine aquaculture
environment being affected by the river discharge, the warm Kuroshio Current, and others.
Fujian, Guangdong, Guangxi, and Hainan are closer to the tropics, more suitable for
cultivating species better adapted to warmer waters. Both storms and monsoons have
significant impacts on these regions, especially for DSCA. The breeding species in these
regions mainly include flounders, sea bass, grouper, rainbow trout, yellow croaker, puffer
fish, and other varieties. In this paper, we measure the economic efficiency of the entire
DCSA industry throughout each region rather than specific varieties cultivated.

The timeframe to be analyzed for the DCSA in this paper spans from the year 2013
to 2021. DCSA, as an emerging sector, has developed rapidly over the past decade with
innovation of the DCSA technologies. Before that, the DCSA scale was small, and the
data are not representative for analysis here. We collect data from the Chinese National
Enterprise Credit Information Publicity System and the China Fishery Statistical Yearbook
(China Agricultural Publishing House, 2014–2022) [28–36]. For Jiangsu Province, some data
are missing, so multiple imputations are performed using SPSS 27.0, and the group with
the highest Cronbach’s alpha coefficient is selected to complete the data. Tables 1 and 2
summarize the specific indicators and descriptive statistics.
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Table 1. Efficiency measurement index for DSCA in China.

Tiered Indicator Specific Indicator Unit Data Source

Input
Number of employees engaged in DSCA persons Chinese National Enterprise Credit

Information Publicity System

Registered capital of DSCA enterprises thousand RMB Chinese National Enterprise Credit
Information Publicity System

Volume of deep-water cages m3 China Fishery Statistical Yearbook
Output Output volume of DSCA ton China Fishery Statistical Yearbook

Table 2. The descriptive statistics of input and output indicators for the period between 2013 and 2021.

Year Statistical
Measures

Input Indicators Output Indicator

Number of
Employees Engaged

in DSA (Persons)

Registered Capital of
DSA Enterprises
(Thousand RMB)

Volume of
Deep-Water
Cages (m3)

Output Volume of
DSA (ton)

2013
mean 38.1 46,307.7 519,103.4 9235.6

standard deviation 93.1 52,743.1 523,125.8 9335.9

2014
mean 40.1 50,057.7 756,971.6 11,092.1

standard deviation 96.3 53,224.9 565,303.0 11,900.5

2015
mean 41.3 52,807.7 1,170,129.0 13,216.4

standard deviation 98.0 58,411.9 1,379,534.0 13,719.1

2016
mean 43.4 54,807.7 1,334,471.0 14,912.1

standard deviation 97.2 57,736.5 1,531,034.0 15,489.2

2017
mean 45.5 72,182.7 1,523,076.0 16,879.0

standard deviation 96.5 80,647.3 1,966,942.0 17,455.1

2018
mean 49.8 82,495.2 1686903.0 19,259.1

standard deviation 104.5 87,772.4 1,901,204.0 17,131.2

2019
mean 52.6 108,745.2 2,423,027.0 25,668.4

standard deviation 103.7 97,115.2 2,161,856.0 20,204.6
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Table 2. Cont.

Year Statistical
Measures

Input Indicators Output Indicator

Number of
Employees Engaged

in DSA (Persons)

Registered Capital of
DSA Enterprises
(Thousand RMB)

Volume of
Deep-Water
Cages (m3)

Output Volume of
DSA (ton)

2020
mean 54.4 126,870.2 4,779,485.0 36,660.4

standard deviation 103.3 134,327.0 4,512,130.0 32,680.6

2021
mean 55.4 129,120.2 4,959,322.0 42,168.1

standard deviation 105.4 137,696.4 4,097,889.0 34,898.8

2.2. Methods
2.2.1. The SBM-DEA Model

The Data Envelopment Analysis (DEA) is a classic efficiency measurement method
that builds a mathematical model using linear programming to find the optimal linear
programming point in economic terms. The data envelopment frontier reflects the efficiency
frontier and the production possibility set and calculates the relative efficiency of each
decision-making unit [37]. Due to its advantages—considering multiple inputs and outputs
and being unaffected by input–output dimensions—the DEA has been widely used in
non-parametric efficiency and total factor productivity analysis [38].

