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Abstract: As a euryhaline shrimp, the ridgetail white prawn Exopalaemon carinicauda is strongly
adaptable to salinity. Exploring the effect of long-term low salinity stress on ovarian development
in E. carinicauda is essential to promote its culture in a non-marine environment. In this study, we
performed biochemical assays and ovary histology analysis, finding that the E. carinicauda can adapt
to low salinity stress through osmotic adjustment, and there was no substantial damage to the ovary
of E. carinicauda under low salinity stress. Then, the ovarian development of E. carinicauda under
low salt stress was further explored by RNA sequencing of eyestalk and ovarian tissues. A total of
389 differentially expressed genes (DEGs) in ovary tissue were identified under low salinity stress,
and the 16 important DEGs were associated with ovarian development. The majority of the DEGs
were enriched in ECM-receptor interaction, folate biosynthesis, arginine biosynthesis, insect hormone
biosynthesis and lysosome which were involved in the ovarian development of E. carinicauda. A total
of 1223 DEGs were identified in eyestalk tissue under low salinity stress, and the 18 important DEGs
were associated with ovarian development. KEGG enrichment analysis found that ECM-receptor
interaction, folate biosynthesis, lysosome, arginine biosynthesis and retinol metabolism may be
involved in the ovarian development under low salinity stress. Our results provided new insights
and revealed new genes and pathways involved in ovarian development of E. carinicauda under
long-term low salinity stress.

Keywords: Exopalaemon carinicauda; low salinity stress; reproduction; enzyme activity; tissue
sections; transcriptome

1. Introduction

Salinity is one of the most important environmental factors affecting the survival,
growth and reproduction of aquatic animals [1,2]. It is reported that changes in salinity
might affect the transmembrane ion/water transport, disrupt the osmotic balance [3,4] and
also affect molting, oogenesis, embryogenesis and larval quality [5,6]. Mohanty et al. [6]
reported that the salinity exposure significantly affected the gonadosomatic index, ovary
histology and morphometric features of oocytes in stenohaline freshwater catfish. It was
also reported that low salinity stress could maximally inhibit steroid mediated gonadal
recurrence in an euryhaline fish [7]. Although many crustaceans, such as Penaeus mon-
odon [8], Scylla serrata [9], Eriocheir sinensis [10] and Litopenaeus vannamei [11], can survive in
a wide range of salinity environments, there are few reports on their reproduction under
low salinity stress. Long et al. [12] found that salinity plays a key role in ovarian develop-
ment, osmotic regulation and metabolism during the reproductive migration of female E.
sinensis; the increase of salinity from a fresh water to a brackish water environment led to
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the reduction of metabolism, accelerated ovarian development, and produced non-mating
spawning crabs when female E. sinensis molted after puberty.

The ridgetail white prawn Exopalaemon carinicauda (Arthropoda, Crustacea, Decapoda
and Exopalaemon), is widely distributed in the Yellow Sea and Bohai Sea and is one of the
most important commercial shrimps in China [13–15]. Due to multiple merits of fast growth,
high reproductive performance and strong environmental adaptability, the culture area of
E. carinicauda in China expanded in recent years [16,17]. According to incomplete statistics
in 2016, the breeding area of E. carinicauda is about 4000 hectares, with an annual output of
about 100,000 tons [18]. The E. carinicauda can adapt to salinity in a wide range [19], and
can live in water bodies with salinity ranging from 4.3 to 35. It can even live in fresh water
after desalting. Furthermore, E. carinicauda has been successfully cultured and bred in the
saline-alkaline ponds (approximate salinity 5–8) at Dongying City, Shandong province,
China, suggesting that they have a high tolerance to saline-alkaline stress [14,20]. However,
there are few reports on the effects of low salinity on the reproduction of white shrimps.
Only Liang et al. [21] reported that the gonads of the E. carinicauda can develop and mature
under salinity 2–30. However, we still do not have a thorough grasp of the mechanism of
low salinity stress on the reproduction of E. carinicauda.

