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Abstract: The Wallacean shortfall refers to the knowledge gap in biodiversity distributions. There is
still limited knowledge for freshwater fish species despite the importance of focusing conservation
efforts towards this group due to their alarming extinction risk and the increasing human pressure on
freshwater ecosystems. Here, we addressed the Wallacean shortfall for freshwater fish faunas across
Europe by using the completeness indicator derived from species accumulation curves to quantify
the fish sampling efforts. The multiple potential drivers of completeness that were previously related
to the sampling efforts for other species (i.e., population density, nature reserves, or distance to
cities) were tested using a 10 × 10 km2 grid resolution, as well as environmental (e.g., climatic)
factors. Our results suggested that although there was an overall spatial pattern at the European level,
the completeness was highly country-dependent. Accessibility parameters explained the sampling
efforts, as for other taxa. Likewise, climate factors were related to survey completeness, possibly
pointing to the river conditions required for fish sampling. The survey effort map we provide can
be used to optimize future sampling, aiming at filling the data gaps in undersampled regions like
the eastern European countries, as well as to account for the current bias in any ecological modeling
using such data, with important implications for conservation and management.

Keywords: survey effort; Wallacean shortfall; completeness; SDM; accessibility; stream fish; reliability

1. Introduction

Since the last decade, the boost of big data has promoted the compilation of the
spatial records of species in repositories which are ready to be downloaded and used
for research purposes [1], easing the development of ecological and evolutionary studies
without the need to conduct fieldwork. The available data come from natural history
collections, national and international environmental agencies, and research institutions [2]
and even from the volunteers that participate in citizen science programs by collecting
biodiversity observations [3]. Such geographical data have been used in diverse types of
research, ranging from evolutionary studies [4], the assessment of extinction risks [5], the
modeling of species’ responses to environmental changes, and the forecasting of species’
range contractions or shifts under climate changes [6,7].

However, the biodiversity data have some quality limitations [8]. This limitation,
known as the Wallacean shortfall, refers to the lack of information about species’ geograph-
ical occurrence in some regions [9,10]. Despite the high increase in the number of spatial
records [11,12], the biases are pervasive in the species databases commonly used for Species
Distribution Model (SDM) building [13]; most distributional databases still have a sampling
bias [14], and some taxa are still undersampled [15].

This bias can affect the type and explanatory power of the environmental factors and
especially the spatial predictions [16,17], highly affecting decision making and therefore
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conservation and management. The availability of spatial records highly impacts the results
of the SDMs, which are methodologies that mainly rely on the distribution of the species
to infer the patterns of extinctions [18], the expansion of invasive species [19,20], or the
predictions of global change impacts [21]. For this reason, data sampling was considered a
priority for the research and development of SDMs [22] because the sampling bias in the
distribution records can generate distorted model predictions, thereby calling into question
their reliability to inform policy and management decisions [17,23–25].

Under the ongoing global changes, elucidating the human factors impacting biodi-
versity and environmental processes is a priority [26]. If species distributions are biased
towards those places with higher human activity just because the sampling has been more
intense in those areas, then the models applied to management and policy will be erroneous,
and therefore, resources may be allocated to the wrong conservation measures. Areas with
higher accessibility, which are closer to infrastructures or have some degree of protection
or attractiveness, have been reported as the main drivers of sampling bias [27–30]. For this
reason, to avoid the confounding effect of sampling bias, there is an increasing awareness
in the scientific community of the importance of correcting or controlling for this bias
and, consequently, numerous approaches [31,32] and software packages [33,34] have been
developed for this purpose. Yet, improving the knowledge about the Wallacean shortfall is
considered a challenge for many taxa [35], such as fish [36].