The slack-based measure (SBM) model is a non-radial model based on slack variables.
This model was first proposed by Tone [39]. The SBM differs from the traditional DEA
models in that slack variables are directly incorporated into the objective function, making
efficiency measurement and improvement measures more accurate and more practical. An
output-oriented SBM model can maximize output under given input conditions, making it
suitable for the DSCA industry. Assuming that there are n decision-making units (DMUs),
where DMUj (j = 1, 2,. . ., n) represents a unit, p inputs and q outputs are selected for
each unit, with rij representing the j-th decision-making unit’s input in the i-th factor and
mtj representing its output in the t-th factor. Therefore, the input and output vectors are
distinguished by their respective values:

rj = (r1j, r2j, . . . , rpj)
T , j = 1, . . . , n (1)

mj = (m1j, m2j, . . . , mqj)
T , j = 1, . . . , n (2)

Thus, we can obtain the output-oriented SBM model:

θ∗ = max
λ,s− ,s+

1

1 + 1
q

q
∑

t=1

s+t
sto

(3)

s.t.


ri0 =

n
∑

j=1
λjrij + s−i (i = 1, 2, . . . , p);

mt0 =
n
∑

j=1
λjmtj − s+t (t = 1, 2, . . . , q);

λj > 0(∀j), s−i > 0(∀i), s+t > 0(∀t)

(4)

The slack variables for inputs are denoted as s−i (i = 1, . . . , p), representing excessive
input, while the slack variables for outputs are denoted as s+t (t = 1, 2, . . . , q), indicating
output shortfall.

2.2.2. The Malmquist Index Model

Production efficiency measures the relationship between input and output. However,
output can still vary even when all inputs remain constant. The profits or losses from this
part that are not caused by input factors are referred to as TFP. Solow [40] first introduced
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this concept and showed that the TFP growth is the result of output growth caused by
all factors except for input, including improvements in technology, technical efficiency,
and other aspects. The Malmquist Index is a classical method for calculating TFP which
was developed based on the DEA and first proposed by Malmquist [41]. It has since been
widely used by Caves et al. [42]. In this paper, following Caves et al. [42], we define TFP as
the average value for output-oriented TFP research.

Assuming constant returns to scale, the Malmquist Index for period t is:

Mt
0(rt+1, mt+1, rt, mt) = dt

0(rt+1, mt+1)/dt
0(rt, mt) (5)

Similarly, the Malmquist Index for period t + 1 is:

Mt+1
0 (rt+1, mt+1, rt, mt) = dt+1

0 (rt+1, mt+1)/dt+1
0 (rt, mt) (6)

where (rt+1, mt+1) and (rt, mt) represent the input and output vectors for periods t + 1
and t, respectively, while dt+1

0 and dt
0 are the corresponding distance functions based on

the technological frontier of the respective periods. Therefore, the change in TFP between
period t and t + 1 is as follows:

∆TFP = M0(rt+1, mt+1, rt, mt) =

√
dt

0(rt+1,mt+1)

dt
0(rt ,mt)

× dt+1
0 (rt+1,mt+1)

dt+1
0 (rt ,mt)

=
dt+1

0 (rt+1,mt+1)
dt(rt ,mt)

×
√

dt
0(rt+1,mt+1)

dt+1
0 (rt+1,mt+1)

× dt
0(r

t ,mt)

dt+1
0 (rt ,mt)

= ∆EFF× ∆TE

(7)

The efficiency change (∆EFF) represents the catching-up effect of the DMU’s techno-
logical progress through imitation and efficient resource utilization. The technical change
(∆TE) represents the progress of the DMU’s efficiency driven by advances in technology in
societal or entire-industry contexts.

After considering the concept of returns to scale, ∆EFF can be further analyzed in
terms of pure efficiency change (∆PE) and scale efficiency change (∆SE). In particular,
∆PE, similar to ∆EFF, represents the catching-up effect of the DMU’s (decision-making
unit’s) technological progress under variable returns to scale, and sech reveals the degree
of deviation between the actual scale of production and the optimal scale, which indicates
whether the current level of production is optimal or not:

∆EFF =
dt+1

0 (rt+1, mt+1 | C)/dt+1
0 (rt+1, mt+1 | V)

dt
0(r

t, mt | C)/dt
0(r

t, mt | V)
×

√
Dt+1

i (xt+1, yt+1 | V)

Dt
i (xt, yt | V)

= ∆PE× ∆SE (8)

Therefore, ∆TFP can be represented as:

∆TFP = ∆EFF× ∆TE = ∆PE× ∆SE× ∆TE (9)

This suggests that when ∆TFP is greater than 1, ∆TFP increases, whereas it being
less than 1 indicates a decrease in ∆TFP. Similarly, ∆EFF, ∆TE, ∆PE, and ∆SE are each
considered improved if they exceed 1. These values respectively suggest an increase
in technical efficiency under constant returns to scale, a progression in the efficiency, an
improvement in pure technical efficiency under variable returns to scale, and the production
scale moving closer to the optimal point. Conversely, if these values are less than 1, it
indicates a decline in their respective beneficial effects.

3. Results
3.1. Calculation of DCSA Production Efficiency in China

This study uses panel data from 2013 to 2021 on DSCA in China. The MaxDEA 1.87
software and DEA-SBM model are used to calculate the production efficiency of DSCA
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in eight coastal provinces of China, representing four coastal sea regions: the Bohai Sea,
Yellow Sea, East China Sea, and South China Sea regions. A line graph (Figure 2) and table
(Table 3) are created to display the production efficiency of China’s DSCA industry in each
sea region.
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Table 3. DSCA production efficiency in China coastal areas from 2013 to 2021.

