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Abstract: Katsuwonus pelamis, or skipjack, is a vital resource in purse seine fishing across the Central 
and Western Pacific. Identifying skipjack distribution hotspots and coldspots is crucial for effective 
resource management, but the dynamic nature of fish behavior means these spots are not constant. 
We used Chinese fishing logbook data from 2010 to 2019 to analyze skipjack resource hotspots and 
coldspots in a space-time cube. The study revealed 13 spatiotemporal patterns in skipjack Catch per 
Unit Effort (CPUE). Hotspots (36.53%) were concentrated in the central area, predominantly show-
ing oscillating hotspots (21.25%). The significant effect of the eastern oscillating hotspot continues 
to be enhanced and extends to the east. Coldspots constituted 63.47% of the distribution, mainly 
represented by intensifying coldspots (25.07%). The no-pattern-detected type (10.53%) is distributed 
between coldspots and hotspots. The fishing grounds exhibited longitudinal oscillations of 3°–6° 
and latitudinal oscillations of 1°–2°. The spatial autocorrelation of cold and hot spot distribution 
was strong, and the spatiotemporal dynamic changes in skipjack resources were closely related to 
the El Niño-Southern Oscillation (ENSO) phenomenon. Notably, during 2011–2016, hotspots exhib-
ited an eastward expansion trend, which continued from 2017–2019 due to the influence of fishery 
management measures, such as the Vessel Day Scheme (VDS) system. 

Keywords: Katsuwonus pelamis; central and western Pacific; purse-seine fishery; space-time cube; 
emerging hot spot analysis; Mann–Kendall trend test 

Key Contribution: The space-time cube is seldom used for analyzing fisheries data. This paper  
introduces this model into fisheries research, providing a solution for maximizing the exploration 
of fisheries potential and shifting the research focus towards high-yield areas. 
 

1. Introduction 
Skipjack (Katsuwonus pelamis) is a migratory fish species that is widely found in trop-

ical and subtropical waters. It is an important target species in purse seine fisheries for 
tuna [1]. The Central and Western Pacific Ocean serves as the largest operational area for 
purse seine skipjack fishing. In 2021, the catch of tuna in the Central and Western Pacific 
was 2.034 million tons, accounting for approximately 62% of the global total catch of tuna, 
and it holds an extremely important position in the world tuna fishery. Currently, skipjack 
stocks are in good condition with stable replenishment levels, and the catch is below the 
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Maximum Sustainable Yield (MSY), at a moderately low level of exploitation [2]. How-
ever, due to limitations in vessel performance, fishing gear, and captain experience, Chi-
nese fleets still lag behind foreign fleets in terms of net-setting efficiency and single-vessel 
catch production during fishing operations [3]. Therefore, the accurate identification of 
the location of cold and hot spots in the distribution of skipjack resources and their spatial 
and temporal dynamic change trends is of great importance to the exploitation and man-
agement of fisheries resources. 

Currently, many researchers are actively developing the spatial distribution of cold 
and hot spots in fishing resources through the utilization of various methodologies, such 
as model construction and spatial statistics. At present, the Generalized Linear Model 
(GLMM) is one of the most common methodologies used to calculate the abundance hot-
spot index of the target species [4]. It is also relatively common to study the spatial and 
temporal distribution patterns of the target species by constructing Standard Deviation 
Ellipses (SDEs) [5], or to identify fishing hotspots by studying fleet patterns [6]. Another 
common approach is to use spatiotemporal statistical models to investigate the activity 
footprint of the target population and to explore the spatial and temporal clustering and 
hot spot distribution of unit fishing effort catch [7]. However, existing studies typically 
only distinguish between cold and hot spots and their distribution, while in reality, the 
location and status of these spots are not static. Currently, there are only a few studies on 
identifying trends in the changes of cold and hot spots in trawl fisheries [8,9], and no such 
studies have been found in other fishery fields. 

The ENSO (El Niño-Southern Oscillation) stands as the most potent ocean-atmos-
phere interaction phenomenon causing global climate variability, with significant impli-
cations for worldwide fisheries production [10]. Research revealed that the ENSO phe-
nomenon exerts a pronounced impact on the spatial distribution of purse seine fisheries 
in the central and western Pacific [11–13]. Some researchers have suggested that changes 
in skipjack habitat are associated with the zonal displacement of the Equatorial Pacific 
warm pool. Additionally, variations in the El Niño/Southern Oscillation (ENSO) are also 
linked to the Intertropical Convergence Zone (ITCZ) and the South Pacific Convergence 
Zone. In this region, low sea surface salinity results in the formation of a salinity barrier 
layer, leading to elevated near-surface temperatures that are conducive to the growth of 
skipjack tuna in the Western Pacific [14]. As a cyclic natural phenomenon, the relationship 
between ENSO and the dynamic shifts in the distribution of purse-seine fisheries cold and 
hot spots remains a subject of ongoing discussion and investigation. 

The development of the Pacific skipjack fishery in the central and western Pacific 
Ocean has seen continuous growth since the 1950s. This can be attributed to advancements 
in fishing gear and methods, increased fishing vessels, and more fishing days [15]. From 
2010 to 2013, there was an increase in the number of fishing vessels, which stabilized after 
2014. In line with the requirements of international regional fisheries organizations for 
sustainable fisheries, China has implemented measures to control the scale of its Pacific 
skipjack fishery since 2016, resulting in stable numbers of fishing vessels and production 
capacity [16]. Using Geographic Information Systems (GIS) in fishery research can more 
accurately and reasonably interpret the aggregation characteristics, spatial distribution, 
and changes in catch trends of fishery resources [17]. By using the space-time cube model 
and the spatiotemporal hot spot analysis technique in GIS, we can not only find the hot or 
cold spots of the target attribute values but also determine the intensity and consistency 
of the hot or cold spots within a certain time unit in order to identify the statistically sig-
nificant hot and cold spot trends over time. By analyzing the data, the tool can identify 
new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating, or historical 
patterns of hot or cold spots in different time intervals. The refined patterns of hotspots or 
cold spots provide a richer spatiotemporal context beyond single hot or cold spot loca-
tions. This aids in uncovering the spatiotemporal evolution patterns of skipjack resources. 
Currently, this method has been widely applied in research fields such as geography 
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[18,19], medicine [20], and public transportation [21,22], and introducing this concept pro-
vides an effective means for exploring the spatiotemporal information of skipjack resource 
distribution.  

