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Abstract: Macrourus caml is a main by-catch in the Southern Ocean fishery and a main prey species of
Antarctic toothfish Dissostichus mawsoni; it plays an important role in the Southern Ocean ecosystem.
In this study, age estimation and stomach content analysis were conducted by using samples collected
from the Cosmonauts Sea in 2021. The main objectives of this study were to estimate the age and
diet of grenadier M. caml and explore the feeding habits of M. caml. Morphological analysis and
molecular identification were conducted to determine the diet of M. caml in this study. Stomach
content analysis showed that M. caml mainly fed on Malacostraca, Sagittoidea, Cnidaria and Algae,
with the Malacostraca accounting for over 50%. The feeding habits of male and female M. caml were
similar. The age of M. caml ranged from 9 to 19 years. Additionally, with the increase of body size,
the proportion of Cnidaria was decreasing whereas the proportion of Malacostraca was increasing.
The results would provide a reference for exploring the trophic level of M. caml and the food web in
the Cosmonauts Sea.
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1. Introduction

The Caml Grenadier, Macrourus caml, is a benthopelagic fish belonging to the family
Macrouridae; it is one of the five clades among the southern hemisphere Macrourus [1,2],
and it is widely distributed in the Antarctic [3]. Macrourus caml was mistaken for M. whitsoni
for many years until it had been identified as a new species in 2012 [2]. Compared with
M. whitsoni, M. caml has a slightly smaller and more subterminal mouth, which suggests a
more benthic diet [2]. Macrourus caml mainly inhabits water from about 350 to 1660 m depth,
and it is mostly captured by bottom trawls or bottom longlines [4]. Macrourus caml is a main
by-catch in the toothfish fishery in the Ross Sea and is also a major prey species of Antarctic
toothfish [5–7]. Marriott et al. found that Macrourids, including M. caml, comprised a
substantial by-catch of the fishery, accounting for about 10% of the total landing from
1998 to 2004 in the Ross Sea [8]. Despite the abundance of M. caml, it is not exploited by
commercial fisheries within the majority of its range [9]. In spite of being captured as
by-catch, this species is clearly of commercial importance and is in need of monitoring,
management and exploitation. However, little is known about its biology and ecology.

The estimation of age and growth is a critical parameter of fisheries population bi-
ology [10] and is essential for stock assessment and species management [11,12]. From
2000 to 2006, the age and growth research of grenadier in the Ross Sea was carried out
by Marriott et al. [8,13]. However, in the Cosmonauts Sea, there is a lack of research.
The main methods for fish age identification include calcified tissue identification, length
frequency and radioactive element identification [14]. Peterson successfully used length
frequency to estimate the age of fish in 1891, and this method is used by researchers [15].
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However, it has many defects, such as being susceptible to different generations, water
environment, fishing gears, etc., so it is mostly an auxiliary method for age identifica-
tion [14]. In recent years, radioactive element identification method is employed by some
researchers; for instance, Barnett et al. defined the life history of the northern Gulf of Mexico
Warsaw grouper Hyporthodus nigritus through otolith radiocarbon analysis, and Sanchez
et al. conducted bomb radiocarbon age validations of Warsaw grouper and snowy grouper
Hyporthodus niveatus from the Gulf of Mexico [16,17]. Although it has been successfully
used, it is difficult to operate, and the accuracy remains to be verified [14]. Calcified tissue
identification is the most popular method, and calcified tissues include scales, otoliths and
other calcified tissues (fin spines, vertebrae, etc.). The scale age of Patagonian toothfish
Dissostichus eleginoides from South Georgia, determined by Cassia (1998), and Falkland
Islands’ mullet Eleginops Maclovinus from Chile, determined by Brickle (2005), are consistent
with their real age [18,19]. Due to the extreme climate in polar regions, most Antarctic fishes
grow slowly and have a long age span, resulting in a large error in scale identification [20].
Other calcified tissues are rarely used in the age identification of Antarctic fishes due to
their difficulty in obtaining and low accuracy. At present, otolith is mostly used to identify
the age of Antarctic fishes because otolith growth is stable, not susceptible to external
interference and relatively easy to obtain. Marriott et al. carried out an age estimation and
maturity of M. whitsoni from the Ross Sea through otolith [8].