The survey coverage is poorer for aquatic taxa than for terrestrial taxa, and fresh-
water species, especially invertebrates, are scarce in international catalogues such as
GBIF [37]. Nonetheless, freshwater ecosystems are some of the most threatened ecosys-
tems on Earth [38]; also threatened are the freshwater species [39] directly competing with
humans for resources [28]. Due to the increasing human population demanding multiple
resources from freshwater ecosystems, ranging from direct products such as water or fish
to recreational ecosystem services [40], there is an increasing need for effective conservation
approaches to freshwater fish, and this requires reliable data [41]. Therefore, investigating
and filling the knowledge gap regarding the aquatic biodiversity data should be a priority.
Few studies have focused on the sampling bias related to freshwater species, except a few
cases focusing on beetles [42] and amphibians [28]. Pelayo-Villamil et al. [43] evaluated the
sampling completeness of freshwater fish species at a global scale, using countries as the
spatial resolution, and found that countries with relatively accurate inventories had regions
or provinces where the accuracy was low. Furthermore, the drivers of completeness have
been evaluated for multiple taxa [24,44–46], but there is still limited information about the
factors affecting the freshwater fish sampling efforts [47].

In this study, we aimed to assess the sampling efforts in the different European
ecoregions [48] for freshwater fish species and to investigate the drivers of inventory
completeness and how they differ from the sampling bias drivers in terrestrial ecosystems
to improve our knowledge about the data limitations in freshwater ecosystems, and we
propose solutions to improve the freshwater fish biodiversity assessments.

2. Methods
2.1. Study Area and Spatial Records

The study area comprised the area covered by Great Britain and the Isle of Man,
Spain, Portugal, France, Italy, Belgium, the Netherlands, Denmark, Norway, Germany,
Sweden, Poland, Slovenia, Romania, Bulgaria, and Greece. These countries had available
data on fish distribution and represented the whole European area with samples covering
all the ecoregions for the rivers and lakes defined in Annex XI of the Water Framework
Directive [48], apart from the Tundra, Iceland, and Irish ecoregions.

The distribution records at the species level for all the countries were extracted from
the GBIF [49], Table S1, and the available national databases, such as those of the United
Kingdom [2], Sweden [50], France [51], Spain, and Portugal [52]. The national databases
from countries with low or no records in the GBIF were requested by the authors when
there was some information regarding the existence of a database, as was the case with
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Slovenia [53]; the data were granted to develop this study. For all countries, each register
included “species name”, “latitude”, and “longitude” in the EPSG:4326—WGS 84 coordi-
nate systems and the “sampling date” (year) of the record. The year was the most reliable
temporal resolution for most countries. Having a higher temporal resolution meant a more
conservative approach to the completeness calculation. We curated the database by elimi-
nating records without geographic coordinates and by correcting misspellings. We merged
taxonomic synonyms based on FishBase [54] and removed duplicates by rounding the
latitude and longitude in degrees to three decimal places to avoid inconsistency between
databases [55]. Records were binned in a 10 × 10 km grid cells as this has been widely used
in fish modeling [56].

2.2. Completeness Calculation

To evaluate the sampling bias in the European freshwater registry, we calculated
the completeness as it measures how well the biodiversity inventories capture the full
assemblage of species that are expected to occur at a given location, and we thereby
determined the areas with deficient information [57]. We used the KnowBPolygon function
in the KnowBR library in the R package [58] to assess the survey completeness across Europe
at a 10 × 10 km2 grid resolution. The KnowBR calculations are based on the slopes of the
species accumulation curves accounting for the relationship between the number of species
and the total number of records. The accumulation curve was estimated using the exact
estimator and the formula defined in [59] and was adjusted to the rational functions; see the
details in [58] for each spatial unit (i.e., grid). Then, the obtained extrapolated asymptotic
value was used to calculate the completeness, which corresponds to the percentage of
inventoried species over the total number of predicted species. This approach has been
widely applied to calculate the spatial survey efforts for multiple taxa, such as butterflies,
beetles [60], birds [35], and plants [61,62], as well as fish [43].

2.3. Predictors and Statistical Analyses

We investigated the potential factors explaining completeness by considering the
anthropogenic predictors related to accessibility. We included road density, population
density, proximity to main cities and airports, the human development index (HDI) [63],
and the human footprint [64]. The proximity to the sampling sites, the attractiveness of
the area, or the proximity to main cities with universities or research centres (Table 1)
have previously been reported as being responsible for the sampling intensity for other
species [36,44,61,65,66]. Protected areas were also included as the percentage of nature
reserve areas in each grid cell (Table 1) according to their importance in previous studies [47].
Most anthropogenic predictors were obtained from RiverATLAS version 1.0, which is the
HydroATLAS version at a stream level, with a river resolution of 500 m [67].

