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Abstract: Although the expression of miRNAs has been widely applied to investigate on gonads, the
role of miRNAs in the gonadal development of white Pacific shrimp (Litopenaeus vannamei) remains
unknown. In this study, we performed high-throughput sequencing to identify the sex-related
microRNAs (miRNAs) that elucidated the regulatory mechanisms on the gonadal differentiation
of L. vannamei. We obtained a total of 29,671,557 and 28,526,942 raw reads from the ovaries and
testes library, respectively. We then mapped 26,365,828 (92.73%) of the ovarian clean sequences
and 23,694,294 (85.65%) of the testicular clean sequences for a transcriptome reference sequence
of L. vannamei. After blasting the miRNA sequences against the miRBase database, we identified
153 significantly differentially expressed miRNAs between the ovaries and testes. To confirm the
high-throughput sequencing results, we used a reverse transcriptase–quantitative polymerase chain
reaction (RT-qPCR) to verify the expression patterns of the seven most differentially expressed
miRNAs (i.e., novel_mir23, miR-92b-3p_3, miR-12-5p_2, novel_mir67, miR-279_1, let-7-5p_6, miR-
263a-5p_1). According to the results of RT-qPCR, most of the miRNAs were expressed consistently
with the high-throughput sequencing results. In addition, the target genes significantly enriched
several Kyoto Encyclopedia of Genes and Genome (KEGG) pathways that were closely related
to gonadal differentiation and development, including extracellular matrix–receptor interaction,
Hedgehog signaling pathway, protein digestion and absorption and cell adhesion molecules (CAMs).
This study revealed the first miRNAs sequencing of L. vannamei gonads. We identified sex-related
differentially expressed miRNAs and KEGG pathways, which will be helpful to facilitate future
research into the regulatory mechanism on the gonadal differentiation of L. vannamei.

Keywords: Litopenaeus vannamei; miRNAs; gonad; high-throughput sequencing; RT-qPCR

1. Introduction

The white Pacific shrimp (Litopenaeus vannamei), a tropical shrimp and euryhaline
species, originated in the Pacific east coast, spread from northern Mexico, while pass-
ing through Central and South America, and extended as far as southernmost Peru
(http://www.fao.org/fishery/en, accessed on 8 June 2011). In recent years, L. vannamei
aquaculture has developed rapidly. It has become one of the three most-widely cultivated
shrimp species globally, because of its low demand for nutrition, fast growth, adaptability
to a comparatively broad range of salinity, long survival time out of water, and good disease
resistance [1]. In 2019, the global production of L. vannamei approached about 5,446,216 tons,
which increased by 80.2% compared with 2010, according to the Food and Agriculture
Organization of the United Nations (FAO data). With the expansion of farming scale, the
demand for high-quality broodstocks is also increasing, although supply is limited. To date,
many genes that are differentially expressed between ovaries and testes played a critical
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role in the regulation of gonadal development. Research about L. vannamei has centered
primarily on immunologic defense [2,3], disease [4,5], growth [6,7], and culturing tech-
niques [8,9], but the research on its reproductive activity and molecular aspects of gonadal
development remains lacking. The decisive factors of sexual development are determined
by genetics or environment, or by the coregulation of genetics and environment [10–12].
Gonads, including ovaries and testes, are indispensable reproductive organs. Thus, a com-
prehensive understanding of the regulatory mechanisms driving sexual differentiation in
L. vannamei is urgently needed, including miRNAs involved in the gonadal development.

MiRNAs, 20–24 nucleotide (nt) long, small non-coding RNAs, are major participators
in epigenetics. They are responsible for post-transcriptionally regulating the expression of
genes. High-throughput sequencing technology is generally used to identify and screen
miRNAs in diverse species. Studies have suggested that miRNAs play crucial roles in
the regulation of growth, reproduction, immunity, and the stress response [13–16]. In
organisms, one miRNA with a different expression profile can potentially regulate multiple
gene expressions, or can control a single gene expression by multiple miRNAs, depending
on the cells and developmental stage [17]. Thus, we inferred that miRNAs are differentially
expressed in the ovaries and testes.