In this study, we have integrated daily fishing log data of all Chinese fishing vessels 
operating in the Central and Western Pacific Ocean from 2010 to 2019 into daily catch data 
with a spatial resolution of 0.5° × 0.5°; these data have been used to develop a space-time 
cube model. Through the application of trend analysis methods, we assess the trends in 
hot spots and cold spots regarding the spatiotemporal distribution of skipjack resources. 
Furthermore, our objective is to explore the spatiotemporal evolution patterns of skipjack 
resources, examining the spatiotemporal dynamics of skipjack fishing hotspots and cold 
spots in relation to the ENSO phenomenon, fisheries management policies, and other an-
thropogenic influences. This research aims to provide valuable insights into the develop-
ment of Central and Western Pacific skipjack resources and the formulation of effective 
fishery management policies. 

2. Materials and Methods 
2.1. Data Sources 

The catch data for skipjack in the Central and Western Pacific Oceans were extracted 
from the fishing logbooks of all Chinese-flagged vessels operating between 2010 and 2019 
(Table 1). The data were selected based on the following criteria: the target catch was skip-
jack, the fishing method was purse seine fishing, and the fishing operations were con-
ducted in the Central and Western Pacific Ocean (138° E–148° W, 15° N–15° S, Figure 1). 
The recorded information encompassed the year, month, day, longitude, latitude, fishing 
days, and catch quantity measured in tail numbers, among other relevant variables.  

 
Figure 1. Important national, regional and management zones in the Pacific. The WCPFC Conven-
tion Area (WCPFC-CA) is outlined in dark blue, the IATTC Convention Area (IATTC-CA) area is 
outlined in red. The western and central Pacific Ocean (WCPO) includes all of the WCPFC-CA, mi-
nus the overlap with the IATTC-CA; the eastern Pacific Ocean (EPO) is coincident with the IATTC-
CA. Pacific nation EEZs are outlined in grey and archipelagic waters are shaded turquoise [23]. 

Table 1. The information on the fishing days for the Central and Western Pacific skipjack tuna purse 
seine fishery operations. The term “fishing day” represents “Days fishing and searching (effort)”. 

Year Total Vessels (pcs) Total Fishing Days (d) Catch (t) 
2010 12 2222 37,705 
2011 14 2353 56,357 
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2012 15 2546 66,237 
2013 21 4883 115,351 
2014 25 4301 107,529 
2015 24 2788 64,045 
2016 26 4567 121,726 
2017 24 5386 124,677 
2018 23 5016 168,410 
2019 15 3575 132,913 

2.2. Data Preprocessing 
We initiated our study with data preparation and preprocessing steps, where we ad-

justed the spatial resolution of the target dataset to 0.5° × 0.5°. The data had a daily time 
resolution, and we integrated the catch production and fishing effort data on a daily basis 
within the 0.5° × 0.5° spatial cells. The indicator chosen to represent the status of the skip-
jack fishery resources is the Catch per Unit Effort (CPUE), with the following calculation 
formula: 

catch

days

UC
f

PUE =
  

(1) 

In the equation: ‘Ucatch’ represents the cumulative catch within a spatial cell of 0.5° × 
0.5°, measured in metric tons (t), ‘fdays’ represents the cumulative operational duration 
within a unit, measured in days (d), with a time scale of one day. 

2.3. Data Analysis Methods 
2.3.1. Spatial Autocorrelation Analysis 

The establishment of scientific spatial analysis or forecasting models requires not 
only attention to the correlation of data but also the study of their two-dimensional spatial 
relationships. To solve this problem, methods such as selecting statistical indicators, adap-
tive modeling, and semi-empirical models are usually used [24]. Spatial autocorrelation 
analysis is a branch of spatial statistics, and the Moran’s I and Local Moran’s I statistics 
under this model have been widely used to study two-dimensional relationships in data 
[25–27].  

Moran’s I is a statistical measure that enables the simultaneous analysis of spatial 
autocorrelation among both the attributes and locations of features. The calculation for-
mula for Moran’s I is as follows: 
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where: ix , jx  represent the attribute values of units i and position j, respectively. 

1

1 n

m i
i

x x
n =

=   (3) 

Wij represents the spatial weight matrix, which defines the neighborhood relation-
ships among spatial objects. Moran’s I takes on positive values when the attribute values 
of neighboring units are similar, negative values when they are dissimilar and tends to-
wards zero when attribute values appear randomly. The value of Moran’s I ranges be-
tween −1 (indicating dispersed patterns) and +1 (indicating clustered patterns), with a 
value around 0 indicating a random pattern. 
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2.3.2. The Space-Time Cube Model 
The space-time cube model is a spatiotemporal data model within GIS that integrates 

spatial, temporal, and attribute information of geographic phenomena. It enables the re-
construction of historical states, tracking of spatiotemporal changes, and prediction of de-
velopment trends of data [28,29]. This model facilitates 3D visualization and data analysis. 
By aggregating all sample points into spatiotemporal columns, the data is organized into 
a structured format using NetCDF (Network Common Data Form) as the spatiotemporal 
data structure. Within each column, calculations are performed on the points, and speci-
fied attributes are aggregated to calculate statistical data for all summary fields. The 
Mann-Kendall trend analysis is employed to assess the trend of column values across time 
at each location, and compares the trend data bin values created at each location with the 
previous unit value, with positive values indicating a higher presence, negative values 
indicating a decrease, and zero values indicating no change. This analysis yields the time 
series trend for the entire study area.  