Recently, RNA sequencing (RNA-seq) transcriptomics has been widely used to study
the differential expression and molecular pathways of genes under specific environmental
stresses [22]. For example, RNA-seq was used to compare the transcriptomic responses of
L. vannamei to changes in salinity [23], and Li et al. (2014) used transcriptome sequencing
to reveal the genes and pathways related to salt stress in E. sinensis [24]. However, most of
the studies on the effect of low salinity on aquatic organisms focus on osmoregulation, and
the research on gonad development is relatively few. The eyestalk is part of the X-organ
sinus gland and an important endocrine organ for crustaceans; it is thought to play a
key role in various physiological activities, including ovarian maturation [25]. Studies
found that removal of the eyestalk can induce ovarian maturation and oviposition in
many crustaceans [26,27]. Although the mechanism by which eyestalk ablation leads to
ovarian maturation is still uncertain, some genes expressed in the eyestalk regulate ovarian
development. For example, in polychaete-fed female Penaeus monodon, eyestalk ablation
led to ovarian maturation, and it was found that genes in several key pathways were
up-regulated, namely the gonadotropin-releasing hormone (GnRH) signal transduction
pathway, the calcium signal pathway and the progesterone mediated oocyte maturation
pathway [28]. Therefore, in this study, the transcriptome of the E. carinicauda ovary and
eyestalk was sequenced by using RNA-seq technology for the first time. We compared
and analyzed the transcriptome data between the control group and the low salinity group
to determine the genes and pathways related to ovarian development. The findings of
this study will help to clarify the ovarian development mechanism of E. carinicauda in its
adaptation to salinity challenges.

2. Materials and Methods
2.1. Animals

Adult female shrimps were collected from Haichen Aquaculture Co. Ltd. in Rizhao
city, Shandong province, China. The experiment was carried out in a 200 L PVC barrel, and
the shrimps were domesticated in the laboratory environment (25 ◦C) for two weeks before
experiment. One hundred and eighty shrimps were randomly sorted into two groups,
including the low salinity group (salinity 5 ppt), and a control group (salinity 25 ppt). Each
group had three replicates with 30 shrimps. During the experimental periods, the shrimps
were fed according to 3–5% of their body weight twice a day (8:00 and 18:00). The water
was aerated and 30% was changed daily with the adjusted seawater in order to maintain
the original salinity. Natural illumination was used during the experiment, and water
quality was maintained at a temperature of 25 ± 0.5 ◦C, pH of 8.2 ± 0.1 and a dissolved
oxygen level of 7.4 ± 0.3 mg L−1. The experiment lasts for 60 days.
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2.2. Sample Collection

After 60 days, eighteen female shrimps (3 individuals × 3 replicates × 2 groups) were
used for biochemical assays, twelve female shrimps (2 individuals × 3 replicates ×2 groups)
were used for histological sections, and thirty-six female shrimps (6 individuals × 3 repli-
cates ×2 groups) were used for Illumina RNA-seq. The ovary and eyestalk tissues were
collected and rapidly frozen in liquid nitrogen, then stored at −80 ◦C until RNA isolation,
respectively. The ovary samples in the low salinity group are labeled LS_O, eyestalk sam-
ples in the low salinity group are labeled LS_E, the ovary samples in the control group are
labeled CG_O and the eyestalk samples in the control group are labeled CG_E.

2.3. Biochemical Assays

Na+/K+-ATPase and carbonic anhydrase activities in the tissue were determined using
Detection Kit (Suzhou Keming Biotechnology Co., Ltd. Suzhou, China). We accurately
weighed 0.1 g of hepatopancreas, gill and muscle tissue, added the extract according to
the weight volume ratio of 1:10, and performed ice bath homogenization with a 8000× g
centrifuge at 4 ◦C for 10 min, collected the supernatant and placed it on ice. We then
measured according to the instructions of the kit and used the microplate reader to test
and read.