In recent years, intensive studies have investigated miRNA expression in the gonads
of several different species, including freshwater mussel (Hyriopsis cumingii) [18], yellowfin
seabream (Acanthopagrus Latus) [19], Hong Kong oyster (Crassostrea hongkongensis) [20],
ovate pompano (Trachinotus ovatus) [21], medaka (Oryzias latipes) [22], common carp (Cypri-
nus carpio) [23], Black Tiger Shrimp (Penaeus monodon) [24], and giant freshwater prawn
(Macrobrachium rosenbergii) [25]. These studies have revealed that tissue-specific miRNAs
are essential for sexual differentiation and development.

No information is available on miRNAs associated with L. vannamei gonad differen-
tiation. We selected differentially expressed miRNAs between ovaries and testes using
high-throughput sequencing. These data will help further our understanding of the regula-
tion mechanism of gonad differentiation in the L. vannamei. In addition, we used a reverse
transcription–quantitative polymerase chain reaction (RT-qPCR) to verify differentially
expressed miRNAs and to validate the reliability of the high-throughput sequencing.

2. Materials and Methods
2.1. Experimental Shrimp and Sample Preparation

The 35 shrimps used in this study, including the 19 male shrimps with mean body
weight of 46.1 ± 2.06 g and mean body length of 14.90 ± 0.35 cm, and 16 female shrimps
with mean body weight of 62.2 ± 3.13 g and mean body length of 16.12 ± 0.43 cm, were
sourced from Litopenaeus vannamei shrimp-breeding farm of Guangxi Academy of Fisheries
Sciences. The experimental shrimps were frozen and paralyzed on ice for 3 min, and then
their gonads were removed. We immediately soaked a portion of the separated sample
in RNAlater and stored the sample at −80 ◦C. Using Trizol reagent (Invitrogen, Carlsbad,
CA, USA), we extracted total RNA from these samples. The spare gonads of shrimps
were stored in 4% paraformaldehyde for 48 h, and then were dehydrated completely with
a gradient of 70–100% ethanol, embedded in paraffin, and serially sectioned (5–10 µm) for
hematoxylin and eosin (H&E) staining. We observed the histological sections of shrimps
using light microscopy to verify the sex and gonadal development stage.

2.2. Small RNA cDNA Library Construction by High-Throughput Sequencing

Firstly, we mixed ovarian and testicular RNA samples equally (three RNA samples
from the ovary and testis group, respectively) and generated a pooled female and male
RNA sample. Then, we used 3 µg of RNA per pooled samples to construct two small RNA
libraries using Small RNA Sample Pre Kit (BGI Gene, Shenzhen, China). Then, the sRNA
were separated from gonadal total RNA, and these sRNA were subsequently ligated to 5′

and 3′ adaptors using the reverse transcription (RT) primer with unique molecular identifier.
With RT, we used products to synthesize one-strand cDNA, which were amplified by highly
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sensitive PCR. Using PCR products (gel percentages 2.5%), we separated approximately
110–130 bp by polyacrylamide gels electrophoresis. Then, we conducted library quantitative
and pooling cyclization for the fragment selected. We evaluated the library quality by DNA
Nano Ball (DNB), and then sequenced the library on the BGISEQ-500 platform.

2.3. Bioinformatics Analysis

After removing low-quality tags, tags with 5′ primer contaminants and poly A, tags
without 3′ primer and insertion, we reserved tags of 18–30 nt for the following analy-
sis. We mapped these clean tags to the L. vannamei transcriptome reference sequence
(https://www.ncbi.nlm.nih.gov/nuccore/GDUV00000000.1/, accessed on 5 October 2016)
and other small RNA databases by AASRA [26]. Then, we compared the mapped small
RNA sequences against the Rfam database, to remove tRNAs, rRNAs, snRNA, noRNAs
and repeat sequences. Then, we searched the remaining small RNA sequences in miRBase
to identify the known miRNAs and to predict the novel miRNAs using Mirdeep2 [27]. We
normalized the miRNA expression levels by transcripts per million (TPM). We predicted the
target genes of miRNAs by RNAhybrid [28], miRanda [29] and TargetScan [30]. We identi-
fied differential expression analysis of miRNAs by the DESeq. Adjusted p-values < 0.05 and
the absolute value of Log2Ratio ≥ 0 were set as the standard for significantly differential
expression. We used miRanda to predict the target genes of miRNAs [29]. Gene ontology
(GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were
used to analyze the target gene enrichment [31].