Conceptually, this data structure can be visualized as a three-dimensional cube com-
posed of spatiotemporal columns. The x and y dimensions represent the spatial locations 
of geographic entities, while the z dimension represents time. Each column has a fixed 
position in space (x, y) and time (z), and columns covering the same (x, y) area share the 
same location ID. Columns with the same duration share the same time step ID. Columns 
associated with the same physical location share the same position ID and can be com-
bined to represent time series, while columns sharing the same time step interval can be 
combined to form time slices [30]. 

2.3.3. Spatiotemporal Hotspot Analysis 
The Getis-Ord Gi* statistic is a novel tool used for spatiotemporal hotspot analysis of 

data in the space-time cube [31–33]. It allows for the identification of spatiotemporal 
trends, as well as hotspots or coldspots of data on a spatiotemporal scale (Table 2). This 
method retrieves and analyzes adjacent columns in both time and space, calculating Z 
scores, p values, and other information associated with each column based on appropriate 
neighborhood distance and neighborhood time step parameters [34]. By examining sig-
nificant clusters of high or low values within a region, hotspots or coldspots of the target 
attribute values can be identified, and the strength and consistency of hotspots or cold-
spots within a certain time step can be determined. The spatiotemporal hotspot analysis 
tool also calculates the correlation between columns. In this study, the global Moran’s in-
dex tool is employed to calculate spatial autocorrelation, assisting in the determination of 
suitable neighborhood distances and neighborhood time steps. Additionally, the hotspot 
analysis enables two-dimensional or three-dimensional visualization of the space-time 
cube, facilitating the visual identification of spatiotemporal data patterns. 

Table 2. Trend significance classification categories. 

Trend Bin Z-Score p-Value Trend Remarks 

−3 <−2.58 99% 
Decline with 99% confi-

dence level 
Cold spot with 99% confi-

dence level 

−2 −2.58 ~ −1.96 95% Decline with 95% confi-
dence level 

Cold spot with 95% confi-
dence level 

−1 −1.96 ~ −1.65 90% Decline with 90% confi-
dence level 

Cold spot with 90% confi-
dence level 

0 −1.65 ~ 1.65 — Non-significant trend 
Non-statistically signifi-

cant hot or cold spots 

1 1.65 ~ 1.96 90% Up with 90% confidence 
level 

Hot spot with 90% confi-
dence level 
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2 1.96 ~ 2.58 95% Up with 95% confidence 
level 

Hot spot with 95% confi-
dence level 

3 >2.58 99% Up with 99% confidence 
level 

Hot spot with 99% confi-
dence level 

According to the Z scores and p values of each column, the patterns of columns in the 
spatiotemporal hotspot analysis can be classified into different categories as summarized 
in Table 3. 

Table 3. Classification of Hotspot and Coldspot Trends. The classification categories describe the 
patterns of hotspots and coldspots observed in the spatiotemporal analysis [34]. 

Pattern Name Definition 

No Pattern Detected 
Does not fall into any of the hot or cold spot patterns defined be-

low. 

New Cold/Hot Spot 
A location that is a statistically significant cold/hot spot for the fi-
nal time step and has never been a statistically significant cold/hot 

spot before. 

Consecutive Cold/Hot 
Spot 

A location with a single uninterrupted run of statistically signifi-
cant cold/hot spot bins in the final time-step intervals. The loca-

tion has never been a statistically significant cold/hot spot prior to 
the final cold/hot spot run and less than ninety percent of all bins 

are statistically significant cold/hot spots. 

Intensifying Cold/Hot 
Spot 

A location that has been a statistically significant cold/hot spot for 
ninety percent of the time-step intervals, including the final time 

step. In addition, the intensity of clustering of high counts in each 
time step is increasing overall and that increase is statistically sig-

nificant. 

Persistent Cold/Hot 
Spot 

A location that has been a statistically significant cold/hot spot for 
ninety percent of the time-step intervals with no discernible trend 

indicating an increase or decrease in the intensity of clustering 
over time. 

Diminishing Cold/Hot 
Spot 

A location that has been a statistically significant cold/hot spot for 
ninety percent of the time-step intervals, including the final time 
step. In addition, the intensity of clustering in each time step is 
decreasing overall and that decrease is statistically significant. 

Sporadic Cold/Hot 
Spot 

A location that is an on-again then off-again cold/hot spot. Less 
than ninety percent of the time-step intervals have been statisti-

cally significant cold/hot spots and none of the time-step intervals 
have been statistically significant hot/cold spots. 

Oscillating Cold/Hot 
Spot 

A statistically significant cold/hot spot for the final time-step in-
terval that has a history of also being a statistically significant 

hot/cold spot during a prior time step. Less than ninety percent of 
the time-step intervals have been statistically significant cold/hot 

spots. 