2.4. Ovary Histology

The ovaries were fixed in 4% paraformaldehyde for 24 h before washing with 1 × PBS
and dehydrating using a graded ethanol series (80% ethanol for 1 h, followed by 95%
ethanol for 1 h, followed by 100% ethanol for 1 h). Transparency was improved using
xylene (pure ethanol: xylene (1:1) for 1 h, then xylene for 1 h). Samples were infiltrated with
paraffin (xylene: paraffin (1:1) at 62 ◦C for 1 h, then paraffin at 62 ◦C for 2 h) and processed
for paraffin embedding. Sections were cut to 6 µm before staining with hematoxylin
and eosin. Samples were scanned using a microscope slide scanner (Pannoramic MIDI,
Budapest, Hungary).

2.5. RNA Isolation, Library Construction and Illumine Sequencing

Total RNA extraction from each of the collected samples was performed using a
TRIzol® reagent (Invitrogen, San Diego, CA, USA) according to the manufacturer’s in-
structions. The DNase I was used to process total RNA for DNA digestion and obtain
pure RNA products. Finally, the RNA purity and concentration were then examined using
NanoDrop 2000 and the RNA integrity and quantity were measured using the Agilent
2100/4200 system. (Agilent Technologies, Santa Clara, CA, USA). Equal amounts of RNA
from different individuals in the same group were pooled for library construction. Next
generation sequencing library preparations were constructed according to the manufac-
turer’s protocol (NEBNext® Ultra™ RNA Library Prep Kit for Illumina®, NEB, Ipswich,
MA, USA). After the mRNA library passed the quality inspection, PE150 sequencing was
performed using Illumina Novaseq 6000 platform.

2.6. Basic Analysis of Sequencing Data

In order to remove technical sequences, including adapters, polymerase chain reaction
(PCR) primers, or fragments thereof, and bases with a quality lower than 20, the pass filter
data in the FASRQ format were processed by Trimmomatic (v0.30, http://www.usadellab.
org/cms/?page=trimmomatic accessed on 15 November 2022) to provide high-quality,
clean data. Firstly, the whole genome sequence of E. carinicauda assembled by our research
group was taken as the reference genome (the data have not been published yet). Secondly,
Hisat2 (v2.0.1, http://ccb.jhu.edu/software/hisat2/index.shtml accessed on 15 November
2022) was used to index the reference genome sequence. Finally, we mapped the clean
reads to the silva database to remove the rRNA. All the downstream analyses were based
on the clean data without rRNA.

http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
http://ccb.jhu.edu/software/hisat2/index.shtml
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2.7. Differential Expression Genes (DEGs) Analysis and Enrichment Analysis

The DESeq2 and edgeR [29] methods were used to perform the differential expression
analysis. The fragments per kilobase per million reads (FPKM) method was used to normal-
ized data, which can eliminate the influence of gene length and sequencing amount on the
calculated gene expression, and the calculated gene expression level can be directly used to
compare the expression differences between different genes. After adjusting using the Ben-
jamini and Hochberg’s approach for controlling the false discovery rate, the p-values < 0.05
and |log2FC| ≥ 1 were set to detect significant differentially expressed genes. Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analyses of
differentially expressed gene sets were implemented by the topG and KOBAS package 3.0
(http://kobas.cbi.pku.edu.cn/ accessed on 15 November 2022) [30], respectively.

2.8. RNA-Seq Data Validation by Real-Time Quantitative PCR and Statistical Analysis

To validate and measure the differential expression of mRNAs by high-throughput
sequencing, ten differentially expressed mRNAs were randomly selected for real-time
quantitative PCR (qPCR) analysis. The qPCR assay was performed using SYBR Green
PCR Master Mix (life Technologies, USA) in the 7500 fast Real-Time PCR system (Applied
Biosystems, Foster, California) according to the manufacturer’s agreement. The 18S rRNA
of E. carinicauda was used as the internal reference [31]. All primer sequences and 18S rRNA
sequences were listed in Table S1. The relative expression of target genes was calculated
with 2−∆∆CT methods. The one-way ANOVA method and Duncan’s test in the statistical
software SPSS 22.0 (SPSS, Chicago, IL, USA) were used for statistical analysis. The results
are presented as the mean ± standard error, and differences in gene expression were
considered statistically significant at P < 0.05.