2.4. Stem-Loop RT-qPCR

To validate differentially expressed miRNAs identified from sequencing data between
the ovaries and testes of L. vannamei, we used stem-loop RT-qPCR to quantify the relative
expression levels of the seven miRNAs (Table 1). RNA sample, RT-qPCR reagents (Takara,
R820A), and the specific primers listed in Table 2 were used to perform RT-qPCR on the ABI
7500 PCR system (Applied Biosystems, Foster City, CA, USA). The RT-qPCR program was
as follows: predenaturation for 20 s at 95 ◦C, denaturation at 95 ◦C for 15 s and extension
at 55 ◦C for 30 s for 40 cycles. All samples were biologically replicated in triplicate, and
miRNAs’ relative expression levels were calculated with the 2−∆∆CT strategy. We set U6
as an internal control. We used SPSS version 16.0 (IBM, CHI, USA) to calculate difference
by one-way analysis of variance (ANOVA). Before using ANOVA, data were tested for
normal distribution, and assumed homogeneity of variances. It is observed that data is
homogeneous and has a normal distribution. After the earlier analysis, the descriptive
statistics and one-way variance analysis were applied in data analysis. A value of p < 0.05
was considered statistically significant.

Table 1. The differentially expressed miRNAs of L. vannamei identified by high-throughput sequenc-
ing and verified by RT-qPCR.

miRNA id Expression (Testis) Expression (Ovary) log2FoldChange
(Ovary/Testis)

novel_mir23 6437.118799 0.508025321 −13.62922707
miR-92b-3p_3 22,983.4716 1102.313603 −4.381990104
miR-12-5p_2 969.0430681 217.7167985 −2.154108059
novel_mir67 0.172733727 1287.990965 12.86428505
miR-279_1 418.747114 4246.721485 3.342198342
let-7-5p_6 414.5091587 28,964.08332 6.126717217

miR-263a-5p_1 5.9993158 156.8735167 4.708660031

https://www.ncbi.nlm.nih.gov/nuccore/GDUV00000000.1/
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Table 2. The primer sequences of differentially expressed miRNAs of L. vannamei used for RT-qPCR.

MiRNAs Mature Sequence (5′-3′) Primer Sequences (5′-3′)