Fish feeding provides necessary nutrition and energy for their growth and reproduc-
tion [21,22]. The study of feeding ecology is one of the important methods to judge the
growth status of fish and understand the migration, distribution, interspecies relationship
and resource variation of fish, which is one of the basic contents of fishery biology research.
Most of the diet studies on fish have been completed using direct observation of prey
items, which is primarily dependent on the morphological characteristics of each prey
species [23–26]. In spite of the successful application in diet studies, morphological analysis
has potential limitations when used alone [27]. Morphological analysis is time-consuming
and difficult. It can only determine the short-term food composition, so it is difficult to
determine long-term feeding characteristics [28–30]. Molecular identification of prey items
is now being used to complement morphological analysis [31–34]. Molecular identification
can identify the food composition of fish more quickly and accurately and is not affected by
the age, sex, growth stage and digestion degree of experimental subjects, which can make
up for the shortcomings of traditional morphological identification [30].

So far, the information about M. caml has been limited in the Cosmonauts Sea. To define
the biological and ecological characteristics of M. caml in the Cosmonauts Sea, it is essential
to conduct further research about age and feeding habits on it in the Cosmonauts Sea.
The specific objectives of this study were: (i) estimate age; (ii) describe the developmental
stages of the gonads; and (iii) describe feeding habits. Macrourus caml is an important prey
and predator in the Cosmonauts Sea. By exploring its food composition, one describes its
resource use and exhibits its trophic level.

2. Materials and Methods
2.1. Sampling

Samples were collected from the Cosmonauts Sea (67◦00.37′ S–67◦01.30′ S, 44◦15.83′ E–44◦29.12′ E)
by bottom longline in January 2021 during the 37th Chinese National Antarctic Research
Expedition with the icebreaker R/V Xuelong 2. A total of 11 fish specimens were collected
in this sampling, which were identified as M. caml by morphological analysis. The bottom
longline was deployed from January 22 to January 24, with the water depth of this sampling
location being about 1800 m. All individuals were measured for their weight (W, g),
standard length (SL, mm), total length (TL, mm) and anal length (AL, mm); simultaneously,
all the sagittal otoliths were collected from the body of fish. Gonads of males and females
were dissected and observed in order to macroscopically estimate the minimum size at
first maturity.
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2.2. Age Determination

The sagitta of M. caml was thick and irregular, which could not be clearly observed by
direct observation. Therefore, it is essential to make a sagitta section for age identification.
The sagittas were cleaned and baked at 285 ◦C for 8 min, then embedded in epoxy resin and
cured at 50 ◦C for 24 h [13]. The resin blocks were sectioned transversely through the otolith
primordia using a diamond-edged wafering blade and polished on the cut surfaces [13].
Grind the otolith section with waterproof abrasive paper until clear bands can be observed
under a microscope. The sections generally exhibited a regular pattern of translucent and
opaque zones. Age determination was generated on the assumption that one opaque and
one hyaline zone represent one year’s growth in the otolith. Under transmitted light, the
zone of opacity was counted from core to edge along the ventral growth axis to determine
the age of M. caml (Figures 1 and 2).
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Figure 2. Sample image of M. caml.

Each otolith section was individually estimated twice under conditions of unknown
individual size. If the two readings were consistent, this reading was taken as the individ-
ual’s final age. When not consistent, a third reading was taken to determine the individual’s
age. All readings were made with no prior knowledge of the fish length, sex, weight, or
any previous readings.

2.3. Sexual Maturity

Gonads were collected and sexual maturity stages were determined with a 6-staged
maturity scale [35], as follows:

Stage I (immature): Gonads are very small and cannot be distinguished by the
naked eyes.

Stage II (immature): Gonads are small. Ovary is dully transparent and pinkish-whitish,
and spermary is grayish white or grayish brown.

Stage III (maturing): Gonads are enlarged. Ovary is filled with opaque, slightly
white or yellowish ovum. Spermary is grayish brown or light red and sperm cannot be
squeezed out.

Stage IV (maturing): Gonads are enlarged. Ovary is orange with a large transparent
ova and small white ova. Spermary is white and little sperm can be squeezed out.

Stage V (mature): Gonads are considerably enlarged. Ripe ova are visible and large
and transparent. Spermary is milky white and filled with sperm.

Stage VI (spent): Gonads are shortened, walls loose, flabby, empty and dark red with
traces of ova or sperm.
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2.4. Stomach and Intestine Content Analysis
2.4.1. Morphological Identification of Stomach and Intestine Contents

Stomach and intestine samples of M. caml cryopreserved at−80 ◦C were taken out and
thawed at 4 ◦C, then dissected under aseptic conditions. Stomach and intestine contents
were rinsed with water on a 500 µm steel sieve, and recognizable prey items were identified
under a stereoscopic microscope to the lowest taxon possible. As the prey was digested
completely, only qualitative analysis (type identification) was carried out, and quantitative
analysis such as counting and weighing was not carried out.