3. Results
3.1. Variation of CARBONIC anhydrase and Na+/K+-ATPase Activity in the Tissue

Na+/K+-ATPase and carbonic anhydrase activity in the different tissue (muscle, hep-
atopancreas and gill) were determined using Detection Kit (Figure 1), and the highest
activities of both enzymes were found in gill. In comparison with the CG group, the
Na+/K+-ATPase activity of the LS group was significantly lower only in muscle, and no
significant change in other tissues was identified. Compared with the CG group, the
carbonic anhydrase activity of LS group was significantly higher only in the gill, and there
was no significant change in other tissues.
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3.3. Summary of the RNA-seq Data 
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ovarian development in E. carinicauda, six mRNA libraries were constructed from ovary 

and eyestalk, respectively. The raw data were submitted to the NCBI with the accession 
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Figure 1. Enzyme activity in the different tissue of E. carinicauda in response to low salinity stress.
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3.2. Histopathology of Ovary

Normal reproductive characteristics can be observed in the histological sections of
the ovary in Figure 2. The E. carinicauda ovary was in Phase I. The oogonia were oval and
proliferative, and the nuclei were round. Most cells had one nucleolus, while a few had
two nucleoli. The nucleolus stained the deepest color. The cells of the oogonia were closely
arranged. A single layer of follicles was closely arranged around the oogonia (Figure 2a).
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Figure 2. Histological sections of the ovarian status of E. carinicauda: (a) CG_O group; (b) LS_O group.
Bar: 50 µm. Abbreviations: N, Nucleus; Nu, nucleolus; Fc, follicular cell.

After under low salinity stress for 60 days, the development characteristics were similar
to those of the control group. No substantial damage was observed in the histological
sections; only the oogonia were loosely arranged, and the surrounding follicular cells were
loosely arranged with a small number (Figure 2b).

3.3. Summary of the RNA-seq Data

In order to identify the underlying molecular signaling pathways of low salinity on
ovarian development in E. carinicauda, six mRNA libraries were constructed from ovary
and eyestalk, respectively. The raw data were submitted to the NCBI with the accession
numbers PRJNA881755 and PRJNA881756. A total of 270,444,484 clean reads were obtained
from ovaries, with Q30 (%) varying from 92.69% to 93.21%. Of these reads, 70.69%–72.74%
were mapped to the reference genome of E. carinicauda. A total of 253,177,112 clean reads
were obtained from eyestalks, with Q30 (%) varying from 91.72% to 92.67%. Of these reads,
79.38%–83.02% were mapped to the reference genome (Table S2).

3.4. Differential Expression Genes (DEGs) Analysis

In total, 389 significant differentially expressed genes (DEGs) were identified the
between LS_O and CG_O groups. Compared to the CG_O group, 287 up-regulated genes
and 102 down-regulated genes were expressed in the LS_O group (Figure 3a). The same
experimental method was applied to eyestalk transcriptome analysis. Compared to the
CG_E group, 1,223 significant DEGs (613 up-regulated genes and 610 down-regulated
genes) were identified in the LS_E group (Figure 3b).

3.5. Gene Ontology (GO) Analysis of Significant DEGs

The DEGs comparison of LS_O and CG_O were classified into biological process,
cellular component, and molecular function. Compared with CG_O group, up-regulated
genes in the LS_O group had enriched larval chitin-based cuticle development, ecdysteroid
biosynthetic process, ecdysteroid metabolic process, sterol transport and so on. Conversely,
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the down-regulated genes in the LS_O group had enriched negative regulation of neuro-
logical system process, desensitization of G protein coupled receptor, negative regulation
of G protein coupled receptor signaling pathway and so on (Table 1).
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Table 1. The GO term of related to ovarian development in the LS_O vs. CG_O group.