novel_mir23 GAGGACGUGGUAG
CCUAGUGGU

Fwd GCGGAGGACGTGGTAGCCT
Rev AGTGCAGGGTCCGAGGTATT

Stem GTCGTATCCAGTGCAGGGTC
CGAGGTATTCGCACTGGATACGACACCACT

miR-92b-3p_3 AATTGCACTAGTC
CCGGCCTGC

Fwd GCGCGAAGCACAGCCC
Rev AGTGCAGGGTCCGAGGTATT

Stem GTCGTATCCAGTGCAGG
GTCCGAGGTATTCGCACTGGATACGACGCGGCC

miR-12-5p_2 TGAGTATTACATC
AGGTACTGGT

Fwd GCGCGCGGAGAACACA
Rev AGTGCAGGGTCCGAGGTATT

Stem GTCGTATCCAGTGCAGG
GTCCGAGGTATTCGCACTGGATACGACCCGTCC

novel_mir67 UGAUGAGGUCUU
GUCGUGAGGAGU

Fwd GCGTGATGAGGTCTTGTCGTG
Rev AGTGCAGGGTCCGAGGTATT

Stem GTCGTATCCAGTGCAGGGTCC
GAGGTATTCGCACTGGATACGACACTCCT

miR-279_1 TGACTAGATCCAC
ACTCATCCA

Fwd CGCGCGGACAGACCACA
Rev AGTGCAGGGTCCGAGGTATT

Stem GTCGTATCCAGTGCAGGG
TCCGAGGTATTCGCACTGGATACGACTGGTGG

let-7-5p_6 TGAGGTAGTAGGT
TGTATAGTT

Fwd GCGCGCGCGGAGGAGA
Rev AGTGCAGGGTCCGAGGTATT

Stem GTCGTATCCAGTGCAGG
GTCCGAGGTATTCGCACTGGATACGACCTTCCC

miR-263a-5p_1 AATGGCACTGGAA
GAATTCACGG

Fwd CGCGAAGGCACGGAAGA
Rev AGTGCAGGGTCCGAGGTATT

Stem GTCGTATCCAGTGCAGGG
TCCGAGGTATTCGCACTGGATACGACCCGTGT

U6
Fwd CTCGCTTCGGCAGCACA
Rev AACGCTTCACGAATTTGCGT

3. Results
3.1. Determination of L. vannamei Sex and Development Stages Based on Gonad Sections

The gonad section results verified that of the six shrimps used for high-throughput
sequencing, three were female and three were male. Of these, three males were at stage III
(Figure 1C), with testes mainly containing spermatocytes and spermatids cell; and three
females were at stage III with ovaries primarily containing vitellogenetic oocyte (Figure 1D).
Six female and six male shrimps were used for RT-qPCR. Among these, three males and
three females were at stage I (Figure 1A,B), with testes and ovaries mostly including
spermatogonia, oogonia, and oocytes before vitellogenesis, and three males and three
females at stage III [32–34].

3.2. Summary of Sequencing Data in the Gonads of L. vannamei

We constructed cDNA libraries for sequencing from samples in shrimps. In total,
we generated 29,671,557 and 28,526,942 raw reads from the ovaries and testes library,
respectively. After removing low-quality tags, tags with 5′ primer contaminants and poly
A, tags without 3′ primer and insertion, we had a remaining 28,431,612 and 27,665,604 clean
reads that were 17–32 nt long, from the ovaries and testes library, respectively. In the
ovaries, clean reads were peaked at 27 nt, followed by 26 nt and 28 nt, whereas in testes, the
peak was at 22 nt, followed by 26 nt and 27 nt (Figure 2A). Of these clean reads, 26,365,828
(92.73%) of the ovarian clean sequences and 23,694,294 (85.65%) of the testicular clean
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sequences were mapped to the transcriptome reference sequence of L. vannamei (GenBank
accession number GDUV00000000).
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Figure 1. Sections of gonads in L. vannamei at different stages. (A). Testis at stage I. (B). Ovary at stage
I. (C). Testis at stage III. (D). Ovary at stage III. Arrows: 1. spermatogonia; 2. oogonia; 3. oocytes
before vitellogenesis; 4. spermatocytes; 5. spermatids; 6. vitellogenetic oocyte.

3.3. Identification and Prediction of miRNAs in the L. vannamei Ovaries and Testes

To verify the known miRNAs in the gonads of L. vannamei, we compared the mapped
sequences in the miRBase database. Across the ovaries and testes, we identified 106 and
117 known mature miRNAs, respectively, for the ovaries and testes libraries. According to
the mirdeep2 prediction result, we predicted 159 and 214 novel miRNAs from the ovaries
and testes libraries, respectively. These miRNAs in the gonadal libraries indicated abundant
expression levels. Of these, several miRNAs (i.e., miR-100_2, let-7-5p_3, miR-279_1 and
novel_mir71) were highly expressed with thousands of reads in both ovaries and testes.
Some miRNAs (i.e., miR-252a-3p_2, miR-210a_1, miR-281-3p and novel_mir133), however,
demonstrated only a dozen reads across the two libraries.
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Figure 2. Identification of miRNAs. (A) Length distribution of clean reads of L. vannamei, the letter
O represents ovary, and the letter T represents testis. (B) Statistic of differently expressed miRNAs
in gonads of L. vannamei; the blue bar represents the number of up-regulated miRNAs in ovaries,
and the red bar represents the number of down-regulated miRNAs in ovaries. (C) Volcano plot of
differentially expressed miRNAs in ovary and testis of L. vannamei.
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3.4. Screening Differentially Expressed miRNAs in the Gonads of L. vannamei

A total of 153 miRNAs were significantly differentially expressed between ovaries and
testes (|log2 (foldchange)| > 0, Padj < 0.05). In total, 66 significantly up-regulated miRNAs
and 87 significantly down-regulated miRNAs were identified in ovaries (Figure 2B,C). Of
these, the expression of novel_mir23 in the testes was more than 12,670-fold higher than the
ovaries, while the expression of novel_mir128 in ovaries was more than 3493-fold higher
than in testes. All of the differentially expressed miRNAs are listed in Table S1.

