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Abstract: Pheromones play a vital role in regulating fish behavior, including reproduction, aggrega-
tion, hazard recognition and food location. To gain a better understanding of chemical communication
in fish produced by density changes, this study analyzed the metabolites released by turbot (Scoph-
thalmus maximus) under different stocking densities. The experiment was conducted at low (LD:
3.01 kg/m2), medium (MD: 6.62 kg/m2) and high (HD: 10.84 kg/m2) densities for 15 days. High-
throughput non-targeted metabolomics (LC-MS/MS) was used to identify variations in metabolites
released into the aquatic environment by turbot at different densities. Results showed that 29 and
47 metabolites were significantly upregulated in the MD and HD groups, respectively, compared with
the LD group. Among them, hexadecanedioic acid, xanthine, phenethylamine, proline and styrene
were significantly upregulated in the MD vs. LD, HD vs. MD and HD vs. LD. The VIP diagram of
OPLS-DA alignment showed that phenethylamine was the most important metabolite shared by
MD vs. LD, HD vs. MD and HD vs. LD. Key gene changes in the GH/IGF-1 signaling pathway,
HPI axis of turbot were studied using qRT-PCR for density treatment. The results demonstrated that
the expression of GH, GHR and IGF-1 was significantly lower, while the expression of CRH and
ACTH was higher in the HD group. Additionally, plasma levels of cortisol, glucose, triglycerides
and T3 were also highest in the HD group compared with the LD and MD groups. Phenylethy-
lamine concentration was positively correlated with the HPI axis and negatively correlated with
the GH/IGF-1 signaling pathway. To investigate the impact of phenethylamine accumulation on
turbot, an acute treatment experiment with phenethylamine was set up. Its concentration in the
aquatic environment was set at 0 (CON), 10−7 (LP) and 10−5 (HP) mol/L via exogenous addition,
and turbot were exposed to these environments for 2 days. There was a high degree of concordance
between the GH/IGF-1 signaling pathway (GH, GHR, IGF-1), HPI axis (CRH, ACTH) and plasma
physiological changes (cortisol, glucose, triglycerides, T3) in the phenethylamine-treated group and
the density-treated group. Therefore, accumulation of phenethylamine with increasing stocking
density may be a potential cause of density stress. Phenylethylamine has a dose-dependent and trace
effect as a pheromone.
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Key Contribution: Accumulation of phenethylamine with increasing stocking density may be
a potential cause of density stress. Phenylethylamine has a dose-dependent and trace effect as
a pheromone.

1. Introduction

Recently, due to the gradual depletion of fishery resources, industrial recirculating
aquaculture has been developing rapidly. Industrial recirculating aquaculture raises the
stocking density by controlling feed, water quality, the environment and other factors, so
as to achieve the purpose of improving aquaculture benefits [1]. However, high stocking
density is widely recognized as a stressor that affects the welfare of aquatic animals; it
can cause physiological disorders, immunosuppression and growth inhibition in fish [2,3].
Numerous studies have demonstrated that high stocking density has a negative impact on
the survival rate, antioxidant capacity and feed utilization efficiency of turbot (Scophthalmus
maximus) [4–7]. Density stress is commonly perceived as a consequence attributed to
insufficient resources (e.g., low oxygen) or an excess accumulation of metabolites (e.g., high
ammonia) [8,9]. However, chemical communication under high stocking density has been
largely neglected.

In natural environments, many organisms use chemical signals to learn information
about their surroundings, especially aquatic organisms, which live in low-light water en-
vironments where chemical signals are sometimes more critical than visual and auditory
signals [10]. Fujimoto et al. showed bile from reproductively mature male largemouth
bass (Micropterus salmoides) attracts conspecific females [11]. Kamio et al. isolated N-
acetylglucosamino-1,5-lactone, a substance that causes courtship behavior in males, from
the urine of mature molting female blue crabs (Callinectes sapidus) [12]. Mathuru et al.
discovered that chondroitin sulfate can be perceived by zebrafish (Danio rerio) olfaction and
elicit significant startle responses [13]. Pfuderer et al. indicated crowding factors are sub-
stances released by fish under crowded conditions that inhibit their growth and reproduc-
tion [14]. Roales’s study speculated that growth inhibitory factors released from crowded
fish may affect the thyroid gland, leading to fat mobilization in the tissues and, thus, lower-
ing the total fat in these animals [15]. Mounting evidence indicates that chemical signals
exert influences on the reproduction, growth and even survival of aquatic animals [16].