Year
Bohai Sea Yellow Sea East China Sea South China Sea

Liaoning Mean Shandong Mean Jiangsu Zhejiang Fujian Mean Guangdong Guangxi Hainan Mean

2013 1.000 1.000 1.000 1.000 1.000 0.080 1.000 0.693 1.000 0.690 1.000 0.897
2014 1.000 1.000 1.000 1.000 1.000 0.176 1.000 0.725 1.000 0.400 1.000 0.800
2015 1.000 1.000 1.000 1.000 1.000 0.256 1.000 0.752 1.000 0.364 1.000 0.788
2016 1.000 1.000 1.000 1.000 1.000 0.313 1.000 0.771 1.000 0.444 1.000 0.815
2017 1.000 1.000 1.000 1.000 1.000 0.377 1.000 0.792 1.000 0.515 1.000 0.838
2018 1.000 1.000 1.000 1.000 1.000 0.593 1.000 0.864 1.000 0.629 1.000 0.876
2019 1.000 1.000 0.453 0.453 1.000 0.309 1.000 0.770 0.582 0.323 0.725 0.543
2020 1.000 1.000 1.000 1.000 1.000 0.479 1.000 0.826 1.000 1.000 0.778 0.926
2021 1.000 1.000 0.965 0.965 1.000 0.390 1.000 0.797 1.000 1.000 0.667 0.889

Mean 1.000 1.000 0.935 0.935 1.000 0.330 1.000 0.777 0.954 0.596 0.908 0.819

3.1.1. Time-Varying Characteristics

As shown in Figure 2, the DSCA production efficiency decreased in 2014 compared
to in 2013, which is likely attributable to the high input of deep-water cage aquaculture
volumes. However, from 2014 to 2018, the production efficiency increased, indicating a
gradual improvement in the DSCA level with China’s growing marine innovation capa-
bilities. In 2019, the efficiency reached its lowest value of 0.674, particularly in the South
China Sea region, as shown in Table 2. This can be attributed to frequent natural disasters
such as typhoons and storm surges, which have posed challenges for DSCA in recent years.
For example, the tropical storms “Mun” and “Wipha” significantly impacted the Guang-
dong, Guangxi, and Hainan provinces in 2019. Additionally, the gradual deployment of
large-scale DSCA platforms such as the LingShui DSCA platform in Hainan contributed to
a rapid increase in factors of production. However, DSCA is characterized by lag periods,
where fries are released in the current year can only be caught in the following year or
beyond, creating an imbalance in input and output ratios. The significant increase in
efficiency values in 2020 confirms this point.

Next, we will analyze the production efficiency of each sea region (Table 3). The Bohai
Sea region displayed the best performance, with an SBM efficiency value reaching the
optimal levels. This indicates that the development of the DSCA in Liaoning Province is
well aligned with the industry’s input and output scale, in part due to strong government
support for the DSCA. For example, in Dalian, the Marine Development Bureau fully
considers the long construction cycle and high cost of the DSCA projects, aiming to optimize
policies and reduce expenses. In addition to the central financial subsidies, they provide
an additional 10–30% of funding to enterprises to encourage them to commence projects
in advance.

The Yellow Sea region also displayed good efficiency, with an average value of 0.935.
Shandong, being a major DSCA province, boasts a strong industry foundation with flour-
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ishing fishing cities such as Qingdao and Weihai, etc. In addition, the construction of
large-scale deep-sea cages such as the “Deep Blue 1” and “Long Whale 1” contributes
to higher breeding efficiency. However, the efficiency decline in 2019 is connected to the
aforementioned deployment of large-scale DSCA platforms.

After the Bohai and Yellow Sea regions, the South China Sea region ranks third in
terms of efficiency. The lowest value was also recorded in 2019, likely due to the impact
of natural disasters along the southeastern coast, particularly in Guangxi. Specifically,
Guangxi’s economic development level is not particularly elevated compared to that of
other coastal provinces (Figure 3), resulting in insufficient investment in the DSCA. From
2014 to 2018, the efficiency gradually improved, but there was a decline in 2019 due
to frequent natural disasters in the South China Sea, such as storm surges and tropical
cyclones, which hampered the DSA development. In 2019, Guangxi’s efficiency value was
0.323, which was affected by tropical storms “Mun” and “Wipha”.
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Figure 3. Mean per capita regional gross domestic product (GDP) from 2013 to 2021 (RMB/person).
Data source: National Bureau of Statistics of China official website.