2.4.2. Molecular Identification of Stomach and Intestine Contents

Frozen stomach and intestine contents were taken from different locations of the
stomach and intestine under aseptic conditions after thawing the fish at 4 ◦C. Samples
were stirred and put into 2 mL centrifuge tubes and then put into prepared ice boxes to
ensure that the samples were at low temperature and were not easy to split and deterio-
rate. After the tissue was broken by the tissue crusher (70 Hz, 600 s), DNA was extracted
with MasterPureTM Complete DNA and RNA Purification Kit (Cat. No.: MC85200; Lu-
cigen, USA). PCR targeting at the 18S rDNA V8-V9 region was then performed with Q5
Hot Start High-Fidelity 2X Master Mix kit (Cat. No.: M0494S; NEB, Ipswich, MA, USA)
(Tables 1 and 2). Amplicon sequencing was performed on an Illumina Novaseq6000 se-
quencer, using 2 × 250 bp paired-end sequencing in accordance with the manufacturer’s
instructions, at Novogene (Beijing, China).

Table 1. PCR primers used in gene cloning and expression.

Primer Names Primer Sequences (5′–3′)

18SV8V9F ATAACAGGTCTGTGATGCCCT
18SV8V9R CCTTCYGCAGGTTCACCTAC

Table 2. The reaction system of PCR amplification.

Reagent Name Volume/µL

Q5 Hot Start High-Fidelity 2X Master Mix 25
Forward primer 1
Reverse primer 1

DNA 1
Nuclease free water 22

We investigated the prey at the genus level. In order to identify the prey items of
M. caml, after adapter/index sequences were trimmed from the obtained raw reads using
fastp v0.23.1, reads with low quality and short-read length were discarded using QIIME2
software ver. 2021.2, and then the DADA2 in QIIME2 was used to get the feature tables and
sequences. The obtained paired-end contigs were clustered at 99.6% identity and assigned
operational taxonomic units (OTUs) using QIIME2 software. Species annotation was based
on the Silva database (release 138). The species and genus were assigned for OTUs with
more than 98% and 90–98% sequence identity, respectively. The OTUs classified as M. caml
were removed in further analysis.

3. Results
3.1. Size and Age

Within the samples, six individuals were male and five individuals were female. The
weight of M. caml ranged from 220 g to 900 g. The average weight was 520.91 g. The
standard length of M. caml ranged from 348 mm to 585 mm, and the mean standard length
was 463.27 mm (Table 3). The total length ranged from 350 mm to 590 mm, and the anal
length ranged from 125 mm to 190 mm (Table 3). The age value for M. caml ranged from 9
to 19 years (Table 3).
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Table 3. Biological measurements of M. caml. M and F, respectively, refer to male and female
individuals. P1 to P11 refers to sample 1 to sample 11.

Samples P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Gender M F M F M F F M M F M
Age 13 13 10 - 9 15 12 12 10 19 10

Maturity 3 2 2 3 2 4 4 3 3 5 2
Weight/g 450 480 270 630 220 620 670 500 520 900 470

Standard Length/mm 455 485 385 490 348 485 470 460 473 585 460
Total length/mm 460 490 390 500 350 490 475 465 478 590 470
Anal length/mm 150 160 140 180 125 175 175 165 170 190 160

3.2. Feeding Habits
3.2.1. Morphological Identification of Stomach and Intestine Contents

According to the occurrence of the prey items by morphological analysis, the main
prey of M. caml was Malacostraca and Polychaeta. Algae, Cephalopods, fish and some
benthic organisms were also found in stomachs and intestines (Table 4). As the prey was
digested completely in this study, it was difficult to identify to the species level and obtain
the weight and proportion of each prey item. The index of relative importance (IRI) in the
traditional morphological analysis of stomach contents can’t be calculated.

Table 4. Prey items of M. caml are determined by morphological analyses; ‘+’ represents occurrence
of the prey types. P1 to P11 refers to sample 1 to sample 11.