Pheromone-related substances (such as stress hormones and chemical alarm signals)
may accumulate with increasing fish stocking density [17,18]. For example, Ruane and
Komen (2003) found that cortisol concentrations in water increased when the loading
density of carp (Cyprinus carpio) increased [18]. Although most pheromones in fish remain
unidentified, the few that are structurally determined are mainly low molecular metabolites
such as bile salts, F-series prostaglandins, amino acids and gonadal steroids, which can be
detected using metabolomics [19]. Metabolomics is a systems approach to studying the
small, endogenous metabolites in organisms [20]. It can detect changes in the metabolome
brought on by external or internal stressors [21]. Because of its ability to perform high-
throughput chemical analysis without the necessary purification steps, metabolomics (in
addition to targeted screening and bioactivity-guided fractionation) has emerged as a novel
approach to identify pheromones [22–24].

In this study, by setting different stocking densities of turbot, metabolomics was used
to detect the accumulation of turbot metabolites at different densities, study the correlation
between metabolite accumulation and the physiological level of turbot, screen potential
pheromone substances and preliminarily analyze and verify whether pheromones could be
a potential source of density stress, so as to provide a new idea for the mechanism of the
generation of density stress in industrialized aquaculture of marine fish.
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2. Materials and Methods
2.1. Experimental System and Experimental Design

The experiment was conducted at the Weihai Institute of Marine Biological Indus-
try Technology, China, and fish treatment was approved by the Animal Protection and
Utilization Committee of the Institute of Oceanography, Chinese Academy of Sciences.

Turbot was obtained from Guoxin Oriental recirculating water culture base and reared
in recirculating aquaculture systems (RASs) for 15 days to acclimatize to the experimental
environment. The experimental area was equipped with three recirculating aquaculture
systems, each comprising three replicated tanks (1 m3), three whirl-separators, a mechan-
ical microfilter, a protein separator, a decarbonization tower, a moving-bed biological
filter and UV disinfection. Healthy, active and non-traumatized turbot were selected for
the experiment.

Pre-experimentation, with reference to the stocking densities used by Liu et al., it was
found that there was a significant difference between the experimental system and the
actual production of stocking density stress [6]. Serious stress already existed in the system
as high as 14 kg/m2, leading to death and food stoppage in the high stocking density group,
so we reduced the density for the experiment according to the actual situation. Density
experiments: a total of 510 fish (average individual weight 136.12± 27.71 g) were reared for
15 days under three stocking densities: low density (LD) with 25 fish per tank (3.01 kg/m2

at initial density), medium density (MD) with 55 fish per tank (6.62 kg/m2 at initial density)
and high density (HD) with 90 fish per tank (10.84 kg/m2 at initial density). Each density
was tested in triplicate.

Phenethylamine acute treatment experiments: fish (6 per tank) were exposed to
different concentrations of phenethylamine (mol/L): 0 (control, CON), 10−7 (low phenethy-
lamine, LP), 10−5 (high phenethylamine, HP) for 2 days. Each concentration was tested
in triplicate.

Fish were fed a commercial pellet diet (53% crude protein, 12% crude lipids, 16.0%
crude ash, 4.0% crude fiber, 12% water, 0.5% P, 2.3% lysine) at 0.5% feeding rate twice
daily. Daily recordings of water parameters were taken at 09:00 am., including tempera-
ture, dissolved oxygen (DO), salinity and pH, using a handheld multi-parameter water
quality analyzer (YSI Incorporated, Yellow Springs, OH, USA), and the content of total
ammonia (TAN) and nitrite (NO2

−) were measured using Nessler’s reagent colorimet-
ric method and the N-1-Naphthylethylenediamine photometric method (GB 13580.7–92),
respectively [25,26]. During the experiment period, other water quality parameters were
maintained at appropriate levels for turbot. Specifically, dissolved oxygen, pH, tempera-
ture, salinity, TAN and NO2

− concentration varied between 7.01 and 7.12 mg/L, 7.41 and
7.46, 15.8 and 16.5 ◦C, 29.63 and 31.56 %, 0.23 and 0.29 mg/L and 0.07 and 0.13 mg/L,
respectively. The photoperiod was maintained at 12 h light/12 h dark.