3. Results 
3.1. Spatial Autocorrelation of the CPUE of Skipjack 

The spatial autocorrelation analysis was conducted to examine the spatial pattern of 
the CPUE of skipjack in the study area. The results of the Global Moran’s I statistical test 
indicated that the CPUE of skipjack exhibited a clustered pattern, meaning that areas with 
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high CPUE values were spatially associated with neighboring areas with high CPUE val-
ues, and the same applied to areas with low CPUE values. To determine the optimal 
neighborhood distance for constructing the space-time cube, incremental spatial autocor-
relation analysis was performed using multiple distance bands. The Global Moran’s I was 
computed for each distance band, providing a distance threshold and a corresponding Z-
score. The distance threshold represents the spatial scale at which the most significant 
clustering occurred for each year, and it serves as the optimal spatial scale for conducting 
spatial analysis in that specific year. The results revealed that the optimal neighborhood 
distance varied for each year from 2010 to 2019, ranging from 22,799 m to 67,242 m. How-
ever, when considering the entire decade, the overall optimal spatial scale was determined 
to be 55,500 m, which captures more spatial information and retains more research details 
at this scale. This distance was selected as the optimal neighborhood distance for con-
structing the space-time cube.  

Furthermore, the trend analysis of the Z-score indicated an upward trend over time, 
suggesting that the clustering of skipjack CPUE became more pronounced as the years 
progressed. These findings provide valuable insights into the spatial autocorrelation of 
skipjack CPUE, highlighting the presence of significant clustering patterns and indicating 
the optimal spatial scale for conducting further spatial analysis. 

3.2. Space-Time Cube Model of Skipjack 
The analysis data consisted of a theoretical sampling of 3652 times, and the actual 

sampling included 3588 instances, comprising a total of 28,490 CPUE data points. Based 
on the spatial autocorrelation analysis, the optimal spatial scale for clustering was deter-
mined to be 55,500 m. Using the logbook data of the Pacific skipjack tuna purse seine fish-
ery in the Central and Western Pacific from 2010 to 2019, a space-time cube model was 
constructed. The model had a time step interval of 1 year and a neighborhood distance of 
55,500 m.  

The space-time cube aggregated the 28,490 CPUE data points into 5310 0.5° × 0.5° 
spatial cells over 10 time step intervals. Each 0.5° × 0.5° spatial cell represented a square 
area of 55,500 m by 55,500 m. The entire space-time cube covered an area of 654,900 m 
from west to east and 2,497,500 m from north to south. The time period covered by the 
space-time cube spanned 10 years. Out of the total 5310 locations, 2270 locations (42.75%) 
contained at least one data point for at least one time step interval. These 2270 locations 
comprised 22,700 space-time bins, of which 8076 (35.58%) had point counts greater than 
zero. The trend analysis indicated a statistically significant increase in CPUE point counts 
over time, suggesting a rise in the CPUE of skipjack during the study period. 

The space-time cube model allowed for two-dimensional and three-dimensional vis-
ualizations, which facilitated the identification of spatiotemporal patterns. The 2D visual-
ization provided an overview of the overall trend throughout the study period, while the 
3D visualization displayed the historical state and changes of each fishing ground repre-
sented by each 0.5° × 0.5° spatial cell over time. Figure 2 depicts the 3D representation of 
the space-time cube, illustrating the total catch (in tons) at each location and year. 



Fishes 2023, 8, 525 8 of 19 
 

 

 
Figure 2. Spatio-temporal cube displayed in three-dimensional mode. Layers represent skipjack 
catch data by year. 

3.3. Mann–Kendall Trend Test for CPUE of Skipjack 
The Mann–Kendall trend test was conducted using the space-time cube model to an-

alyze the CPUE of skipjack over the entire study period. The results (Figure 3) indicate 
that there is no significant overall trend observed in the CPUE of skipjack. However, there 
are localized trends of increase or decrease. In the central area of the study region, a total 
of 568 spatial cells of 0.5° × 0.5° exhibit a significant upward trend in CPUE, suggesting 
the presence of potential fishing hotspots. These locations are primarily concentrated in 
the geographical range of 163° E–179.5° W and 5.5° N–6° S. Moving outward from this 
central area, there are 708 fishing net locations with insignificant trends, which could be 
attributed to fluctuations in the fishery. On the periphery of the study area, there are 994 
locations showing a decreasing trend in CPUE over time. These areas may represent fish-
ing cold spots, where the CPUE of skipjack has declined. The Mann–Kendall trend test 
provides valuable insights into the overall changes in CPUE and identifies both significant 
and insignificant trends across the study area. These findings can be utilized to inform 
fisheries management strategies and target specific regions for conservation or interven-
tion efforts. 
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Figure 3. Mann–Kendall trend test results for CPUE of skipjack, with cool and warm colors repre-
senting areas where cold and hot spots are likely to occur, respectively. 

3.4. Spatiotemporal Distribution of Hot and Cold Spots for CPUE of Skipjack 
The spatiotemporal hotspot analysis using the space-time cube model revealed the 

distribution of hot and cold spots for CPUE at each fishing net location in the study area. 
Figure 4 visualizes the results, where warm colors represent hot spots and cold colors 
represent cold spots. Out of the total 2270 fishing net locations analyzed, 2031 locations 
(89.42%) exhibited hot or cold spot trends. These locations showed varying degrees of 
clustering in CPUE over time. Table 4 provides an overview of the thirteen results ob-
tained from the spatiotemporal hotspot analysis. Among these results, a total of 742 fish-
ing net locations were identified as fishing hotspots, accounting for 32.69% of the total 
locations. These hotspots were mainly concentrated in the central area of the study region, 
spanning from longitude 151° E to 178° W and latitude 5° N to 6° S. These regions experi-
enced significant clustering of high CPUE values over time. The fishing net locations sur-
rounding the hotspots showed no pattern detected, with a total of 239 locations (10.53%) 
falling into this category. These locations did not exhibit significant clustering of CPUE 
values. Moving outward from the hotspots and surrounding areas, a total of 1289 fishing 
net locations (56.78%) displayed a cold spot pattern. These locations experienced a de-
creasing trend in CPUE over time. 
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Figure 4. Spatiotemporal distribution of hot (warm colors) and cold (cold colors) of skipjack tuna 
CPUE, showing 13 spatial and temporal distribution patterns, with stable distribution patterns of 
cold and hot spots. 