We also included environmental variables to account for the potential environmental
sampling bias or climatic bias [37,65], referred to as the uneven representation of key
environmental gradients by the occurrence records [37]. Although some taxa can be
associated with humans for natural reasons (e.g., providing shelter or resources), this
seemed irrelevant for fish species as more species are native and do not rely on human
infrastructures for their survival. For environmental variables, we used the 19 bioclimatic
variables available in the CHELSA V1.2 database [68].

For both the environmental and human predictors of completeness, we extracted the
mean values for all the variables (Table 1) in each grid cell using the zonal statistic tool in
QGIS version Las Palmas [69].

We considered all the 19 bioclimatic predictors because we did not anticipate before-
hand the effect of any of them in the completeness distribution, and we applied a principal
component analysis (PCA) to reduce the number of climate variables [70]. We performed a
normalized PCA using the prcomp function from the package stats version 4.2.0 in R [71].
For the remaining predictors, we calculated the Pearson correlation to exclude those that
were highly correlated (i.e., r ≥ 0.75). We employed Generalized Linear Mixed models
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(GLMM) to test the relationship between the completeness and the predictors, considering
the country as a random factor. We checked the pseudo R2 of the resulting model using
library MuMIn in R [72] and evaluated the spatial autocorrelation of the model residuals
through a variogram using the gstat package in R.

Table 1. Predictor variables used to investigate completeness distribution in Europe.

Variable Description Source

Airport Euclidean distance to the closest airport http://worldmap.harvard.edu
Cities Euclidean distance to the closest major city https://hub.arcgis.com/maps/esri::world-cities-1/
Road Road density https://www.hydrosheds.org/page/hydroatlas

Population Population density in 2010 https://www.hydrosheds.org/page/hydroatlas
HDI Human Development Index in 2015 [65] https://www.hydrosheds.org/page/hydroatlas
HFT Human Footprint [66] https://www.hydrosheds.org/page/hydroatlas
Bio 1 Annual Mean Temperature https://chelsa-climate.org/bioclim/

Bio 2 Mean Diurnal Range (mean of monthly temp (max
temp–min temp)) https://chelsa-climate.org/bioclim/

Bio 3 Isothermality (BIO2/BIO7) (* 100) https://chelsa-climate.org/bioclim/
Bio 4 Temperature Seasonality (standard deviation *100) https://chelsa-climate.org/bioclim/
Bio 5 Max Temperature of Warmest Month https://chelsa-climate.org/bioclim/
Bio 6 Min Temperature of Coldest Month https://chelsa-climate.org/bioclim/
Bio 7 Temperature Annual Range (BIO5-BIO6) https://chelsa-climate.org/bioclim/
Bio 8 Mean Temperature of Wettest Quarter https://chelsa-climate.org/bioclim/
Bio 9 Mean Temperature of Driest Quarter https://chelsa-climate.org/bioclim/

Bio 10 Mean Temperature of Warmest Quarter https://chelsa-climate.org/bioclim/
Bio 11 Mean Temperature of Coldest Quarter https://chelsa-climate.org/bioclim/
Bio 12 Annual Precipitation https://chelsa-climate.org/bioclim/
Bio 13 Precipitation of Wettest Month https://chelsa-climate.org/bioclim/
Bio 14 Precipitation of Driest Month https://chelsa-climate.org/bioclim/
Bio 15 Precipitation Seasonality (Coefficient of Variation) https://chelsa-climate.org/bioclim/
Bio 16 Precipitation of Wettest Quarter https://chelsa-climate.org/bioclim/
Bio 17 Precipitation of Driest Quarter https://chelsa-climate.org/bioclim/
Bio 18 Precipitation of Warmest Quarter https://chelsa-climate.org/bioclim/
Bio 19 Precipitation of Coldest Quarter https://chelsa-climate.org/bioclim/

3. Results

The final databases contained 1,721,923 records of freshwater fish species, with an
average of 77 different species per country. The countries with the highest number of
records were France, followed by the United Kingdom and the Netherlands (Table S2). In
contrast, Bulgaria, Romania, and Greece were the countries with the lowest number of
records. The country with the highest number of species was Italy, followed by Greece and
Spain; Norway, the United Kingdom, and Belgium had a smaller number of fish species
(Table S2).