Term Significant/Annotated Up/Down ID p-Value

Larval chitin-based cuticle development 4/23 up 0008363 0.00039
Ecdysteroid biosynthetic process 4/27 up 0045456 0.00073

Ecdysteroid metabolic process 4/37 up 0045455 0.00244
Sterol transport 6/103 up 0015918 0.00517
Molting cycle 8/216 up 0042303 0.01884

Steroid biosynthetic process 6/150 up 0006694 0.02876
Regulation of gastrulation 3/50 up 0010470 0.04185
Sterol transporter activity 5/21 up 0015248 2.30×10−5

Sterol binding 6/48 up 0032934 0.00016
Negative regulation of neurological system process 3/52 down 0031645 0.00439

Desensitization of G protein coupled receptor
Signaling pathway 2/18 down 0002029 0.00574

Negative regulation of G protein coupled receptor
Signaling pathway 2/26 down 0045744 0.01181

Positive regulation of reproductive process 4/160 down 2000243 0.01891
DNA/RNA helicase activity 1/6 down 0033677 0.04114

The DEGs comparison of LS_E and CG_E were classified into biological process, cellu-
lar component and molecular function. Compared with CG_E group, up-regulated genes
in the LS_E group had enriched regulation of ovulation, embryonic liver development,
luteinization, positive regulation of ovulation and so on. The down-regulated genes in the
LS_E group had an enriched molting cycle, response to estrogen, molting cycle process,
sterol homeostasis and so on (Table 2).
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Table 2. The GO term of related to ovarian development in the LS_E vs. CG_E group.

Term Significant/Annotated Up/Down ID p-Value

Regulation of ovulation 3/12 up 0060278 0.00537
Embryonic liver development 3/12 up 1990402 0.00537

Luteinization 3/22 up 0001553 0.02989
Positive regulation of ovulation 2/10 up 0060279 0.03703

Intracellular sterol transport 4/42 up 0032366 0.04113
Sterol metabolic process 8/126 up 0016125 0.04343

Molting cycle 20/216 down 0042303 5.20 × 10−5

Response to estrogen 10/82 down 0043627 0.00047
Molting cycle process 13/131 down 0022404 0.00055

Sterol homeostasis 7/65 down 0055092 0.00663
Estrogen secretion 2/4 down 0035937 0.00672

Positive regulation of estrogen secretion 2/4 down 2000863 0.00672
Sterol transport 8/103 down 0015918 0.025

Placenta development 7/93 down 0001890 0.04033

3.6. Kyoto Encyclopedia of Genes and Genomes (KEGG) Analysis

By matching with the KEGG pathway database, the possible functions of significant
DEGs were analyzed to further understand the ovarian development of E. carinicauda under
low salinity stress.

For low salinity stress, 27 KEGG pathways (19 up-regulated pathways and 8 down-
regulated pathways) were significantly enriched in the LS_O group (Figure 4). Among these
KEGG pathways, some were associated with ovarian development, such as ECM-receptor
interaction, folate biosynthesis, Arginine biosynthesis and the FoxO signaling, lysosome
and metabolic pathways.

In the comparison of the LS_E and CG_E group, 37 KEGG pathways (22 up-regulated
and 15 down-regulated pathways) were significantly enriched (Figure 5). Concurrently, the
insect hormone biosynthesis, phototransduction, ECM-receptor interaction, folate biosyn-
thesis, lysosome and metabolic pathways, arginine biosynthesis and retinol metabolism
were associated with ovarian development.

3.7. DEGs Involved in Ovarian Development

In the ovary, some DEGs related to ovarian development were selected in the low salin-
ity group, such as the FMRF amide receptor, feminization 1, JHE-like carboxylesterase 1,
heat shock 70 kDa protein, G protein-coupled receptor, C-type lectin, ecdysteroid regulated-
like protein, estradiol 17-beta-dehydrogenase 8 and vitellogenin. A clustering heatmap of
these results is provided (Figure 6).

In the eyestalk, some DEGs related to ovarian development were selected low salinity
stress, such as the vitelline membrane outer layer protein 1, estradiol 17-beta-dehydrogenase,
pigment dispersing hormone 1, insulin-like growth factor binding protein, insulin receptor-
related protein, heat shock 70 kDa protein, neuronal acetylcholine receptor, neuroligin 2 and
JHE-like carboxylesterase 1. A clustering heatmap of these results is provided (Figure 7).