The spatiotemporal distribution of hot and cold spots provides valuable insights into 
the variability and clustering patterns of CPUE in different areas of the study region. This 
information can aid in identifying key fishing hotspots, understanding spatial dynamics, 
and informing targeted fisheries management strategies to maximize catch efficiency and 
conservation efforts. Based on Figure 4 and Table 4, the following observations can be 
made: 
(1) There are no intensifying, sporadic, historical hotspots, or historical cold spots in the 

study area, indicating that the spatial position of the hotspot area is constantly fluc-
tuating. The development and utilization of skipjack resources in the study area is 
relatively mature, with stable production, and has been developed for a long time. 
Therefore, there has not been an area with continuously increasing clustering 
strength in 2010–2019.  

(2) In the study area, there were 89 consecutive hotspots and 106 persistent hotspots be-
tween longitude 151.5° E–168.5° E and latitude 1.5° N–5° S (Figure 4). This result in-
dicates that there are stable fishing grounds in the study area, which are constantly 
changing due to phenomena such as El Niño and La Niña, but there are still contin-
uous and stable fishing grounds among them. Four diminishing hotspots were de-
tected, which were produced around persistent hotspots. They showed hotspots 90% 
of the time but their clustering strength decreased overall, and this decrease was sta-
tistically significant.  

(3) The new hotspots in the study area (63 in total) are concentrated between 166.5° E 
and 178° W, and between 5.5° N and 6.5° S. These locations exhibited statistically 
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significant hotspots in 2018–2019 (Table 4), but not in previous years. The new 
hotspots are generated around oscillating hotspots (Figure 4).  

(4) In the study area, the proportion of intensifying cold spots is the highest, with 559 
detected in total, 307 consecutive cold spots, 242 persistent cold spots, and 110 spo-
radic cold spots. There are also 33 new cold spots, 29 oscillating cold spots, and 9 
diminishing cold spots (Table 4). The results show that these cold spots are mainly 
located in the boundary area of the study area (Figure 4), indicating that the fishing 
operation mode in China is gradually maturing, and the detection of fishing grounds 
tends to be stable.  

(5) The fishing net positions around various hotspots in the study area show no pattern 
detected and are distributed in 239 locations (Table 4). The distribution range is be-
tween 150° E and 174° W, and between 6.5° N and 7.5° S, spreading out from the 
hotspot area and forming a shape that is almost circular. The distance between the 
fishing net positions and the nearest hotspots is approximately 0.5°–1.5° (Figure 4). 
There is no unified pattern in this area, and it does not belong to any established cold 
or hot spot pattern. Dividing at 162.5° E, the area to the west of 162.5° E shows an 
irregular alternating pattern of cold and hot spots, with occasional hot spots appear-
ing irregularly. The area to the east of 162.5° E shows an irregular pattern of cold 
spots, with statistical significance fluctuating. 

Table 4. Results of spatiotemporal cube detection of the distribution of skipjack in the Central and 
Western Pacific Ocean. 

Type Number Percentage Locations Main Periods of Occurrence 
New Hot 

Spot 63 2.78% 
166.5° E–178° W, 

5.5° N–6.5° S During 2019 

Consecutive 
Hot Spot 

89 3.92% 

151.5° E–158° E, 
1.5° N–3° S 2010–2011: no salient features; 2011–2012: partially signifi-

cant hotspots; 2013–2019: Significant hotspots. 162° E–168.5° E, 
0.5° S–5° S 

Intensifying 
Hot Spot 0 0.00% None None 

Persistent Hot 
Spot 106 4.67% 

153° E–162.5° E, 
0.5° S–4.5° S 2010–2019: Significant hotspots 

Diminishing 
Hot Spot 

4 0.18% 157° E–158.5° E, 
3.5° S–4.5° S 

2010–2019: Significant hotspots; During 2019: Hotspot clus-
tering intensity decreases. 

Sporadic Hot 
Spot 0 0.00% None None 

Oscillating 
Hot Spot 480 21.15% 

152° E–154.5° E, 
1.5°N–0° 

During 2010: Significant cold spots; During 2011: No sig-
nificant features; During 2012: some areas are significant 

hotspots; 2013–2019: Significant hotspots. 

163° E–179.5° W, 
5.5° N–6° S 

Between 
163.5° 
E–180° 

E, 
5° N–5° 

S 

West of 174° E: 2010–2011: vast majority of signifi-
cant cold spots; 2011–2012: some regions without 

significant features; 2011–2012: some regions 
without significant features; 2012–2014: some re-
gions are significant hotspots; 2014–2019: over-

whelmingly significant hotspots. 
East of 174° E: 2010–2015: overwhelmingly signifi-
cant cold spots; 2015–2018: some regions are sig-
nificant hotspots; 2018–2019: Significant hotspots. 
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Mar-
ginal ar-

eas 

2010–2017: most regions show a process of change 
from significant cold spots to no significant fea-
tures; 2017–2018: some regions are significant 

hotspots; 2018–2019: Significant hotspots. 
Historical Hot 

Spot 
0 0.00% None None 

New Cold 
Spot 33 1.45% 153° E–162.5° E, 

4° S–6.5° S During 2019 

Consecutive 
Cold Spot 

307 13.52% 

139.5° E–149.5° E, 
1° N–7° N 

2010–2012: no distinguishing features; 2012–2015: some ar-
eas are significant cold spots; 2015–2019: Significant cold 

spots. 149.5° E–166.5° E, 
5° S–12.5° S 

Intensifying 
Cold Spot 

559 24.63% 

141° E–151° E, 
2° N–5° S 

2010–2011: small proportion with no significant features; 
2011–2019: cold spots of significance and gradually in-

creasing clustering. 