The East China Sea region ranks the lowest in efficiency, with an average value of 0.777,
but the efficiency gap is significant among the three provinces. Fujian and Jiangsu have
reached a frontier level of efficiency, with an SBM efficiency value reaching the optimal
levels. In comparison with other fishing provinces such as Guangdong and Shandong, Fu-
jian and Jiangsu have a higher production output level despite a less outstanding breeding
scale. It implies that the development model and direction are viable and promising. Take
Fujian, for instance. With its unique geographic location that features a long coastline and
abundant fishery resources, as well as the highly effective development model of DSCA,
Fujian has adopted bank–enterprise matchmaking to provide strong financial support for
the DSCA enterprises. In 2019, the Fujian Provincial People’s Government’s State-Owned
Assets Supervision and Administration Commission proposed “Bank-enterprise match-
making, good-faith cooperation, promoting healthy development of DSCA industry”. By
relying on banks as auxiliary forces, enterprise financing becomes more convenient, making
it easier for small-scale breeding businesses to gain access to funds, which results in fast
industry development. In contrast, Jiangsu’s fishery breeding is in a downstream stage
compared to other coastal provinces, but its DSCA has achieved exceptional performance.
Take the Jiangsu Smart DSCA Platform project, for example. Most breeding platforms are
renovated from discarded ships with surplus capacity in the market, resulting in signifi-
cantly lower costs and increased efficiency. Moreover, Jiangsu’s economic development
level is high, and its per capita GDP ranks first among the coastal provinces, which also
contributes to its DSCA. With support from its cost-saving development model and high
economic level, Jiangsu has also achieved SBM efficiency. However, as a sharp comparison,
Zhejiang’s average efficiency is as minimal as 0.330 and has never reached the optimal
efficiency, indicating an unreasonable input–output combination that requires urgent im-
provement. As the second-largest economic province after Jiangsu in this region, Zhejiang
has a strong economic foundation and should be able to reach efficiency via certain means
of adjustment.
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3.1.2. The DSCA Redundancy

The SBM model is advantageous in that it incorporates all slack variables of input
and output into the objective function, making efficiency measurement and improvement
more realistic. For a given DMU to be considered efficient, all slack variables of input and
output should be equal to 0, and the efficiency value should be 1. Conversely, any DMU
that does not satisfy these conditions is considered inefficient. By employing non-radial
adjustments based on input redundancy or output insufficiency, non-efficient DMUs can be
transformed into efficient ones, thereby maximizing output with minimum consumption.
In this study, the redundancy ratio of input and the ratio of input and output variables are
computed from 2013 to 2021, and the average redundancy ratio of inputs and outputs is
then obtained. Subsequently, the average input–output index redundancy ratio for DSCA
production efficiency is computed for the same period and presented in Table 4.

Table 4. Average redundancy ratios of input–output indices for DSCA production efficiency in China
from 2013 to 2021.

Region Province Efficiency

Slack Variables

Input Redundancy Ratios
Output

Insufficiency
Ratio

Number of
Employees

Engaged in DSCA
(Persons)

Volume of
Deep-Water

Cages (in
Cubic Meters)

Registered Capital
(in RMB) of DSCA

Enterprises

Output
Volume (in

Tons) of DSCA

Bohai Sea
Liaoning 1 0.00% 0.00% 0.00% 0.00%

Mean 1 0.00% 0.00% 0.00% 0.00%

Yellow Sea
Shandong 0.935 2.56% 0.00% 8.01% 5.50%

Mean 0.935 2.56% 0.00% 8.01% 5.50%

East China
Sea

Jiangsu 1 0.00% 0.00% 0.00% 0.00%
Zhejiang 0.330 21.63% 36.51% 20.96% 68.31%

Fujian 1 0.00% 0.00% 0.00% 0.00%
Mean 0.777 7.21% 12.17% 6.99% 22.77%

South China
Sea

Guangdong 0.954 7.02% 16.34% 9.40% 7.33%
Guangxi 0.596 5.33% 39.11% 7.05% 36.20%
Hainan 0.908 9.16% 30.81% 14.49% 19.27%
Mean 0.819 7.17% 28.76% 10.31% 20.93%

The redundancy rate measures the degree to which various input–output data can
be optimized. A large redundancy rate means that an input factor is not fully utilized
to attain its maximum functions. When adding up the performance of each province in
different sea areas and taking the average value, it is found that the Bohai Sea region
displays good efficiency without a lot of redundancy. Liaoning’s input and output are
both non-redundant, indicating that the development status of the DSCA in Liaoning
is consistent with the current scale of input and output. The Yellow Sea region also
shows good performance in terms of input and output without significant redundancy
or insufficiency. As major DSCA provinces, Liaoning and Shandong both have a strong
industrial foundation in DSA. Take Shandong as an example; it has well-developed fishing
cities such as Qingdao and Weihai, as well as large-scale deep-sea cages such as the “Deep
Blue 1” and “Long Whale 1”, which contribute to higher breeding efficiency.

The redundancy in the East China Sea region mainly stems from Zhejiang Province,
where there is significant input redundancy and output insufficiency. The output insuf-
ficiency is particularly severe, reaching 68.31%. Taking personnel as an example, about
20% of employees are in an idle working or underutilized state. Similarly, redundancy in
terms of farming volume and enterprise capital conveys a similar concept. As a province
with a higher level of economic development, the demand for deep-sea products from
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residents will increase, leaving a vast market space for DSA. However, as mentioned earlier,
Zhejiang’s DSCA started late and has a relatively lower technological level, resulting in
insufficient production.