To confirm high-throughput sequencing results, we used RT-qPCR to verify the expres-
sion patterns of the seven most differentially expressed miRNAs (i.e., novel_mir23, miR-
92b-3p_3, miR-12-5p_2, novel_mir67, miR-279_1, let-7-5p_6, miR-263a-5p_1). According RT-
qPCR results, most of the miRNAs were expressed consistently with the high-throughput
sequencing data. Overall, the RT-qPCR results validated those of the high-throughput
sequencing and offered support for the reliability of the differentially expressed miRNAs.

These miRNAs exhibited sex-specific expression between ovaries and testes. The miR-
NAs let-7-5p_6 (F3,11 = 275.5, p < 0.001), novel_mir67 (F3,11 = 197.1, p < 0.001), miR-12-5p_2
(F3,11 = 282.7, p < 0.001), miR-279_1 (F3,11 = 58.52, p < 0.001), and miR-92b-3p_3 (F3,11 = 3057,
p < 0.001) were significantly up-regulated in ovaries, and more highly expressed in ovaries
at stage I than stage III (Table 3, Figure 3). The novel_mir23 (F3,11 = 280.5, p < 0.001) were
up-regulated in testes; however, its expression level was higher in testes at stage I than stage
III (Table 3, Figure 3). The miR-263a-5p_1 (F3,11 = 36.11, p < 0.001) was highly expressed
in both ovaries and testes(Table 3, Figure 3). Interestingly, in gonadal stage I, it was more
highly expressed in testes than in ovaries, while in gonadal stage III, it was more highly
expressed in ovaries than in testes (Figure 3).

Table 3. Analysis of variance of relative expression levels of the seven miRNAs confirmed using
RT-qPCR.

miRNA_id Source of Variance Sum of Squares Degrees of Freedom Mean Square F Value p-Value

let-7-5p_6 Regression 11.54 3 3.846 275.5 0.000
Residual 0.1117 8 0.01396

Total 11.65 11

miR-263a-5p_1 Regression 0.3094 3 0.1031 36.11 0.000
Residual 0.02285 8 0.002856

Total 0.3322 11

miR-279_1 Regression 0.8922 3 0.2974 58.52 0.000
Residual 0.04065 8 0.005082

Total 0.9328 11

novel_mir67 Regression 4.534 3 1.511 197.1 0.000
Residual 0.06134 8 0.007667

Total 4.596 11

miR-12-5p_2 Regression 6.314 3 2.105 282.7 0.000
Residual 0.05956 8 0.007445

Total 6.374 11

miR-92b-3p_3 Regression 63.06 3 21.02 3057 0.000
Residual 0.05501 8 0.006877

Total 63.11 11

novel_mir23 Regression 26.51 3 8.837 280.5 0.000
Residual 0.2521 8 0.03151

Total 26.76 11
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3.5. The Differentially Expressed miRNAs Targets Prediction and Functional Annotation

To demonstrate the mechanism and biological function of differentially expressed
miRNAs in the ovaries and testes of L. vannamei, we predicted the target genes using
miRanda [29], and also performed functional annotation as well. We predicted a total of
57,412 target genes from all 153 differentially expressed miRNAs obtained. The enrichment
degree of functional genes was determined by GO annotation analysis and KEGG pathway
analysis. The GO annotations included biological process (BP), cellular components, and
molecular function (MF). At the BP level, the target genes were enriched in the GO terms
“cellular process” and “metabolic process”; at the CC level, the target genes were enriched
in the GO terms “membrane”, “membrane part” and “cell”; at the MF level, the target
genes were enriched in the GO terms “binding”, and “catalytic activity” (Figure 4).
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The KEGG pathway analysis showed that the target genes were significantly enriched
in 343 pathways. The results revealed that the top 20 KEGG pathways included IL-17
signaling pathway, Hepatitis B, extracellular matrix (ECM)-receptor interaction, Hedgehog
signaling pathway, prostate cancer, protein digestion and absorption, and cell adhesion
molecules (CAMs) (Table 4).

Table 4. The top 20 KEGG pathways enriched (q-value ≤ 0.5) by target genes of differentially
expressed miRNAs of L. vannamei.