3.8. The Validation of Differently Expressional Genes by qRT-PCR

To further validate the reliability of DEGs identified by RNA-Seq, ten DEGs were
randomly selected from two comparisons, LS_O vs. CG_O, LS_E vs. CG_E, respectively.
The results of qRT-PCR were consistent with RNA-seq, indicating that the RNA-Seq data
were accurate. (Figure 8).
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Figure 8. The results were verified by qRT-PCR. (a) Relative fold change of DEGs between qRT-
PCR and RNA-seq results in LS_O vs. CG_O group; (b) relative fold change of DEGs between
qRT-PCR and RNA-seq results in LS_E vs. CG_E group. Relative expression levels from the RNA-
seq results were calculated as log2FC values: Fc011350 ecdysteroid regulated; Fc021284 legumain;
Fc026977 lysosome-associated membrane glycoprotein 1; Fc008809 baculoviral IAP repeat-containing;
Fc020229 N-acetylated-alpha-linked acidic dipeptidase; Fc010755 high-affinity choline transporter 1;
Fc000164 tripartite motif-containing protein 3; Fc005820 reelin 3; Fc009097 arrestin; Fc012767 facil-
itated trehalose transporter; Fc026446 neroligin 2; Fc004023 alpha 1 inhibitor 3; Fc015896 insulin
receptor-related; Fc012259 serpin 1; Fc005350 UDP-glucosyltransferase 2; Fc008378 crustacyanin C1;
Fc001201 legumain; Fc002855 cathepsin L; Fc016036 multidrug resistance-associated protein.;Fc004370
macrophage mannose receptor 1.

4. Discussion

Na+/K+-ATPase and carbonic anhydrase are key enzymes for maintaining osmotic
regulation in crustaceans [32,33]. For a euryhaline aquatic animal, in the adaptation process
of L. vannamei from low salinity mutation to high salinity, Na+/K+-ATPase plays a leading
role and carbonic anhydrase plays a supporting role [34]. In the process of gradually
decreasing salinity, the Trachidermus fasciatus can maintain a stable physiological level,
and the branchial Na+/K+-ATPase presents no significant difference [35]. In this study,
we found that the Na+/K+-ATPase activity of LS group was significantly lower than that
of the CG group only in muscle, and the carbonic anhydrase activity of LS group was
significantly higher than that of the CG group only in the gill, and there were no significant
change in other tissues. Furthermore, in the early stress process, we found that salinity
had no lethal effect on the growth of E. carinicauda, similar to the study of Ren et al. [19],
which confirmed that the E. carinicauda can cope with low salinity stress through osmotic
adjustment. In addition, histological sections give further results; we found that there
was no substantial damage to the ovary of the E. carinicauda, but the number of follicular
cells was relatively small. The occurrence of crustacean eggs is closely related to follicular
cells. Many scholars generally believe that follicular cells play an important role in the
accumulation of exogenous yolk substances in oocytes. Li et al. [36] found that both
follicular cells and egg cells were differentiated from the reproductive epithelium in the
center of the ovary by observing the ovaries of E. carinicauda at different stages. The
follicular cells differentiated faster and moved between the egg cells to provide nutrition
for the development of the egg cells. When the egg cells developed to the endogenous yolk
synthesis stage, the follicular cells began to wrap the egg cells to form a follicular cavity,
which could better provide nutrition for the large volume of egg cells and further verified
our results.

Ovarian development is a very important physiological process for animal reproduc-
tion [37] which requires the regulation of large sets of genes to ensure proper oocyte devel-
opment. The ovary and eyestalk, as important organs for the development of crustacean
ovaries, expressed a large number of key genes possibly involved in ovarian develop-
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ment in the transcriptome sequencing data of the E. carinicauda in response to ground salt
stress. Although the mechanism of eyestalk ablation leading to ovarian maturation is still
inconclusive, some genes expressed in the eyestalk regulate ovarian development.