166° E–175° W, 
6.5° S–12° S 

143° E–170° W, 
3.5° N–9° N 

174° W–178° W, 
3.5° N–6.5° S 

Persistent 
Cold Spot 

242 10.66% 

163.5° E–171° W, 
1.5° N–8° N 2010–2019: Significant cold spots 

173.5° E–175.5° W, 
3.5° S–8° S 

Diminishing 
Cold Spot 9 0.40% 162° E–171° E, 

3° N–6.5° N 
2010–2019: Significant cold spots; 2018–2019: weakening 

intensity of clustering. 
Sporadic Cold 

Spot 110 4.85% 
144.5° E–158° E, 

4.5° N–3.5° S 
During 2010: mostly significant cold spots; 2011–2017: par-

tially non-significant; 2017–2019: Significant cold spots. 

Oscillating 
Cold Spot 29 1.28% 

153.5° E–162.5° E, 
5° S–7.5° S 

East of 
156° E 

During 2010: No distinguishing features; 2011–
2013: Significant hotspots; 2013–2017: gradual 

change from salient hotspot to no salient features; 
2017–2019: Significant cold spots. 

West of 
156° E 

2010–2013: Prominence hotspots; 2013–2017: par-
tially unremarkable; 2017–2019: Significant cold 

spots. 
Historical 
Cold Spot 

0 0.00% None None 

No Pattern 
Detected 

239 10.53% 150° E–174° W, 
6.5° N–7.5° S 

No apparent pattern 

(6) According to the information provided(Figure 4), there are 480 oscillating hotspots 
in the study area. These hotspots are concentrated between 163° E and 179.5° W, and 
between 5.5° N and 6° S. Additionally, there are a smaller number of hotspots ap-
pearing between 152° E and 154.5° E. The variation process of oscillating hotspots is 
complex. Figure 5 illustrates the number of years that each location in the area has 
remained as a hotspot. Locations adjacent to consecutive hotspot areas have consist-
ently shown significant hotspots from 2012 to 2019. Positions that expand northeast-
ward from this area have shown significant hotspots from either 2013 to 2019 or 2014 
to 2019. This forms an approximately fan-shaped area between 163.5° E and 174° E 
and between 4° N and 5° S. In terms of longitude, as the fishing positions expand 
eastward, locations east of 174° E show significant hotspots from either 2015 to 2019 
or 2016 to 2019. The fishing positions at the north, east, and south boundaries of the 
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area showed significant hotspots only in 2018–2019. Overall, from 2010 to 2019, most 
of the central area positions directly transformed from significant cold spots to sig-
nificant hotspots. However, at most of the boundary positions, the change process 
involved significant cold spots, followed by no significant pattern, and then signifi-
cant hotspots. In this study, we believe that the occurrence of oscillating hotspots 
indicates that the frequency and amount of fishing catches in this area are irregular 
and mainly influenced by environmental changes. 

 

 
Figure 5. The change in the number of years of sustained significant hotspots in oscillating hotspot 
regions. The numbers in the figure indicate the duration of significant hotspots manifested at the 
location. 

Figure 6 is a layered space-time cube showing the variability of cold and hot spots in 
CPUE of purse seine fishery in the Central and Western Pacific in both space and time. 
Each layer represents the hotspot analysis results of CPUE for that year. According to the 
results, from 2010 to 2013, the fishing hotspots in the study area were primarily concen-
trated in the western waters between 151° E and 163° E. However, after 2013, another cen-
ter of fishing hotspots emerged in the waters between 163° E and 175° E. Over time, these 
hotspots expanded eastward and reached as far as 178° W in 2019. The most persistent hot 
spot area over the past decade has been concentrated in the western waters of the study 
area, which has shown a slight trend of contraction and expansion in different years, lead-
ing to the appearance of some oscillating hot spots and diminishing hot spots (especially 
between 2011 and 2013).  
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Figure 6. Results of the three-dimensional hotspot analysis of total annual catch, with each layer 
representing a year, analyzing the hotspot movement trend of skipjack CPUE from year to year, 
with an overall eastward trend between years. 

4. Discussion 
4.1. Relationship between ENSO Phenomenon and Spatiotemporal Patterns of the Western and 
Central Pacific Skipjack CPUE 

This study investigates the temporal and spatial dynamics of the CPUE of Western 
and Central Pacific skipjack using the space-time cube model and emerging hotspot anal-
ysis from 2010 to 2019 during Chinese fishing vessel operations. The study identified 13 
spatiotemporal distribution patterns through hotspot analysis, including 32.69% hot spot 
patterns, 56.78% cold spot patterns, and 10.53% no pattern detected. The main hot spot 
patterns include oscillating hot spots, persistent hot spots, and consecutive hot spots, 
which are concentrated in the central area of the research region. The primary cold spot 
patterns include intensifying cold spots, consecutive cold spots, and persistent cold spots, 
which are stably distributed around the study area. 

The results show that the distribution of cold and hot spots of skipjack CPUE in the 
study area has a strong regularity, and at the same time, a complex pattern of left-right 
oscillation occurs in the middle of the stable distribution of cold and hot spots over a long 
time span (see Figure 4, regions I-IV). The survival activities of skipjack are closely related 
to climate changes [35–37], and we hypothesize that this oscillatory phenomenon is pri-
marily influenced by the ENSO phenomenon. From the perspective of the formation pat-
terns of fishing grounds, it is evident that the environmental conditions within small-scale 
marine areas exhibit continuity. Drawing upon established empirical knowledge, such as 
Tobler’s First Law [38], it can be inferred that under continuous and similar environmental 
backgrounds, the occurrence of continuous fishing grounds is highly probable. However, 
within the findings of this study, the “No Pattern Detect” phenomenon emerges around 
the stable fishing grounds area (see Figure 4, regions I-IV). The “No Pattern Detect” rep-
resents the alternating appearance of fishing cold and hotspots in the given time intervals 
within the region. The frequency is not fixed, and there is no consistent regularity. The 
location of the “No Pattern Detect” phenomenon and the amplitude of the oscillations are 
highly consistent with the left-right movement of warm pools in the western Pacific Ocean 
during ENSO events. This study highlights the regularity observed in the distribution of 
these spots, indicating a close relationship between interannual scale climate changes and 
the dynamic shifts in catch. 