2.2. Sample Preparation

To compare the composition of metabolites released into the aquatic environment by
turbot at different densities (aquatic environment metabolome), we used a rational sample
collection method. Water was collected from each replicate tank until 100 L, rapidly filtered
through a filter pump onto glass fiber filter paper and then the membranes were stored at
−80 ◦C until extraction. After the experiment, all fish were fasted for 24 h. And then, three
fish were randomly collected from each culture tank (nine fish per group) and anesthetized
with tricaine methane sulfonate (MS-222, Sigma Diagnostics INS, St. Louis, MO, USA)
at 40–45 mg/L. Blood was obtained from the tail vein using a syringe and collected in
sodium heparin anticoagulation tubes. The collected blood samples were centrifuged at
3000 rpm for 10 min to obtain plasma, which was then stored at −80 ◦C. Immediately after
blood collection, the liver, hypothalamus and pituitary gland were removed from each fish,
immediately frozen in liquid nitrogen and stored at −80 ◦C for gene expression analysis.
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2.3. Determination of Biochemical Parameters

Plasma glucose, triglyceride, cortisol and triiodothyronine (T3) levels in fish were
measured using commercial kits (#F006-1-1, #A110-2-1, #H094-1-1 and #H222-1-1) according
to the instructions for use. All commercialized kits were purchased from Nanjing Jiancheng
Institute of Biological Engineering (Nanjing, China).

2.4. RNA Extraction and qPCR

Total RNA was isolated from liver, hypothalamus and pituitary gland samples using a
TRIzol reagent (Trans-Gen Biotech, Beijing, China). RNA concentration and purity were
measured using a Nanodrop 2000 spectrophotometer (Gene Company Limited, Hong
Kong, China), and purity was calculated using the 260/280 nm optical density ratio (purity:
2.0 ± 0.1). Reverse transcription of RNA into cDNA was then performed using the Evo
M-MLV Mix Kit (Hunan Accurate Biomedical Technology Co., Changsha, China). Primers
were designed using Primer Premier 5.0 and NCBI online website. The primer sequences
used are listed in Table 1. The qPCR was conducted using an SYBR Green Premix Pro
Taq HS qPCR Kit (Hunan Accurate Biomedical Technology Co., Changsha, China) with a
20 µL reaction solution on a CFX Connet Real-Time PCR System (Bio-Rad, Beijing, China).
CRH, GH, IGF-1 and GHR thermal cycling conditions were 95 ◦C for 15 min, followed
by 35 cycles of 95 ◦C for 15 s and 58 ◦C for 60 s. ACTH thermal cycling conditions were
95 ◦C for 15 min, followed by 35 cycles of 95 ◦C for 15 s and 60 ◦C for 60 s. Amplification
specificity was validated via melting curve analysis. Melting curve analysis was also
performed to examine whether each primer set amplified a single product. Three samples
were assayed for each group, and all reactions were conducted in triplicates. Relative
expression levels were calculated using the Pfaffl method [27].

Table 1. List of primers used for quantitative real-time PCR analysis.

Gene Name Primer Sequence (5′–3′) Annealing Temperature (◦C) Amplic on Size (bp)

IGF-1 F: TCGTGGACGAGTGCTGCTT
R: CCGCCTTGCTAGTCTTGG 58 81

ACTH F: TGTGGCTATTAGTGGCTGTGG
R: CCTGGCAGTTCGGATTCTC 60 81

GH F: AATAACCACGAGACACAACGCA
R: GAGAACTCCCAAGACTCAACCAA 58 80

CRH F: CCTCCTCTAACGATTGAAGATTCC
R: AGGGCTGTCAATAGCTCGAC 58 123

GHR F: ACACGTCCATTTGGATCCCC
R: GCTCCCAGTTGACCATGACA 58 183

β-actin F: TGAACCCCAAAGCCAACAGG
R: GAGGCATACAGGGACAGCAC 107

2.5. Metabolite Extraction and UHPLC-MS/MS Analysis

For metabolite extraction, take the filter membrane sample in an EP tube, add 1000 µL
of 80% methanol aqueous solution and put it into liquid nitrogen for 5 min; thaw on ice,
vortex for 30 s, sonicate for 6 min, centrifuge for 1 min at 5000 rpm and 4 ◦C, take the
supernatant into a new centrifuge tube, lyophilize into dry powder, add 60 µL of 10%
methanol solution to dissolve and feed into LC-MS for analysis.