In this study, a large number of key genes possibly involved in ovarian development
were detected in the transcriptome sequencing data of ovarian tissue. Vitellogenin is an
important precursor of egg yolk in nearly all oviparous animals’ it provides carbohydrates,
lipids, amino acids, vitamins, phosphorus, sulfur, various metal ions and other nutritional
and functional substances for the development of embryos and larvae [38,39]. In this study,
low salinity stress upregulates vitellogenin expression, which seems to be consistent with
our previous discovery that the E. carinicauda can develop in low salinity seawater [21].
As an important sex steroid hormone, estradiol is widely distributed in the hepatopan-
creas, ovary, hemolymph and other tissues, and participates in the regulation of ovarian
development in crustaceans [40]. It is reported that 17β-estradiol induces Vg synthesis
and oocyte development in immature shrimp ovaries [41,42]. In this study, we found that
17β-estradiol expressed significantly under low salinity stress. Therefore, we speculate that
17β-estradiol may have a similar function in E. carinicauda, but its specific role needs further
study. In addition, another DEG, heat shock proteins, ubiquitously distribute and highly
conserve, behaving as molecular chaperones and involved in protein folding, degradation
and transport. In addition, expression level is regulated by sex steroid hormones [43,44]. It
has been proved that heat shock protein 70 is involved in estrogen nuclear initiated steroid
signal transduction [41]. Chan et al. [45,46] confirmed that heat shock cognate 70 negatively
regulated the expression of vitellogenin. Furthermore, Liu et al. found that the decreased
expression of Hsp70 may be related to the promotion of vitellogenesis by estradiol [47],
which is similar to our findings. In this study, the differential expression of the above
genes in the ovarian development of white shrimps under low salinity stress indicates that
vitellogenin and other regulatory genes are indeed involved in the ovarian development of
E. carinicauda.

Methyl farnesate (MF) secreted by the mandibular organs of crustaceans has a signifi-
cant stimulating effect on Vg synthesis in various decapods [48–50]. Although the methyl
farnesate biosynthetic pathway has been well established in arthropods [51], little is known
about its degradation in crustaceans. Juvenile hormone esterase (JHE) is a key enzyme
for insects, playing an important role in the regulation of insect growth, development,
diapause and reproduction [5]. In insects, juvenile hormone esterase is a carboxylesterase,
which specially degrade JHs by converting JH to JH acid (JHa) and catalyzing the con-
version of JH diol (JHd) into JH acid diol (JHad) [52]. The expression levels of JHE-like
carboxylesterase 1, JHE like carboxylesterase 2 and juvenile hormone esterase like protein
in the hepatopancreas and brain ganglion of P. trituberculatus were up-regulated, which
promoted the inactivation of methyl farnesate in the two tissues [47]. In addition, methyl
farnesate is metabolized to farnesic acid in vitro through esterase existing in crustacean
tissues [53]. In this study, JHE-like carboxylesterase 1 down-regulation can negatively
regulate methyl farnesate, thus promoting ovarian development under low salinity stress.

Crustacean ovarian development is regulated by various hormone factors [54]. The
crustacean eyestalk is known to regulate reproduction, molting and energy metabolism [25,55].
Eyestalk-derived neuropeptides regulate vitellogenesis in crustaceans. The pigment-dispersing
hormone (PDH) participates in the regulation of ovarian maturation in crustaceans [56].
The PDH may participate in vitellogenesis according to their spatiotemporal expression
patterns which maintained a high level from the pre vitellogenesis stage and decreased
significantly in the mature stage in Scylla paramamosain [57,58]. The study of Wei et al., 2021
provided the evidence for the inductive effect of PDH on the oocyte meiotic maturation in
E. sinensis [59]. In this study, the PDH was up-regulated in the LS_E group, suggesting that
it may be involved in the ovarian development of E. carinicauda under low salinity stress.

Retinol and its derivatives play key roles in the initiating meiosis in germ cells of
mammalian fetal ovaries [60], follicular development [61], ovarian steroidogenesis [62], and
oocyte maturation [63]. The retinol dehydrogenase (RDH), as a member of the short-chain
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dehydrogenase/reductase (SDR) superfamily, which includes three RDHs, RDH11, RDH12
and RDH13, were in the transcriptome sequences. RDH13 shows significantly higher
expression levels in vitellogenic ovaries than in a non-vitellogenic ovaries in zebrafish [64].
Knockdown of RDH11 resulted in decreased transcription of vitellogenin and vitellogenin
receptor in Procambarus clarkia [37], which suggested that RDH11 might have a function
in the synthesis and conveyance of vitellogenin in crustacean. Our previous study also
revealed that RDH11 is critical for ovarian development in E. carinicauda [65]. In this
study, RDH13 which was related to ovarian development in E. carinicauda was significantly
expressed in response to unfavorable environmental stress.