Prey Types P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Malacostraca + + + + + + + + + + +
Algae + + +

Cephalopoda + +
Fish + +

Polychaeta + + + + + + +
Other benthos +

3.2.2. Molecular Analysis of Stomach and Intestine Contents

The Macrourus caml diet in the Cosmonauts Sea was diverse, with stomach and in-
testine content analysis through meta-barcoding revealing 7 phyla, 8 classes, 12 orders,
7 families, 7 genera, and 2 species. We assumed that all prey DNA recovered from the
stomach and intestine was prey of M. caml. By percentage of contigs, Malacostraca made up
57.8%, and Sagittoidea made up 27.2%, whereas Cnidaria (9.1%) and Algae (5.7%) were less
in the diet. Malacostraca accounted for the highest proportion of the diet (57.8%), which
was dominated by Eucarida (57.3%) (Table 5).

Macrourus caml DNA was present in every stomach, and the contigs of itself were
overwhelmingly abundant, so M. caml was not included in the prey profiling. The sequences
of some species that couldn’t possibly exist in the Cosmonauts Sea were also ruled out.

3.3. Feeding Habits Change with Gender

The average of the contigs quantity of male and female individuals was calculated.
The diets of both were similar (p = 0.448 > 0.05, one-way ANOVA), mainly feeding on
Malacostraca, Algae and Sagittoidea (Figure 3).

3.4. Prey Composition Changes with a Total Length

With increasing size, the food composition of M. caml varied. According to the
percentage of each prey, M. caml mainly fed on Cnidaria, Sagittoidea and Algae when TL
is less than 465 mm, and with the increase of TL, the percentage of Cnidaria became less.
When TL is larger than 465 mm, the diet was dominated by Malacostraca, and Cnidaria
was almost absent in the prey (Figure 4).
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Table 5. List and proportions of prey items of M. caml as determined by NGS analysis. P1 to P11
refers to sample 1 to sample 11.

Prey Types
Percentage of Contigs

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 Total

Malacostraca

All Malacostraca 11.064 4.346 20.280 89.085 33.835 87.840 56.332 13.277 99.186 80.977 97.455 57.820
Peracarida 0.008 0 4.001 0 0.022 0 0.074 0 1.002 0.017 1.620 0.544
Eucarida 11.056 4.346 16.278 89.085 33.813 87.840 56.259 13.277 98.184 80.961 95.660 57.255

Malacostraca
(unidentified) 0 0 0 0 0 0 0 0 0 0 0.175 0.021

Algae

All Algae 5.977 7.201 27.158 0 0.044 0.293 43.471 59.588 0.713 11.155 1.443 5.666
Thalassiosira spp. 0 0.008 12.428 0 0 0.101 0.000 21.254 0 3.794 0.101 0.643
Chaetoceros spp. 0 0 0 0 0 0.077 0.000 0 0 0.142 0 0.012

Actinocyclus
curvatulus 0 0 0 0 0 0 7.587 0 0 0.000 0 0.238

Navicula spp. 5.976 0 0 0 0.024 0 0.301 0 0 2.980 0 1.158
Phaeocystis spp. 0 0 0 0 0 0 0 0.176 0 0 0 0.002

Algae (unidentified) 0.001 7.194 14.730 0.000 0.019 0.115 35.584 38.158 0.713 4.239 1.342 3.613

Polychaeta Rhynchospio spp. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.469 0.000 0.255

Sagittoidea

All Phragmophora 67.263 88.435 1.672 10.681 0.254 11.790 0.000 0.000 0.023 0.182 0.638 27.165
Eukrohnia fowleri 0.025 33.613 0.534 0.364 0.000 11.508 0.000 0.000 0.000 0.182 0.000 6.481
Phragmophora
(unidentified) 67.238 54.822 1.137 10.317 0.254 0.282 0.000 0.000 0.023 0.000 0.638 20.684

Cnidaria

All Cnidaria 15.697 0.018 50.891 0.234 65.867 0.077 0.196 27.135 0.078 3.217 0.464 9.094
Coronatae 0 0 0 0 0 0 0 0 0 0.007 0 0

Siphonophorae 12.381 0.010 50.891 0.234 0 0 0.092 27.029 0.003 0.000 0.464 3.096
Cnidaria

(unidentified) 3.316 0.008 0 0 65.867 0.077 0.104 0.106 0.075 3.210 0.000 5.997

Total 100 100 100 100 100 100 100 100 100 100 100 100
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4. Discussion

This study provides new information on the age and feeding habits of M. caml in the
Cosmonauts Sea. These data are useful to understand the growth and nutritional status of
M. caml.