UHPLC-MS/MS analyses were performed using a Vanquish UHPLC system (Ther-
moFisher, Dreieich, Germany) coupled with an Orbitrap Q ExactiveTM HF-X mass spec-
trometer (Thermo Fisher, Dreieich, Germany) in Gene Denovo Co., Ltd. (Guangzhou,
China). Samples were injected onto a Hypesil Gold column (100 × 2.1 mm, 1.9 µm) using a
17 min linear gradient at a flow rate of 0.2 mL/min. The eluents for the positive polarity
mode were eluent A (0.1% FA in Water) and eluent B (Methanol). The eluents for the
negative polarity mode were eluent A (5 mM ammonium acetate, pH 9.0) and eluent B
(Methanol). The solvent gradient was set as follows: 2% B, 1.5 min; 2–100% B, 12.0 min;
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100% B, 14.0 min; 100–2% B, 14.1 min; and 2% B, 17 min. Q ExactiveTM HF-X mass spec-
trometer was operated in positive/negative polarity mode with spray voltage of 3.2 kV,
capillary temperature of 320 ◦C, sheath gas flow rate of 40 arb and aux gas flow rate of
10 arb.

2.6. Data Processing and Metabolite Identification

The raw data files generated by UHPLC-MS/MS were processed using Compound
Discoverer 3.1 (CD3.1, Thermo Fisher, Dreieich, Germany) to perform peak alignment,
peak picking and quantitation for each metabolite. The main parameters were set as
follows: retention time tolerance, 0.2 min; actual mass tolerance, 5 ppm; signal intensity
tolerance, 30%; signal/noise ratio, 3; and minimum intensity, 100,000. After that, peak
intensities were normalized to the total spectral intensity. The normalized data were
used to predict the molecular formula based on additive ions, molecular ion peaks and
fragment ions. And then peaks were matched with the mzCloud (https://www.mzcloud.
org/ (accessed on 1 March 2023)), mz Vaultand Mass Listdatabase to obtain the accurate
qualitative and relative quantitative results. Statistical analyses were performed using
the statistical software R (R version R-3.4.3), Python (Python 2.7.6 version) and CentOS
(CentOS release 6.6). When data were not normally distributed, normal transformations
were attempted using the area normalization method.

2.7. Statistical Analysis and Pathway Analysis

The collected metabolites were annotated using the Human Metabolome database
(http://www.hmdb.ca/ (accessed on 1 March 2023)) and the KEGG database (http://
www.genome.jp/kegg/ (accessed on 1 March 2023)). The R package gmodels was used
to perform principal component analysis (PCA) on the data, and the R language ropls
package was used to perform supervised orthogonal partial least squares-discriminant
analysis (OPLS-DA). The OPLS-DA model was further validated with cross-validation and
permutation test. For cross-validation, the data were partitioned into seven subsets, where
each of the subsets was then used as a validation set. A variable importance in projection
(VIP) score of (O)PLS model was applied to rank the metabolites that best distinguished
between two groups. The threshold of VIP was set to 1. In addition, T-test was also used
as a univariate analysis for screening differential metabolites. Those with a p value of
t-test < 0.05 and VIP ≥ 1 were considered differential metabolites between two groups.

Statistical analyses comprised one-way ANOVA, followed by Tukey’s test, using IBM
SPSS software (version 20.0) to examine significant differences between the groups. A signif-
icance level of p < 0.05 was used in all analyses. All data are shown as the means ± standard
error (S.E.) of the treatments.

3. Result
3.1. Metabolomics Principal Component Analysis (PCA) at Different Densities

As a non-supervised multivariate data analysis method, PCA is always used to give a
comprehensive view of the clustering trend for multidimensional data [28]. To screen for
characteristic metabolites with significant concentration changes, the PCA approach was
utilized to conduct a model with the ES+ and ES− data, respectively. Unsupervised PCA
showed LD and MD were significantly differentiated, and their contribution rates were
33.7% and 27.3% (POS) and 31.7% and 26% (NEG), respectively (Figure 1); LD and HD
were significantly differentiated, and their contribution rates were 39.2% and 30.7% (POS)
and 58.1% and 10.9% (NEG), respectively (Figure 1); and MD and HD were significantly
differentiated, and their contribution rates were 35.8% and 27% (POS) and 47.1% and 18.9%
(NEG), respectively (Figure 1). It indicated that significant changes in aquatic environment
metabolomes occurred at different densities.

https://www.mzcloud.org/
https://www.mzcloud.org/
http://www.hmdb.ca/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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in positive ion mode; (D) LD vs. MD in negative ion mode; (E) LD vs. HD in negative ion mode;
(F) MD vs. HD in negative ion mode.