The first two axes of the PCA on the climatic variables, accounting for 38.1% and
30.8% of the total variability, respectively, were subsequently used (Table S3). The first
principal component (PC1) was negatively associated with the temperature variables (Bio5,
Bio10, and Bio1) and positively associated with the precipitation variables (Bio17, Bio18 and
Bio14), thus reflecting a gradient from warm and dry climates (negative values) to cold and
humid climates (positive values) (Table S4). The second component (PC2) mainly reflected
a gradient from the climates characterized by low temperature seasonality (Bio4), high
precipitation (Bio12, Bio13, and Bio16), and cool conditions during the dry and cold seasons
(Bio9 and Bio6), respectively (i.e., stable and humid climates and negative values) to high
temperature seasonality and dry conditions during the cold season (i.e., more variable
climates over the year and positive values) (Table S4). Road density was highly correlated
with population density and the human footprint, with a Pearson correlation (r) of 0.77 for
both. The road density and human footprint were also correlated with the HDI (r = 0.76);
so, we removed the human footprint and road density from further analysis.

http://worldmap.harvard.edu
https://hub.arcgis.com/maps/esri::world-cities-1/
https://www.hydrosheds.org/page/hydroatlas
https://www.hydrosheds.org/page/hydroatlas
https://www.hydrosheds.org/page/hydroatlas
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https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
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From the 40,966 grid cells composing the study area, we found that for the whole
of Europe only 18% of the grid cells were well surveyed, with completeness values over
80%. Only 49 cells in the study area were fully complete (i.e., completeness = 100). An-
other 18% of the cells had completeness values between 50 and 80, and 10% of the cells
had values smaller than 50 but higher than 0. Fifty-four percent of the grid cells had
0 completeness, which differed highly among the countries (Figure 1). The countries with,
on average, the lowest completeness were Romania, Bulgaria, Greece, Poland, and Italy.
The country with the highest average completeness in the whole country area was the
Netherlands, followed by Denmark, the United Kingdom, Slovenia, and France (Figure 1).
According to the GLMM, all the predictors except population density significantly (p < 0.05)
explained the completeness at the European scale. Both climate PCA axes had a negative
effect on completeness (estimate = −0.1553, sd = 0.03, p < 0.001 and estimate = −0.1599,
sd = 0.02, p < 0.001), as did distance to the airport (estimate = −0.1782, sd = 0.01, p < 0.001),
distance to cities (estimate = −0.1372, sd = 0.01, p < 0.001), and percentage of nature reserves
(estimate = −0.0480, sd = 0.04, p = <0.001), while the HDI had a positive effect
(estimate = 0.1850, sd = 0.01, p < 0.001). The correlation of the data and the model residuals
had low variation over distance (Figure S1). The conditional R2, including the fixed effect
and the random effect, was 0.64, whereas the marginal R2 was 0.02, revealing that country,
included as a random factor, explained most of the variance in completeness.

1 
 

 

Figure 1. Completeness values for each 10 × 10 km2 grid cell in Europe.

At a national scale, we found no significant predictors explaining the completeness
of four countries (France, Bulgaria, Denmark, and Romania). From the remaining twelve
countries, the distance to the cities and the percentage of nature reserves significantly
influenced the completeness in eight countries (Table 2). For the distance to the cities, six
countries had negative estimates, whereas two of them had positive estimates. For the
nature reserves, four countries had positive estimates and four had negative ones. Both
climate factors were significant for seven countries, with a positive effect, except for PC1 in
Poland, which showed a negative effect.
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Table 2. Estimates from the Generalized Linear Models (GLM) for the predictors significantly (p < 0.05)
explaining completeness at the national level.