In this study, otolith was used to estimate the age of M. caml because otolith growth
is stable, not susceptible to external interference and relatively easy to obtain. The age
estimated in our study was based on the assumption that one opaque and one hyaline
zone represented one year’s growth in the otolith. Although the periodicity of increment
deposition has not been validated for M. caml, increment deposition has been demonstrated
to occur annually in other grenadier species, supporting the assumption for M. caml [36].

Historically, Pinkerton et al. found that grenadiers (including M. caml and M. whitsoni)
in the Ross Sea of the Southern Ocean mainly fed on Amphipoda (IRI: 42.8), Euphausiids
(IRI: 23.2), Copepoda (IRI: 12.7), Fishes (IRI: 6.6), Mysidacea (IRI: 5.9), Isopoda (IRI: 3.3),
Polychaeta (IRI: 1.6), etc. [37]. Pakhomov reported that in the Cosmonauts Sea, half
of the diet of M. whitsoni (probably the mix of M. caml and M. whitsoni) consisted of
krill, and the remaining half was formed by benthic crustaceans (mysids, gammarids
and isopods) and fishes (myctophids and silverfish) in summer [38]. In our study, we
found M. caml mainly fed on benthic animals and small plankton in January, and half of
the diet was Malacostraca, which is consistent with that which was reported previously.
Additionally, we found that the main prey consumed by the two sexes were the same, but
there were differences in the proportions of each prey type consumed. Moreover, with the
increase of body size, the food composition of M. caml varied. Apart from this, as the total
length increased, the proportion of Cnidaria decreased, and the proportion of Malacostraca
increased. Cnidaria was gradually replaced by Malacostraca, and Malacostraca gradually
dominated the diet. This may indicate M. caml changed their feeding habits to adapt
to the change in environment and its biological characteristics. The feeding conversion
phenomenon is also found in the small yellow croaker Larimichthys polyactis [39]. Guo et al.
found that as body length increased, the proportion of fish and shrimp in the diet gradually
increased, whereas the proportion of crustaceans gradually decreased [39]. In Figure 4,
the food composition of 490 mm was dominated by Sagittoidea, which seems to conflict
with the conclusion that Malacostraca gradually dominated the diet. A limited number of
samples may result in the accidental phenomenon. Additionally, each individual grows up
in a different environment, so the occurrence of this phenomenon is reasonable. It should
be noted that the food web structure may shift among seasons, so the conclusion in this
study still needs more samples from different seasons to verify.

Here, two methods were used to identify stomach contents. Morphological analysis
is popular because it is simple and accurate, but it also has potential limitations such as
being time-consuming and difficult in morphological classification [25,26,28–30]. As the
prey was digested completely, by only relying on the morphological classification we can
hardly attain relatively accurate results. So, molecular identification is also taken to carry
on the analysis. Meta-barcoding is not affected by the age, sex, growth stage and digestion
extent of experimental subjects, which can make up for the shortcomings of traditional
morphological identification [30].

Despite the efficiencies and veracity realized using metabarcoding for prey identi-
fication, this approach is not without defects. Through meta-barcoding, we determined
that M. caml mainly fed on Malacostraca, Sagittoidea, Cnidaria and Algae. The result
of morphological identification of stomach contents confirmed the veracity of molecular
identification results, and it also exposed the existing defects of molecular identification.
Fish and Cephalopods were common prey items from morphological analysis but were not
identified by genetic methods. Additionally, similar to morphological analysis, most of the
prey was not identified to the species level. The low quality of the extracted DNA and the
universal primer may lead to this problem. It is unlikely that our primers could amplify all
prey species. Thus, the diet presented here is not expected to be exhaustive of all taxa con-
sumed by the M. caml. Furthermore, invertebrates proved to be difficult to identify given
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the potential number and diversity of available prey species inhabiting the Cosmonauts
Sea and the current status of the reference databases [40]. To reduce problems like this and
further enhance the resolution of sequences obtained from this method, species-specific
primers could be generated to search for the presence of specific prey items that may be of
concern [40,41].

Additionally, there is no current method to distinguish between prey-of-prey (i.e., items
that were consumed by a prey species that the M. caml subsequently ate) and true prey,
especially the algae identified through metabarcoding. However, as algae were also found
in M. caml diet by morphological analysis, this circumstance likely did not affect our results.

Analysing the diet of a species is the basis of the research on the trophic level and
even the food web. Even though the number of samples was limited in this study, the diet
identified was useful to determine the nutrition status of M. caml and the construction of
the food web in the Cosmonauts Sea.
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