To maximize the discrimination between different density treatments, we employed
OPLS-DA to identify differences in metabolites. In the positive ion mode, the OPLS-DA
score plots of LD vs. MD, LD vs. HD and MD vs. HD had cumulative values of R2X at
76.2%, 75.8% and 55.2%; R2Y at 89.3%, 95.5% and 98.3%; and Q2 at 76.8%, 63.5% and 70.5%,
respectively (Table 2). In negative ion mode, the OPLS-DA score plots of LD vs. MD, LD vs.
HD and MD vs. HD had cumulative values of R2X at 70.9%, 94.0% and 87.2%; R2Y at 92.4%,
98.4% and 98.3%; and Q2 at 76.9%, 96.7% and 90.2%, respectively (Table 2). R2X and R2Y
denote the explanation rate of the proposed model for the X and Y matrices, respectively,
and Q2 denotes the predictive ability of the model. The closer the three indicators are to
one, the more stable and reliable the model is. Q2 > 0.5 indicates that the model has good
predictive ability. The results indicate that the data and instrumental analysis system of
this study are reliable and stable.

Table 2. OPLS-DA model validation parameters. R2X and R2Y denote the explanation rate of the
proposed model for X and Y matrices, respectively, and Q2 denotes the predictive ability of the model.

Comparison Group Name R2X R2Y Q2

LD vs. MD.POS 0.762 0.893 0.768
LD vs. MD.NEG 0.709 0.924 0.769
LD vs. HD.POS 0.758 0.955 0.635
LD vs. HD.NEG 0.94 0.984 0.967
MD vs. HD.POS 0.552 0.983 0.705
MD vs. HD.NEG 0.872 0.983 0.902
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3.2. Differential Metabolites at Different Densities

In the positive ion mode, there were 26 significant differential metabolites (SDMs)
(upregulated (up): 15, downregulated (down): 11) in the LD vs. MD group, 51 SDMs
(up: 33, down: 18) in the LD vs. HD group and 50 SDMs (up: 34, down: 16) in the
MD vs. HD group (Figure 2A). Eight SDMs could be identified in the LD vs. MD, LD
vs. HD and MD vs. HD groups; among them, the contents of phenethylamine, proline
and styrene increased with the increase in stocking density (Figure 2A). In the negative
ion mode, there were 27 SDMs (up: 14, down: 13) in the LD vs. MD group, 17 SDMs
(up: 14, down: 3) in the LD vs. HD group and 11 SDMs (up: 9, down: 2) in the MD
vs. HD group (Figure 2B). Two SDMs could be identified in the LD vs. MD, LD vs. HD
and MD vs. HD groups. Among them, the contents of xanthine and hexadecanedioic
acid increased with the increase in stocking density (Figure 2B). Variable importance in
projection (VIP) scores ranked by partial least square discriminant analysis (PLS-DA) are
shown in Figure 3. The top three most important metabolites were gamma-glutamylleucine,
phenethylamine and N-benzylformamide in the LD vs. MD group. The top three most
important metabolites were oleamide, arachidonoyl amide and phenethylamine in the LD
vs. HD group. The top three most important metabolites were Phenethylamine, guanine
and 2-amino-1,3,4-octadecanetriol in the MD vs. HD group.
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3.3. GH/IGF-1 Signaling Pathway

To investigate the effect of density stress and phenethylamine treatment on the function
of the GH/IGF-1 signaling pathway, gene expression levels of GH in the pituitary gland
and GHR and IGF-1 in the liver of turbot were analyzed(Figure 4). The results of the density
treatment showed that GH mRNA levels were significantly downregulated (p < 0.05) in
the MD (0.47-fold) and HD groups (0-fold) compared with the LD group. Similar trends
were observed for GHR expression in the liver of turbot under different density treatments.
In addition, the expression of IGF-1, another key gene located downstream of the GH/IGF-
1 signaling pathway, was also significantly lower (p < 0.05) in the MD (0.67-fold) and
HD (0.63-fold) groups than in the LD group. In phenethylamine treatment, a significant
decrease in GH, GHR and IGF-1 gene expression was observed in the LP and HP groups
when compared with the CON group (p < 0.05). GH expression was almost undetectable in
the LP and HP groups.
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Figure 4. Effects of different stocking densities (LD, MD and HD) and different phenethylamine
concentrations (CON, LP and HP) on expression of key genes in GH/IGF-1 signaling pathway in
turbot. (A) GH relative expression at different phenethylamine concentrations. (B) GH relative
expression at different stocking densities. (C) GHR relative expression at different phenethylamine
concentrations. (D) GHR relative expression at different stocking densities. (E) IGF-1 relative
expression at different phenethylamine concentrations. (F) IGF-1 relative expression at different
stocking densities. The vertical bars represent mean ± S.E. Different lowercase letters indicate
significant differences (p < 0.05).