Skipjack is a cluster fish species that exhibits strong spatial autocorrelation in its re-
source distribution at a macro level and has localized features of uneven “cold” and “hot” 
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distribution [39]. The study finds that the CPUE of Western and Central Pacific skipjack is 
not uniform in time and space(Figure 4), with the Mann–Kendall trend test and emerging 
hotspot analysis results identifying a common hotspot core area, the results show that 
from 2010 to 2019, the CPUE hotspots of Western and Central Pacific skipjack were con-
centrated in the central area of the Western and Central Pacific, and the center of the an-
nual CPUE hotspots showed significant changes in longitude, with a tendency to contin-
uously expand to the East. The study considers that this phenomenon is mainly due to the 
influence of the warm pool movement caused by the ENSO phenomenon. During La Niña 
years (2010–2012), the CPUE hotspots of skipjack were concentrated in the western sea 
area of 151° E–163° E (west of the boundary line shown in Figure 4), and then, under the 
influence of El Niño years (2014–2016), the hotspots gradually expanded to the east (Fig-
ure 6).  

During the change process, the CPUE hotspots in the western part of the study area 
have always existed, forming a stable fishing ground, and showing consecutive hot spot 
patterns and persistent hot spot patterns (west of the boundary line shown in Figure 4). 
The study finds that the Eastern Pacific was gradually transformed from a cold spot to a 
hot spot due to the warm pool movement, and the significant effect of the eastern position 
of the hotspot region that has already been shown as a hot spot is continuing to increase 
and spread continuously to the East, gradually forming a stable fishing ground in the cen-
tral area of the study area. This region has historically exhibited cold spots, hence its os-
cillating hot spot pattern in emerging hot spot analysis (east of the boundary line shown 
in Figure 4). Skipjack, as a thermoregulating fish species, has a fishing ground that changes 
longitudinally with the variation of the 29 °C isotherm line, and the ENSO phenomenon 
can affect the position of the 29 °C isotherm line on the edge of the warm pool [11,13], 
which in turn affects the catch hot spot position of skipjack. Numerous studies 
[10,12,40,41] have shown that the center of gravity of Pacific skipjack catch is biased to-
wards the West and North during La Niña years, and relatively biased towards the East 
and South during El Niño years, which is consistent with the findings of this study.  

From an annual time scale perspective, the pattern changes around the hot spot area 
are quite complex. The significant changes in cold or hot spots in this region do not follow 
a uniform pattern and cannot be classified into a given pattern type, thus they are classi-
fied as no pattern detected. These undetected patterns are distributed relatively evenly 
around the hotspot area, with a distance of approximately 1.5°–3° from the stable hotspot 
fishing grounds (oscillating hotspots, consecutive hotspots, and persistent hotspots). The 
sea area near the boundary is inhabited by a substantial population of plankton and zoo-
plankton, thanks to phenomena such as upwelling and subsidence currents. This creates 
favorable conditions for the aggregation and growth of bonito. The occurrence of “No 
Pattern Detected” features at this location (see Figure 4, regions I-IV) is likely influenced 
by the abundance of bait, with food availability driving the distributions. Under normal 
conditions or during La Niña events, there is a cold-water tongue with high chlorophyll 
content in the eastern Pacific Ocean, which contains abundant microorganisms and nutri-
ents. This area tends to form good fishing grounds near 160° E. During El Niño events, the 
fishing grounds move eastward and swing around 165° E [10]. The movement of the warm 
pool in the western Pacific and the strength of the cold tongue in the eastern Pacific cause 
the fishing grounds to continually swing and complex variations to occur around the sta-
ble fishing grounds. This study’s results indicate that the fishing grounds move around 
the central area due to climate influence, with an oscillation amplitude of 3°–6° in the lon-
gitude direction and 1°–2° in the latitude direction (see Figure 4, regions I-IV). 

4.2. The Impact of Fishing Behavior and Management on Temporal and Spatial Patterns of 
Fishing Grounds 

When decomposing the movement path of the skipjack CPUE hotspot year by year, 
it can be seen that the skipjack CPUE hotspot as a whole has maintained an eastward 
movement over the decade (Figure 6). The eastward movement of the fishery is not only 
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influenced by climate but also disturbed by anthropogenic factors such as fisheries man-
agement policies but the proportion of the impact caused by the two factors cannot be 
quantified for the time being. The results of the hotspot analysis in this study show (Figure 
4) that there are consecutive hotspots and intensifying hotspots in the study area, which 
represent a continuous and stable fishery. However, there is an annular “No Pattern De-
tect” around the stable fishery (see Figure 4, regions I-IV). Continuous fishing grounds 
usually occur in a continuous and similar environmental context, but the appearance of 
the “No Pattern Detect” phenomenon is a break from the norm. The timing, extent, and 
magnitude of the “No Pattern Detect” phenomenon are highly consistent with the move-
ment of the fishery during the ENSO event, so we believe that the left-right oscillation of 
the fishery in the study area over the decade was mainly influenced by climatic factors 
such as ENSO. However, upon closer examination through annual decomposition, we 
posit that the continuous eastward movement of skipjack CPUE hotspots is primarily at-
tributed to anthropogenic factors. 