KEGG pathway enrichment can identify the main biochemical metabolic pathways
and signal transduction pathways involved in genes. Lysosome was the most significant
pathway and contained the larger number of DEGs between the LS_O and CG_O groups,
and also between LS_E and CG_E groups. The lysosome is important for intracellular
trafficking, metabolic signaling, lipid metabolism and immune response [66]. Lysosomes
are implicated in the preparation of free cholesterol for steroidogenesis and degradation of
regulators of steroidogenesis and follicle rupture during ovulation in the ovary of verte-
brates [67]. As the central digestive organ of cells, various macromolecules are sent to the
lysosome for degradation. Vitellogenin is an important precursor of egg yolk in nearly all
oviparous animals [39]. Lysosomes play a key role in the degradation of the vitellogenin
internalized by endocytosis [38]. The lysosomes are related to the hydrolysis of vitellogenin
and energy demand during Macrobrachium nipponense ovarian maturation [68]. The lysoso-
mal enzymes, especially cathepsin B and L, are associated with ovarian development in
crustaceans [69,70]. However, the DEGs enriched by the lysosomal pathway in different
tissues are different. The Lysosomal pathway was significantly up-regulated in the ovaries
and significantly down−regulated in the eyestalks. Therefore, we speculated that this
change in lysosomes is closely related to the ovarian development of E. carinicauda under
carbonate alkalinity stress. However, the specific mechanism is unknown.

As an essential amino acid of aquatic animals, arginine plays an important physiologi-
cal role in growth and development. Arginine is decomposed into nitric oxide under the
action of nitric oxide synthase (NOS). It has been proved that nitric oxide, the metabolite of
arginine, can promote the secretion of GnRH [71], luteinizing hormone releasing hormone
(LHRH) [72] and regulate the secretion of gonadotropins by the pituitary. It is reported
that intraperitoneal injection of L-Arg, the precursor of NO, significantly increased the
content of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in rat serum.
In shrimp and crab, preliminary studies have found that NO can activate dependent protein
kinase by regulating the second messenger cGMP, and then affect the expression of molt
inhibiting hormone (MIH) [73], while MH can promote the synthesis of vitellogenin [74].
Arginine is the only NO donor in the animal body. Therefore, arginine plays an important
role in regulating the secretion of pituitary hormones. As the only NO donor in animals,
it plays an irreplaceable role in ovarian development. In this study, we found that the
arginine pathway was significantly up-regulated in the ovary, and also in the eyestalk,
which seemed to indicate that arginine and its product NO played a very important role in
the ovarian development of the E. carinicauda in response to low salinity stress. However,
the specific mechanism of the effect remains to be studied.

5. Conclusions

In the present study, we studied the ovarian development of E. carinicauda under
low salinity stress for the first time. Biochemical indicators confirmed that white shrimps
can adapt to low salinity stress by regulating osmotic regulation. Ovarian tissue sections
provided us with preliminary results of ovarian development. Transcriptome analysis of
ovaries and eyestalks was used to study the effects of low salinity on genes and signal
pathways related to ovarian development. 16 and 18 DEGs were identified in ovary and
eyestalk tissues, respectively. These key genes were identified as participating in folate
biosynthesis, insect hormone biosynthesis, lysosome and retinol metabolism, which play
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important roles in the response of the ovaries and eyestalks of E. carinicauda to low salinity
stress. This study provides new insights into the ovarian development of E. carinicauda
under low salinity stress, which could be useful for non-marine aquaculture and related
studies on the reproduction of crustaceans.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/fishes7060365/s1, Table S1: Primers of qRT-PCR designed for validation
experiment of DEGs; Table S2: Number of high-throughput clean reads and mapped clean reads
generated from E. carinicauda ovary and eyestalk mRNA library.
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