3.4. HPI Axis

To assess the effect of density stress and phenethylamine treatment on the HPI axis
of turbot, we measured the abundance of key genes (CRH and ACTH) and cortisol lev-
els(Figure 5). The density treatment results revealed that the expression levels of CRH and
ACTH genes increased with increasing density, and the HD group treatment exhibited a
significantly higher expression than the LD group (1.65 and 1.63 times greater, respectively)
(p < 0.05). Furthermore, plasma cortisol levels at the end of the HPI axis were significantly
higher in the HD group (18.78 ± 0.19 ng/mL) than in the MD group (16.33 ± 0.02 ng/mL)
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and LD group (16.17 ± 0.01 ng/mL) (p < 0.05). In the phenethylamine treatment, the
expression levels of CRH and ACTH genes increased with increasing phenethylamine
concentration. Plasma cortisol levels at the end of the HPI axis were significantly higher in
the HP group (27.95 ± 0.21 ng/mL) than in the LP group (25.98 ± 0.57 ng/mL) and the
CON group (24.64 ± 0.07 ng/mL).
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Figure 5. Effects of different stocking densities (LD, MD and HD) and different phenethylamine
concentrations (CON, LP and HP) on expression of key genes of HPI axis in turbot. (A) CRH relative
expression at different phenethylamine concentrations. (B) CRH relative expression at different stock-
ing densities. (C) ACTH relative expression at different phenethylamine concentrations. (D) ACTH
relative expression at different stocking densities. The vertical bars represent the mean ± S.E. Differ-
ent lowercase letters indicate significant differences (p < 0.05).

3.5. Physiological Response of Turbot Plasma

The effects of density stress and phenethylamine treatment on T3, glucose and triglyc-
erides are shown in Figure 6. In the density treatment, plasma glucose, triglyceride and
T3 levels were significantly higher in the HD group than in the LD group (p < 0.05), while
there were no significant differences between the MD and LD groups. In phenethylamine
treatment, the levels of plasma glucose, triglycerides and T3 were significantly higher in
the LP and HP groups than in the CON group (p < 0.05), while there were no significant
differences between the LP and HP groups.
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Figure 6. Effects of different stocking densities (LD, MD and HD) and different phenethylamine
concentrations (CON, LP and HP) on physiological parameters of turbot plasma. (A) Plasma
content of glucose at different phenethylamine concentrations. (B) Plasma content of glucose
at different stocking densities. (C) Plasma content of triglyceride at different phenethylamine
concentrations. (D) Plasma content of triglyceride at different stocking densities. (E) Plasma content
of T3 at different phenethylamine concentrations. (F) Plasma content of T3 at different stocking
densities. (G) Plasma content of cortisol at different phenethylamine concentrations. (H) Plasma
content of cortisol at different stocking densities. The vertical bars represent the mean± S.E. Different
lowercase letters indicate significant differences (p < 0.05).