In the time span covered by this study, there was an increase in the number of Chi-
nese fishing vessels between 2010 and 2013. After 2014, it tended to stabilize under the 
influence of policies. In 2019, the number of purse seine fishing vessels and fishing days 
for Pacific skipjack decreased due to objective factors. However, in this study, the expan-
sion trend of fishing hotspots for Pacific skipjack has continued eastward over time (Fig-
ure 6), and the fishing days have not had a significant impact on this trend (Table 1). Spa-
tially, the fishing hotspots for Pacific skipjack are highly concentrated, with minimal scat-
tered hotspots. Most of the significant cold spots are located in the boundary areas of the 
study area. Among the cold spot patterns, the highest proportion is the intensifying cold 
spot patterns, followed by persistent cold spot patterns and consecutive cold spot patterns 
(Table 4). These cold spots are relatively evenly distributed around the central fishing 
grounds depicted in Figure 4. Fishery research inherently possesses strong spatial charac-
teristics, as fishing activities target specific resources in specific areas. In these suitable 
areas, the catch can reach its maximum [42,43], indicating that the fishing patterns of Chi-
nese fishing vessels are relatively mature. 

Hampton [44] used the release and recapture of tagged Pacific skipjack in the pole-
and-line fishery to confirm that the population of Pacific skipjack migrates eastward on a 
large scale during El Niño years and migrates in the opposite direction during La Niña 
years. Comparing the fishing patterns of Chinese fishing fleets during the study period, it 
is observed that during La Niña years (2011–2013), the fishing grounds were predomi-
nantly located in the western region of the central and western Pacific, including the ex-
clusive economic zones of countries like Papua New Guinea, Micronesia, and Nauru. 
However, during the El Niño phenomenon from 2014 to 2016, the fishing grounds shifted 
to the eastern region, such as the exclusive economic zones of Nauru and Kiribati (Figure 
6). The purse seine fishing grounds for skipjack in the central and western Pacific Ocean 
are primarily within the tropical waters between 140° E–150° W and 10° N–10° S, encom-
passing the exclusive economic zones of eight Pacific island countries, including Papua 
New Guinea, Micronesia, and Kiribati. The catch of Pacific skipjack in the exclusive eco-
nomic zones of the eight countries accounts for more than 98% of the total catch in the 
Pacific island countries [45]. 

The Nauru Agreement, signed in 1982 by eight Pacific island countries, including Pa-
pua New Guinea, Micronesia, and Kiribati, led to the implementation of the “Vessel Day 
Scheme” (VDS) by the Parties to Nauru Agreement (PNA) in 2007. The VDS system is 
designed to manage the purse seine fishery [46]. The Chinese tuna purse seine fleet has 
been developing since 2001. In recent years, with the advancement of the VDS system and 
other management measures, the price of fishing days in PNA island countries has been 
increasing. Fishing companies must determine the quantity of fishing days to purchase 
for each country for the following year by the end of the preceding year. The study period 
from 2011 to 2016 covers a complete ENSO cycle. The longitude of the fishing grounds has 
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fluctuated significantly due to the effects of climate change, as shown in the spatiotem-
poral pattern analysis, with the hotspot shifting eastward (Figure 6). This indicates that 
the Chinese fleet has gained a preliminary understanding of the general migration pattern 
of Western and Central Pacific tuna in response to climate change, and can adjust its fish-
ing activities accordingly. In the three years after the end of the ENSO event (2017–2019), 
the fishing hotspots continued to expand eastward. This trend is likely influenced by the 
VDS system, as Chinese fishing companies continue to explore new fishing grounds to the 
East. 

5. Conclusions 
This study explores the spatiotemporal evolution patterns of fish CPUE in the central 

and western Pacific skipjack tuna purse seine fishery using the spatiotemporal cube model 
and emerging hotspot analysis method for the first time. It analyzes the hot and cold spot 
types of fish CPUE in different years and evaluates their trends, reflecting the dynamic 
spatial and temporal changes of fish CPUE more intuitively. The results obtained from 
this study contribute to existing research by complementing and verifying previous find-
ings. They serve as a reference for the development of the central and western Pacific tuna 
purse seine fishery. 

The spatiotemporal cube model and emerging hotspot analysis tool used in this 
study provide several advantages over traditional one-dimensional fishery distribution 
maps [9]. These include (1) Intuitive visualization: The spatiotemporal cube model and 
emerging hotspot analysis tool offer a dynamic and visual representation of the time, lo-
cation, and trend of changes in the target resource. This allows for a more comprehensive 
understanding of when and where the research objective undergoes specific changes. (2) 
Comprehensive analysis: Traditional methods often identify a single type of hot or cold 
spot, providing limited insights into the complexity of spatiotemporal patterns. In con-
trast, the tool used in this study can identify multiple types of hot and cold spots that 
change over time, offering 17 pattern classifications. This enables a more detailed and nu-
anced analysis of the areas where fish CPUE increases or decreases. (3) Improved trend 
evaluation: The spatiotemporal cube model and emerging hotspot analysis method used 
in this study enable the evaluation of trends in fish CPUE hot and cold spots over different 
years. This provides valuable insights into the dynamic spatial and temporal changes of 
fish CPUE, allowing for a more accurate assessment of resource fluctuations. 

Furthermore, future research will incorporate additional data, such as unit fishing 
effort and environmental/climate factors, to further explore the spatiotemporal evolution 
patterns and underlying reasons for the tuna resource dynamics. It is important to note 
that while the three-dimensional visualization of the spatiotemporal cube offers improved 
observation capabilities, the method for selecting the spatial neighborhood distance and 
time interval during the construction of the spatiotemporal cube requires further explora-
tion in future research. This will help refine and enhance the accuracy and applicability of 
the tool. 
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