The input redundancy in the South China Sea region mainly stems from the volume
of deep-water cage aquaculture, which is most typical in Guangxi and Hainan provinces,
while the output insufficiency is also significant, particularly in Guangxi. The redundancy
rate for deep-water cage aquaculture volume in Hainan Province is as high as 30.81%,
indicating an issue of excessive input. Therefore, it is essential to control the breeding area
and scale appropriately and conduct cost-saving and precision aquaculture. Additionally,
in Guangxi Province, the redundancy rate is 39.11%, while the output insufficiency rate is
36.20%. Due to its lower level of economic development, the volume of DSCA is relatively
smaller, and it naturally cannot compete with the coastal provinces in terms of production.
The output insufficiency is attributed to the lack of advanced aquaculture technology,
which hinders scientific breeding practices while pursuing expanding breeding volume.
Therefore, the key to improving efficiency is to enhance the DSCA technology to optimize
its breeding structure.

3.2. Measurement and Decomposition of TFP in China’s DSCA
3.2.1. TFP Trend

To further analyze the changes of the DSCA efficiency in China, this study uses
DEAP2.1 software to calculate the Malmquist Index and its decomposition. As mentioned
earlier, if the efficiency value is greater than 1, it means an increase, and if it is less than
1, it indicates a decrease. As shown in Figure 4, from 2014 to 2018, the ∆TFP of DSCA in
China remained generally stable. It can be noted that the trend of ∆TE over this period was
generally the same as that of ∆TFP. Consequently, DMUs without independent innovation
capabilities were still at the same level as before, despite the ∆EFF being in a stable state.
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Figure 4. Total factor productivity changes in China’s deep–sea cage aquaculture.

The changes described above occurred in 2019. While the ∆TFP did not increase signif-
icantly that year, both ∆TE and ∆EFF exhibited significant volatility. This was primarily due
to the issuance of the “Opinions on Accelerating the Green Development of Aquaculture”
by the Ministry of Agriculture and Rural Affairs in February 2019. The document called for
support of green DSA and encouraged the construction of large–scale intelligent aquacul-
ture fishing grounds in deep–sea areas. This policy directive reflected the government’s
efforts and support for the development of DSA. As mentioned earlier, macro–level policies
coupled with the deployment of large–scale DSA platforms such as “Fubao No. 1” and
“Zhenyu No. 1” in 2019 helped to improve the overall technological capability of DSA in
society. This led to a change in the efficiency frontier and a continuous improvement in
the independent innovation capabilities of the decision–making units (DMUs). In 2019,
the technological change index significantly increased, promoting total factor productivity.
Meanwhile, the ∆EFF decreased to 0.446, indicating that DSA faced challenges in resource
and management aspects, and DMUs had weak imitation abilities, leading to ineffective
resource use. In 2020, the ∆EFF experienced a significant increase, but ∆TE decreased,
leading to ∆TFP decreasing again, which demonstrated that the positive impact of policies
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was short–lived, and the primary factor impeding total factor productivity remained ∆TE.
Going forward, it can be expected that the government’s continued efforts to develop DSA,
bolster science and technology contributions, and promote the transformation of research
and development results will have a significant effect on improving ∆TFP. In 2021, the
restrictive factors of 2020 were alleviated, and total factor productivity once again increased.

We break down the ∆EFF further into ∆PE and ∆SE, as shown in Figure 5. As for
∆PE, its efficiency value was consistently above 1 in all years except for 2019 and 2021. In
contrast, ∆SE had an opposite trend, with its efficiency value being generally below 1 in
most years, except for 2016, 2018, and 2020. Moreover, it can be seen that the trends of
∆EFF and ∆SE generally matched each other. Thus, the technical efficiency is primarily
influenced by scale technical efficiency, indicating that the technical efficiency of China’s
DSCA is primarily determined by production scale, making the enterprise mainly a scale
economy type.
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Figure 5. Technical efficiency changes and their decomposition indexes in China’s DSCA.

3.2.2. TFP Regional Heterogeneity

Table 5 presents the TFP index of the DSCA in different regions. It should be noted
here that the average of total factor productivity refers to the geometric mean. While the
average TFP of the Bohai Sea did not show an obvious change, the East China Sea region
exhibited an annual growth rate of 11%, except for in 2017 and 2021, which ranked the
first in the TFP index among other regions. Specifically, Zhejiang had the best performance
with an average increase of 30% in the total factor productivity index in China. The
Yellow Sea and South China Sea regions experienced varying degrees of decline in the
total factor productivity index, with the Yellow Sea declining faster. In general, the total
factor productivity of DSCA in China ranged from an increase of 11% (the East China Sea)
to a decrease of 12.7% (the Yellow Sea), with disparate trends and significant differences.
Due to the vast expanse of the China sea areas with differing climates and hydrological
conditions, significant differences in TFP were anticipated. It should be noted that there
were significant variations across various years, primarily driven by the extreme values
observed in 2019 with a surge in factors such as labor and capital investment, as mentioned
earlier. This led to a large standard deviation and consequent statistical significance of
the estimation.