Fishes 2023, 8, 506 12 of 17

4. Discussion

In this study, Hexadecanedioic acid, xanthine, phenethylamine, proline and styrene
in the metabolite profiles of aquatic environments were significantly different in MD vs.
LD, HD vs. MD and HD vs. LD, and the levels increased significantly with increasing
density. It is important to note that hexadecanedioic acid and styrene are insoluble in
water, while xanthine, phenethylamine and proline are soluble. Solubility determines
the spatial extent of the pheromone, and since substances dissolved in water are more
likely to diffuse in an aquatic environment, proline, xanthine and phenethylamine are
more likely to act as pheromones. Previous studies have shown that substances such as
nitrogenous compounds and purines act as aquatic animal pheromones [29,30]. He et al.
showed that three common purines (adenosine, inosine and hypoxanthine) released by
adult dreissenid mussels (Mytilopsis sallei) acted as aggregation pheromones in precise
synergistic ratios (1:1.125:3.25) to induce homozygous larval settlement and metamorpho-
sis [29]. Dissanayake et al. confirmed that the behavioral activity contained in the sea
lamprey (Petromzons marinus) alarm cue resides in the water-soluble fraction of the skin
extract, and this water-soluble fraction consisted primarily of creatine (70%), heterocyclic
nitrogenous compounds (4.3%) and free amino acids (18.4%), respectively [30]. However, it
should be noted that the proline screened in this study was D-proline. Yu et al. showed that
L-proline induces an electro-olfactogram (EOG) response in grass carp (Ctenopharyngodon
idellus) and has a certain degree of usefulness in attracting grass carp [31]. However, the
role of D-proline in fish remains poorly understood. In mammals, D-amino acids are
often involved in pathophysiological processes and can be used as disease markers [32,33].
Liu et al. demonstrated that D-proline in human peripheral serum may serve as novel
biomarker candidates for Alzheimer’s disease [34]. Therefore, D-proline was temporarily
disregarded as a pheromone in this study. On the other hand, xanthine can be converted to
uric acid by the action of xanthine oxidase, and high levels of uric acid induce the release
of pro-inflammatory mediators, which leads to inflammatory processes [35]. Baldissera
et al. demonstrated that xanthine oxidase activity and uric acid levels increased in the
gills of infected silver catfish (Rhamdia quelen) with Streptococcus agalactiae compared with
uninfected silver catfish [36]. Wu et al. showed that hypoxia causes the upregulation of
xanthine in rainbow trout (Oncorhynchus mykiss) muscle [37]. Therefore, the level of xan-
thine mainly indicates the health status of an organism and its levels can provide valuable
information for the diagnosis and medical treatment of certain metabolic disorders [38].
Phenethylamine is an endogenous amine compound that can play an important biolog-
ical role in the nervous system as a chemical messenger [39,40]. Low concentrations of
phenethylamine produce euphoria, but high concentrations of phenethylamine may form
neurotoxic compounds [41]. Phenethylamine can also act as a chemical cue in the external
environment to regulate individual animal behavior [42]. Phenethylamine levels have
been shown to increase in the urine of stressed mammals [43,44]. In addition, VIP score
plots also showed phenethylamine as the most important differential metabolite shared by
LD vs. MD, LD vs. HD and MD vs. HD. Thus, phenylethylamine may act as a potential
pheromone to transmit information.

The HPI axis plays a crucial role in the response of fish to environmental stresses [45].
When faced with stress, the HPI axis is initially activated, triggering the release of high
levels of cortisol in the body as a response to the stressor [46]. Excessive cortisol will induce
secondary and tertiary stress responses, resulting in physiological and other functional
disorders in fish [47]. Bi et al. discovered that the serum ACTH and cortisol levels of hybrid
sturgeon (♀Acipenser baerii × ♂Acipenser schrenckii) increased with increasing stocking
density [48]. Jia et al. observed that a stocking density of 10.8 kg/m2 for 80 days resulted in
a significant increase in plasma cortisol levels in turbot compared with a stocking density
of 5.13 kg/m2 [7]. Additionally, various environmental factors, such as ammonia exposure,
nitrate exposure and pathogenic infections, can also upregulate CRH, ACTH genes and
plasma cortisol in fish [49–51]. The present study demonstrated that plasma cortisol
was significantly higher in the HD group compared with the MD and LD groups, with
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increasing density leading to increased expression of CRH and ACTH genes. Under stress,
fish release large amounts of cortisol, which increases the metabolism of carbohydrates,
fats and proteins and controls the flow of energy in the organism in response to the
stressor [52,53]. Liu et al. showed that blood glucose levels were significantly higher in
the high stocking density group of turbot than in the other groups [4]. In the present
study, plasma glucose and triglycerides were significantly higher in the HD group, which
may be due to energy mobilization by the organism to resist the unfavorable external
environment, consistent with these results. In teleost fish, the GH/IGF-1 signaling pathway
regulates a variety of physiological functions, such as growth, reproduction, immunity and
osmoregulation [54–56]. GH levels in fish are positively associated with growth in vivo.
Environmental factors such as temperature, salinity, density and other breeding-induced
discomforts can cause a decrease in fish IGF-1 levels, often resulting in an impact on fish
growth and development [3,57,58]. The present study found that both GH and IGF-1
were significantly downregulated in the HD groups, suggesting the inhibitory effects of
high density on turbot growth. Liu et al. studied that the GH concentration in turbot for
120 d in a high stocking density group was significantly decreased [6]. Thyroid hormones
(TH) have also been shown to play a crucial regulatory role in fish growth, often working
synergistically with other hormones [59,60]. In fish, TH exerts its biological function mainly
through the formation of T3 [61]. Therefore, the study evaluated plasma T3 levels in turbot.
The results indicated that T3 increased with the increase in density. Ardiansyah and Fotedar
found that the T3 of juvenile barramundi (Lates calcarifer Bloch) decreased gradually with
the increase in stocking density [62]. This may be attributed to the short duration of density
treatment (15 days), during which the fish experience early-stage stress and an elevation
in T3 levels to promote energy metabolism in response to the unfavorable environment.
Interestingly, in our study, GH gene expression was almost absent in both HD and HP
groups, but IGF-1 gene expression was still present. This may be because the HD and HP
groups promoted IGF-1 expression via elevated T3 acting on the liver. It has been shown
that T3 increases IGF-1 mRNA expression and stimulates the release of IGF-1 [63,64].