Pathway-Term p-Value q-Value Pathway ID

IL-17 signaling pathway 8.68 × 10−16 2.98 × 10−13 ko04657
Hepatitis B 3.42 × 10−7 5.87 × 10−5 ko05161

Endocrine resistance 8.08 × 10−7 9.24 × 10−5 ko01522
Relaxin signaling pathway 3.666 × 10−6 0.0003144 ko04926

AGE-RAGE signaling pathway in
diabetic complications 4.594 × 10−6 0.0003152 ko04933

Parathyroid hormone synthesis,
secretion and action 6.455 × 10−6 0.000369 ko04928

Other glycan degradation 1.177 × 10−5 0.0005062 ko00511
Phospholipase D signaling pathway 1.181 × 10−5 0.0005062 ko04072

MicroRNAs in cancer 1.905 × 10−5 0.0007261 ko05206
Insulin resistance 2.48 × 10−5 0.0008508 ko04931

ECM-receptor interaction 3.992 × 10−5 0.0012447 ko04512
Human papillomavirus infection 0.0001299 0.0034973 ko05165

Amoebiasis 0.0001325 0.0034973 ko05146
Hedgehog signaling pathway 0.0003282 0.0080415 ko04340

Glycosaminoglycan
biosynthesis—keratan sulfate 0.0006459 0.0147702 ko00533

Prostate cancer 0.0011405 0.0241681 ko05215
Protein digestion and absorption 0.0012572 0.0241681 ko04974
Cell adhesion molecules (CAMs) 0.0012683 0.0241681 ko04514

Insect hormone biosynthesis 0.001342 0.0242271 ko00981
Hepatitis C 0.0014316 0.0245517 ko05160

4. Discussion

L. vannamei is the most-commonly cultivated shrimp species in China. Following the
expansion of the aquaculture scale and the increasing demand for high-quality broodstocks,
it is particularly crucial to understand the molecular mechanism of gonadal development
and sexual differentiation. MiRNA, with regulatory function, has been widely reported as
controlling the gonadal differentiation on aquatic animals. Herein, we conducted a miRNA
study to identify differentially expressed miRNAs in gonadal tissue of L. vannamei by high-
throughput sequencing, and predict the target genes of differentially expressed miRNAs.
We also sought to understand the sexual differentiation and development regulatory
mechanisms.

Accumulating evidence has suggested that miRNAs play a vital part in regulating
target genes expression related to reproductive development. The present study indicated
that the miR-9b-3p, miR-1-3p, let-7, and miR-184 families were abundantly expressed in
the gonads of the L. vannamei. All of these miRNA families were expressed in thousands of
fragments. Herein, the miR-184 family was highly expressed in the gonads of mouse [35],
H. cumingii [18], and swimming crab (Portunus trituberculatus) [36]; the miRNA family was
also highly expressed in the ovaries of L. vannamei. This result was consistent with previous
research, which strongly indicated that it may play a vital role in reproductive development.
The let-7 family was abundantly expressed in the gonads of blunt snout brean (Megalobrama
amblycephala) and A. Latus [19,37], in accordance with the expression level of miRNAs let-7
identified in gonads of L. vannamei. These miRNAs similarly functioned in different species,
which revealed the key role of miRNA in reproductive physiology.
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We performed a differentially expressed miRNA analysis on the gonads of L. vannamei.
The miRNAs miR-252 _3, miR-92b-3p_3, miR-133-3p_5, miR-750_1, miR-87a-3p_1, and miR-
12a-5p were abundantly expressed in testes. In contrast, the miRNA-252a targeted with cdc2
kinase was involved in the ovarian maturation of Chinese mitten crab (Eriocheir sinensis),
and regulated the expression of this gene [38]. The miR-92b was highly expressed in the
testes of amphioxus (Branchiostoma japonicum) [39]. However, miR-92b-3p was significantly
up-regulated at the ovarian primordial follicle assembly stage, which indicated that it
plays an important role in the reproduction of female mice [40]. Previous studies have
confirmed that the miR-133 family plays an important role in reproduction. In human
testes, the miR-133b promoted spermatogenesis by targeting downregulation of the gene
GLI3 [41]; and miR-133b controlled the expression level of tagln2 in tilapia, which was
further involved in the early oogenesis [42]. In E. sinensis, miR-133 exhibited high expression
in meiotic maturation of oocytes and played an important role in regulating the 3′-UTR
of cyclin B gene [43]. In addition, miR-12 can control the process of ovary activation
in worker bees [44]. The findings in these studies were not entirely consistent with our
results in L. vannamei, suggesting that different miRNAs in a miRNA family may have
distinct functions. Meanwhile, the miRNAs miR-750_1 and miR-87a-3p_1 were not found
to function in gonads of other species.