We further analyze the decomposition index of total factor productivity. The mean
of the pure technical efficiency of DSCA in each sea area is shown in Table 6. As per the
table, on the whole, the pure technical efficiency of DSCA in China sea regions is relatively
stable, and resources have been effectively utilized. The primary issue arose in 2019 when
catch-up effects were not high, leading to significant resource underutilization. In 2019, the
Southeast Coast was considerably affected by natural disasters such as typhoons and storm
surges, with most coastal areas suffering some impact. A substantial bouncing occurred in
2020, strongly associated with improvement of far-reaching marine aquaculture technology.
For instance, the new technology has successively carried out breeding work for yellow fin
bream, yellow tail mullet, sea bass, and other cultured varieties for the seedling production
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enterprises and provided seed supply information and remote online technical guidance
for enterprises and farmers, solving the problems of supply and marketing of fish seedlings.
In addition, a total factor productivity of 3.099 in Guanxi province in 2020 was also strongly
associated with the province’s accelerated development and the promotion of the marine
strong zone construction within the framework of the Blue Granary strategy. Meanwhile,
Shandong province in the Yellow Sea region made massive resource inputs in 2019 but
did not utilize them effectively, causing lower pure technical efficiency and restraining the
total factor productivity. However, the lag effect of these massive inputs led to a significant
output increment in 2020. The change rate of 21.9% in Zhejiang is particularly noteworthy.
It is found that, except for in 2019 and 2021, the pure technical efficiency of Zhejiang has
been continuously improving, reflecting the high standards and strict requirements of
Zhejiang Province in far–reaching marine technology.

Table 5. Index of changes in ∆TFP of DSCA in different regions.

Regions Provinces 2013–
2014

2014–
2015

2015–
2016

2016–
2017

2017–
2018

2018–
2019

2019–
2020

2020–
2021 Geomean

Average
Rate of
Change

Standard
Deviation

Bohai
Sea

Liaoning 0.760 1.591 1.041 1.001 0.798 2.221 0.477 1.014 1.010 1% 0.549
Mean 0.760 1.591 1.041 1.001 0.798 2.221 0.477 1.014 1.010 1% 0.549

Yellow
Sea

Shandong 0.762 1.196 0.971 0.646 0.744 0.973 0.783 1.043 0.873 −12.7% 0.185
Mean 0.762 1.196 0.971 0.646 0.744 0.973 0.783 1.043 0.873 −12.7% 0.185

East
China

Sea

Jiangsu 1.141 1.167 1.218 0.627 0.801 0.967 1.258 0.959 0.994 −0.6% 0.221
Zhejiang 2.039 1.643 1.154 1.165 1.523 1.057 1.188 0.946 1.300 30% 0.366

Fujian 1.195 1.052 0.807 1.024 0.781 2.687 0.577 1.065 1.037 3.7% 0.652
Mean 1.458 1.287 1.060 0.939 1.035 1.570 1.008 0.990 1.110 11% 0.239

South
China

Sea

Guangdong 0.685 1.073 1.104 1.466 0.687 0.583 1.090 1.193 0.942 −5.8% 0.304
Guangxi 0.653 0.961 1.117 0.934 1.247 0.848 1.327 1.205 1.013 1.3% 0.228
Hainan 0.315 0.689 1.094 0.974 0.867 0.832 1.037 1.023 0.805 −19.5% 0.254
Mean 0.551 0.908 1.105 1.125 0.934 0.754 1.151 1.140 0.920 −8% 0.217

Table 6. Index of changes in pure technical efficiency (∆PE) of DSCA in different regions.

Region Provinces 2013–
2014

2014–
2015

2015–
2016

2016–
2017

2017–
2018

2018–
2019

2019–
2020

2020–
2021 Geomean

Average
Rate of
Change

Standard
Deviation

Bohai
Sea

Liaoning 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0 0
Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0 0

Yellow
Sea

Shandong 1.000 1.000 1.000 1.000 1.000 0.453 2.208 0.965 0.995 −0.5% 0.494
Mean 1.000 1.000 1.000 1.000 1.000 0.453 2.208 0.965 0.995 −0.5% 0.494

East
China

Sea

Jiangsu 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0 0
Zhejiang 2.207 1.454 1.223 1.207 1.571 0.520 1.552 0.814 1.219 21.9% 0.513

Fujian 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0 0
Mean 1.402 1.151 1.074 1.069 1.190 0.840 1.184 0.938 1.073 7.3% 0.171