The turbot HPI axis was upregulated at high stocking densities, the GH/IGF-1 signal-
ing pathway was downregulated and the concentration of phenethylamine increased with
the increase in turbot stocking density. Therefore, the concentration of phenylethylamine
was positively correlated with the HPI axis and negatively correlated with the GH/IGF-1
signaling pathway. Subsequently, phenylethylamine acute treatment experiments were
designed to verify the effects of phenylethylamine on the HPI axis and GH/IGF-1 signaling
pathway. Similarly, plasma cortisol was significantly higher in the HP group compared
with the LP and CON groups, with increasing phenylethylamine concentrations leading
to increased expression levels of CRH and ACTH genes. This suggests that stress was
produced in turbot under phenylethylamine acute treatment. Bredy and Barad showed
that phenethylamine can act as a pheromone to communicate information about fear or
threats [65]. Ferrero et al. found that phenethylamine induced strong avoidance responses
in rodent and herbivore species [66]. Imre et al. showed that sea lamprey (Petromyzon
marinus) also showed a strong avoidance response to phenethylamine [67]. The present
study also observed that GH and IGF-1 were significantly downregulated in the HP group,
and some physiological parameters (T3, glucose, triglycerides) were upregulated in the
HP group. These findings indicated that phenethylamine accumulation in the RAS can
negatively affect fish physiology and growth. Phenethylamine concentration was strongly
correlated with stocking density, and the effects of phenethylamine treatment and density
treatment on the HPI axis, GH/IGF-1 signaling pathway and key physiological indicators
(cortisol, T3, glucose, triglycerides) were highly similar. In the present study, phenethy-
lamine was detected at LD, MD and HD, but only the turbot in the HD group produced
significant stress and growth inhibition. This suggests that the effects of phenethylamine
(harmful or beneficial) are dose dependent under specific conditions. In the phenethy-
lamine treatment experiment, even the LP group (10−7 mol/L) had a significant negative
effect on turbot, which indicates that phenethylamine has a trace effect. However, there
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may be differences between the aquaculture experimental system and the actual production
system. Therefore, future experiments will be conducted to quantify phenethylamine in an
actual production system of turbot and to verify the long-term effects of phenethylamine
on turbot.

5. Conclusions

Phenylethylamine is a compound that can be synthesized, secreted, released and
perceived by turbot. Phenylethylamine concentration is closely related to stocking density,
and phenylethylamine accumulated in water under high stocking density conditions may
act as a pheromone to signal crowding stress. In the present study, phenethylamine was
detected at LD, MD and HD, but only the turbot in the HD group produced significant stress
and growth inhibition, suggesting that the effects of phenethylamine are dose dependent.
Even 10−7 mol/L of phenylethylamine caused upregulation of the key genes CRH and
ACTH on the HPI axis, downregulation of the key genes GH and IGF-1 on the GH/IGF-1
signaling pathway, as well as disorders of plasma cortisol, glucose, triglyceride and T3 in
turbot. Therefore, phenethylamine has trace effects. These findings provide new insights
for further exploration of density stress mechanisms.
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