Belgium Germany Greece Italy Netherlands Norway Poland Portugal Slovenia Spain Sweden United
Kingdom

Climate PC1 −2.7456 −0.1909 - - - −1.1168 0.2427 - −1.4714 - −0.2945 −0.4970
Climate PC2 - −0.1945 −0.4574 - - −0.8693 - - −0.8778 −0.6246 −0.3006 −0.2778

Nature
Reserves - - 0.2608 −0.4622 −0.2873 −0.1568 0.1158 - - - −0.3434 0.1261

Distance to
airports - −0.3652 −0.1318 - - - - 0.1438 −0.3290 -

Distance to
big cities - −0.1938 - −0.8213 0.4747 −0.1593 −0.3428 0.2814 - −0.2493 - −0.1686

Population
density - 0.2222 - −0.4364 - - - - - - 0.0896 -

HDI 0.7212 - - 0.6697 - - −0.1088 −0.2542 0.6577 0.1345 −0.2426 -

4. Discussion

There are some countries in Europe, such as Bulgaria, Romania, Greece, and Estonia,
with limited or inaccessible geographical information on freshwater fish. Eastern Europe
was the region with a lower number of records as well as lower values of completeness
with regard to terrestrial vertebrates [14]. Improving the data availability is especially
important in the east of Europe considering that the best conserved freshwater areas are
located in those countries [73]. A recent study [74], forecasted a strong decrease in species
richness in eastern European countries, whereas an increase in western Europe is expected
under different scenarios of climate change. Therefore, for an effective calculation of any
extinction risk or niche shift experienced by freshwater species in those countries, there is a
crucial need for additional registers through the promotion of data availability and data
mobilization or the investment in a higher sampling effort in those regions with poor data.
This goal can be achieved using different approaches, which are discussed further in the
following paragraphs, to detect and document new species distribution with less effort
and expense [75].

Fish species are more difficult to sample than terrestrial species, and the sampling
requires expensive equipment and resources [76]. Citizen science has proven to be a highly
useful tool for increasing the biodiversity databases and survey completeness [35,77]. In
that context, anglers represent the group of people most likely to support this activity as
freshwater fish are difficult for common citizens to spot [78]. Other recently developed
techniques, such as eDNA, are showing a high ability for biodiversity assessments in rivers
where there was previously no information [79,80]. Sometimes, the data that have been
retrieved by researchers or environmental agencies for descriptive studies have never
been published elsewhere [81]. Mobilizing these data from personal databases or research
centres and museums might provide additional information [82]. Some data might still be
undigitized [66]; so, funding for digitization might be quite useful but should be focused
on the undersampled countries as it has been shown that the effect of digitization is less
relevant in the well-sampled regions [61].

According to our study, completeness was country-dependent. The lack of information
in some regions is relatively common and has been observed in other areas and at the
country scale [81]. Our results highlighted the impact of political boundaries on the bias and
the national or regional efforts in the biodiversity databases, which will affect the models
and predictions applied to management and conservation. For instance, Titley et al. [83]
suggested mapping transboundary range shifts globally to minimize biodiversity loss
under global change. We agree that transboundary conservation efforts are key, but the
differences in the completeness values and the bias in the data of the different countries
might result in erroneous models. For that reason, modeling at the country level and then
accounting for the results of the multiple countries might be a valid solution until a unified
and unbiased database is available.

Globally, completeness was affected by all the considered factors except for population
density, which only affected the survey quality in Germany, Sweden, and Italy. In the
case of Italy, we found an unexpected pattern as the completeness was higher in the less
populated areas, in contrast with other studies [44,84–86]. Our results had important
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implications for research as those studies aiming to disentangle the anthropogenic factors
driving the freshwater species’ range expansion or contraction [87] or the fish biodiversity
patterns [88] might conclude that the indicators of human impact are affecting freshwater
fish, when the real meaning is that the areas close to cities or with a large human presence
have a higher amount of data due to more intense sampling. However, as stated before, the
global European pattern needs to be considered with caution because it is highly country-
dependent. For instance, completeness increased in localities close to big cities, highlighting
accessibility as a driver of bias in freshwater ecosystems or the presence of research centres
in cities [46]. However, in Portugal, completeness was higher further from the cities and
from areas with high human development, meaning that a more intense sampling was
carried out in pristine and remote places. In addition, the gaps in fish inventories were
located in areas with a low density of nature reserves [85], but the opposite was observed
for those countries with high average inventory completeness, indicating that an overall
substantial sampling effort in the whole country reduced the bias towards protected areas.