South
China

Sea

Guangdong 1.000 1.000 1.000 1.000 1.000 0.582 1.718 1.000 1.000 0 0.311
Guangxi 0.580 0.910 1.220 1.159 1.221 0.513 3.099 1.000 1.047 4.7% 0.810
Hainan 1.000 1.000 1.000 1.000 1.000 0.725 1.073 0.857 0.951 −4.9% 0.111
Mean 0.860 0.970 1.073 1.053 1.074 0.607 1.963 0.952 0.999 −0.1% 0.393

Table 7 illustrates the changes in scale efficiency of DSCA across different regions.
The data suggest that the mean values of the four sea areas were approximately 1, with
negligible differences. Of these regions, Jiangsu Province in the East China Sea area had the
relatively better performance, with an average annual growth rate of 9.2%. This indicates
that most of the DSCA enterprises in China benefit from economies of scale, as the sector’s
annual growth rate is relatively consistent over time, adding value to the promotion of
total factor productivity. Analyzing the standard deviation reveals that Jiangsu and Hainan
exhibited higher levels of variability, with extreme values also appearing in 2020. This aligns
with the earlier discussed perspective, where there was rapid growth in input variables
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in 2019, while, in 2020, there was a lagged increase in substantial output, demonstrating
significant scale efficiency improvement.

Table 7. Index of changes in scale efficiency (∆SE) of DSCA in different regions.

Region Provinces 2013–
2014

2014–
2015

2015–
2016

2016–
2017

2017–
2018

2018–
2019

2019–
2020

2020–
2021 Geomean

Average
Rate of
Change

Standard
Deviation

Bohai
Sea

Liaoning 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0 0
Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0 0

Yellow
Sea

Shandong 1.000 1.000 1.000 1.000 1.000 0.993 1.007 0.982 0.998 −0.2% 0.007
Mean 1.000 1.000 1.000 1.000 1.000 0.993 1.007 0.982 0.998 −0.2% 0.007

East
China

Sea

Jiangsu 1.277 1.161 1.254 0.511 1.196 0.437 5.091 0.798 1.092 9.2% 1.503
Zhejiang 0.832 1.027 1.194 1.009 0.986 0.789 1.492 0.999 1.022 2.2% 0.220

Fujian 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0 0
Mean 1.036 1.063 1.149 0.840 1.061 0.742 2.528 0.932 1.038 3.8% 0.565

South
China

Sea

Guangdong 0.617 1.068 1.137 1.194 1.000 0.411 2.717 1.000 1.000 0 0.691
Guangxi 1.066 0.956 1.041 0.857 1.083 0.592 1.923 1.000 1.014 1.4% 0.382
Hainan 0.745 0.634 1.234 1.076 0.873 0.370 4.167 1.023 0.982 −1.8% 1.204
Mean 0.809 0.886 1.137 1.042 0.985 0.458 2.936 1.008 0.999 −0.1% 0.748

Table 8 illustrates the changes in the technical change index of DSCA across different
regions. It can be seen that, except for the Bohai Sea region, the mean values of all the sea
regions were below 1, showing that the technical change, to certain extent, has restrained
the total factor productivity of DSCA in various regions. Among these regions, both
the Yellow Sea and the South China Sea region had a relatively large decline rate. It is
found that the technological change index among all regions in 2019 was above 2 and
declined sharply in 2020, opposite to both scale efficiency and pure technical efficiency. The
technical level across the society has been generally progressing, associated with frequent
introduction of far-reaching marine aquaculture promotion policies; however, reasons such
as the diseconomy of enterprise scale and the failure of individual enterprise technology to
keep up with the across-society development trend led to a backlash in 2020, restricting the
change of technology.

Table 8. Index of ∆TE in DSCA in different regions.

Region Provinces 2013–
2014

2014–
2015

2015–
2016

2016–
2017

2017–
2018

2018–
2019

2019–
2020

2020–
2021 Geomean

Average
Rate of
Change

Standard
Deviation

Bohai
Sea

Liaoning 0.760 1.591 1.041 1.001 0.798 2.221 0.477 1.014 1.010 1.0% 0.549
Mean 0.760 1.591 1.041 1.001 0.798 2.221 0.477 1.014 1.010 1.0% 0.549

Yellow
Sea

Shandong 0.762 1.196 0.971 0.646 0.744 2.164 0.352 1.102 0.879 −12.1% 0.544
Mean 0.762 1.196 0.971 0.646 0.744 2.164 0.352 1.102 0.879 −12.1% 0.544

East
China

Sea

Jiangsu 0.894 1.005 0.971 1.228 0.670 2.214 0.247 1.202 0.910 −9.0% 0.565
Zhejiang 1.111 1.101 0.790 0.957 0.983 2.574 0.513 1.165 1.043 4.3% 0.613

Fujian 1.195 1.052 0.807 1.024 0.781 2.687 0.577 1.065 1.037 3.7% 0.652
Mean 1.067 1.053 0.856 1.070 0.811 2.492 0.446 1.144 0.997 −0.3% 0.599