In the ovaries of L. vannamei, miR-263a-5p_1, miR-279_1, miR-6489-3p, miR-281-2-5p
and let-7-5p_6 were highly expressed. The miR-263b were highly expressed in Mud Crab
(Scylla paramamosain), which negatively regulated the expression of the ERK pathway genes
to control ovarian development [45]. Aponetic (APT), a feedback inhibitor, is involved in
the JAK/STAT signaling pathway in Drosophila ovary. APT interacted with its downstream
target mir-279, thereby limiting JAK/STAT signaling activation, to avoid STAT activity,
which disrupts follicle cell identity and cell motility [46]. In C. hongkongensis, miR-263b
and miR-279 both were abundantly expressed in the ovaries [18]. In P. monodon, miR-
6489-3p controlled the regulation of RAs in the MAPK/ERK pathway, and thus played
an essential role in generating oocyte maturation [24]. In B. japonicum, miR-281 was
regarded as a sexual dimorphism miRNA and showed a higher expression in testes [39],
which was contrary to our results in L. vannamei. The miR-281 may be involved in the
regulation of reproduction and sex determination. The let-7 family was first discovered
in the miRNAs group and appeared to control differentiation and development [47]. The
miRNA family was highly expressed in the ovaries and testes of M. amblycephala, T. ovatus
and C. hongkongensis [20,21,37]. In conclusion, different miRNAs may have functions in
regulating ovarian development.

In this study, the miRNAs let-7-5p_6, novel_mir67, miR-12-5p_2, miR-279_1, and
miR-92b-3p_3 were highly expressed at stage I ovaries of L. vannamei, and novel_mir23
has high expression level at stage I testes, which demonstrated that theses miRNAs may
participate in the regulation of early gonadal development. The miR-263a-5p_1 was highly
expressed at stage I testes and stage III ovaries, which suggested that it played an important
role in early ovarian development and testes maturation.

In total, we predicted 143,319 target genes of differentially expressed miRNAs. These
genes mainly enriched the KEGG pathways involved in gonadal differentiation and de-
velopment, including ECM–receptor interaction, Hedgehog signaling pathway, protein
digestion and absorption, and CAMs. In chicken, the ECM–receptor interaction is associ-
ated with regulation of the ovary and involved in the egg-laying process [48]. This pathway
is also related to sex differentiation in male zebrafish [49], ovarian development and spawn
in female scallop Chlamys farreri [50]. Hedgehog signaling pathway plays a vital role in
the Drosophila testis niche [51]; additionally, this pathway is concerned with sexually
dimorphic development of the reproductive organs on mammals [52], including mouse [53]
and human [54]. The pathway of protein digestion and absorption enriched by target genes
is involved in the ovarian development of P. trituberculatus [55] and goats [56], as well as
in spermatonesis-regulation in male rats [57]. The CAMs pathway is related to the sex
reversal through epigenetic modification in Nile tilapia (Oreochromis niloticus) [58]. Our
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results revealed out that these target genes significantly enriched in pathways upon gonadal
differentiation and development. This finding was consistent with previous studies.

5. Conclusions

We identified a total of 463 miRNAs in the ovaries and testes of L. vannamei using high-
throughput sequencing. Of these miRNAs, 172 miRNAs were significantly differentially
expressed between the ovaries and testes. The miR-252-3, miR-92b-3p_3, miR-133-3p_5,
miR-750_1, miR-87a-3p_1 and miR-12a-5p were abundantly expressed in testes. The miR-
263a-5p_1, miR-279-1, miR-281-2-5p, miR-6489-3p and let-7-5p_6 were highly expressed in
ovaries. Furthermore, the target genes of differentially expressed miRNA were enriched in
several KEGG pathways involved in gonadal differentiation and development. This finding
improves our understanding of the regulation mechanism of gonadal differentiation in
the L. annamei.
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