As in our study, the local conditions and the environment explained the complete-
ness for different taxa of plants [89,90], amphibians, reptiles, birds [90], and different
insects [46,91]. Climate influenced completeness in all the countries, with higher complete-
ness in areas with high precipitation in the winter months and in areas where temperature
seasonality and range were low. Moreover, completeness was higher in areas with high an-
nual mean temperature and high temperature in the warmest quarter and low precipitation
in the warmest and driest quarter/month. This may be a consequence of where aquatic
habitats are most prevalent, as noted by Troia and McManamay [37], or might reflect the
conditions of permanent rivers with continuous flow over the year, where the conditions
are optimum for fish reproduction, or areas where the winter precipitation and the lack
of extreme temperatures ensure a permanent stream flow. Sampling is also more frequent
in the most common environments of a region [92]; so, the climates of those ecosystems
and environments might be overrepresented. Another reason for the importance of the
climate in fish completeness might be the environment or the ecosystems associated with
the climate conditions.

To our knowledge, this is one of the first studies investigating the drivers of the
sampling efforts for freshwater fish at a fine resolution but at continental and country
scales [47]. The anthropogenic factors related to accessibility or to areas that are interesting
to researchers previously explained the sampling efforts for terrestrial organisms [76] and,
along with the environmental factors, also shaped the completeness pattern of the fresh-
water fish at different scales. The importance of the environmental conditions might also
be related to the most common sampling procedure required for fish, which is normally
carried out by professionals with sophisticated equipment (e.g., electrofishing) in locations
where the conditions of the river (e.g., depth, water flow, or speed) allow the implemen-
tation of the sampling techniques [93]. Furthermore, freshwater biodiversity catalogues
are less based on community observations due to the detection difficulties for these taxa.
Thus, the sampling bias linked to human infrastructures was less relevant for fish than for
other taxa [66].

Finally, our results can help to guide future survey efforts in those areas where the data
are scarce, or they can help to design efficient sampling protocols [94]. The completeness
map and the sampling-effort knowledge obtained in this study can be used to determine
regions where the biodiversity data are insufficiently consistent [14] and can guide the
selection of the locations for future surveys along with the multiple approaches increasingly
being published to optimize sampling [92,95–97]. Moreover, the completeness map can be
used as a bias proxy to correct or account for the survey efforts in ecological models [98,99],
such as the SDMs, in order to report the uncertainty associated with the Wallacean shortfall
in the modeling [100,101]. Future research steps regarding the sampling bias of freshwater
fish should therefore be focused on filling the gaps in the undersampled regions, such as
those of eastern Europe [102], with the potential for the discovery of new species [103] and
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the investigation of how the sampling bias varies between the different taxonomic groups
of stream fish [36].

5. Conclusions

Our study detected low freshwater fish inventory completeness in eastern Europe
and recorded gaps in most European regions; better survey inventories are biased towards
places with high accessibility but are highly dependent on the study country. Our findings
might help to define optimum strategies for future sampling in Europe as well as to inform
ecological models of the bias posed by the geographic data of the species in order to
improve our knowledge of freshwater fish dynamics and therefore the conservation and
management measures to be applied to one of the most endangered faunas in the world.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fishes7060383/s1, Figure S1: Variograms showing low spatial
autocorrelation for the GLMM residuals; Table S1. GBIF links to each country’s database and their
references; Table S2: Number of freshwater fish records and species and average completeness by
country; Table S3: Eigenvalues showing the percentage of variances explained by each principal
component for the PCA performed to group the 19 bioclimatic predictors; Table S4. Loading of each
of the two factors resulting from the PCA explaining 69% of the climate information.
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