South
China

Sea

Guangdong 1.110 1.005 0.971 1.228 0.687 2.434 0.233 1.193 0.942 −5.8% 0.627
Guangxi 1.057 1.105 0.880 0.940 0.944 2.791 0.223 1.205 0.953 −4.7% 0.729
Hainan 0.423 1.086 0.886 0.905 0.993 3.100 0.232 1.166 0.863 −13.7% 0.871
Mean 0.863 1.065 0.912 1.024 0.875 2.775 0.229 1.188 0.919 −8.1% 0.729

4. Conclusions and Discussion
4.1. Conclusions

This study uses the SBM–Malmquist model to measure the production efficiency of
DSCA in different provinces of China and further analyze the TFP and its decomposition
indices. From these indices, the following conclusions are drawn:
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The overall production efficiency of the DSCA showed an increasing trend, as the level
of DSCA improved gradually. In 2019, the efficiency experienced a sharp decline due to
frequent natural disasters and a significant surge in labor and capital investments resulting
from the massive construction of aquaculture platforms. This led to a severe imbalance
in input and output ratio. In terms of regional differences, both the Bohai and Yellow Sea
regions had a relatively better performance and achieved the effective SBM value. The
next is the South China Sea region, but it also experienced lower efficiency in 2019 due to
natural disasters. The efficiency over the East China Sea region was relatively scant and
exhibited significant disparities among provinces.

In terms of the redundancy rate, both the Bohai and Yellow Sea regions demonstrated
better performance due to their ability to adapt to current input and output scales. The
relative high redundancy rate in the East China Sea region was primarily derived from
Zhejiang Province. Given large demand potential and inadequate production in this area,
it is important to increase the stocking of fish fry and improve their survival rate. In the
South China Sea region, the redundancy in input primarily arose from the DSCA volume,
and the shortage of output is also significant. To change the situation, a more efficient
and precise aquaculture approach should be adopted. This requires moderate control of
farming area and scale, alongside a focus on improving the DSA technology in economically
underdeveloped areas to optimize their aquaculture structure.

The ∆TFP from 2014 to 2018 remained relatively stable. After that, the regression of the
technology efficiency frontier driven by across-society technology change was identified
as the primary factor restricting ∆TFP. A decomposition analysis of efficiency shows that
technical efficiency is primarily affected by scale technical efficiency, indicating that the
technical efficiency of China’s DSCA is heavily influenced by production scale. As a result,
most enterprises in this sector benefit from economies of scale.

In terms of the regional heterogeneity of TFP, the East China Sea had the better
performance, with an average annual growth rate of 11%, while the Bohai Sea did not show
a change. In contrast, the TFP in the Yellow Sea and South China Sea regions declined
by certain degrees, with the Yellow Sea region having a faster decline rate. Overall, the
TFP trends for China’s DSCA differed significantly across regions. After decomposing
the total factor productivity, it is found that pure technical efficiency remained relatively
stable, indicating that resources have been effectively utilized and had a positive impact
on TFP. The mean change of the scale efficiency was around 1, and most enterprises in
DSCA benefited from economies of scale and had a positive impact on TFP. However, the
technical change generally appeared to have a restraining effect on TFP in various DSCA
regions, leading to the retrogression of the efficiency in enterprises.

4.2. Discussion

This article reveals the efficiency and productivity of DSCA in eight of China’s coastal
provinces over a nine-year period, providing insights into the economic aspects of this vital
sector. The study indicates that deceleration or even retreat of efficiency of technological
change in terms of societal aspects has a significant impact on overall efficiency and
productivity, representing a major challenge for the entire industry. While individual DMUs
may be striving for technological progress, the industry as a whole still matters. Addressing
this issue is crucial for the economic development of the deep-sea cage aquaculture sector
in future. Therefore, improvements must begin at the societal forefront. The government
may enact policies to promote deep-sea aquaculture, vigorously developing aquaculture
technologies and drawing on the experiences of advanced deep-sea aquaculture nations. In
addition, the analysis of redundancy rates including both labor investment and farming
volume also highlights the need for further analysis and improvement. Measures can be
taken to foster innovation, enhance work efficiency, and build a positive work environment
and teamwork and individual achievements to reduce labor redundancy. Farming volume
can be optimized by adopting new DCSA technologies to maximize its utilization.
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Additionally, due to the emerging nature of the deep-sea sector, there is a lack of
comprehensive data and research in various aspects, such as the analysis of the marine
ecosystem, ecological environment, pollution, and so on. Variances in water temperature,
ocean currents, and natural factors such as monsoons lead to differences in aquaculture
outcomes and yields. The marine environments of different provinces vary, and these
distinctions significantly affect the results and yields of aquaculture. In addition, the current
study only measures the efficiency of the entire DCSA sector without consideration of
specific species being cultured over different regions. Given the large latitudinal extensions
of the China coastal waters, it will be very important to consider specific species cultured
by DCSA. That will be a future research theme, with relevant data accumulated.
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