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Abstract: This work determined the feasibility of producing two highly demanded products (corn-
meal (CM) snacks and gelatin power) with antioxidant properties and using dry-salted brown
cannonball jellyfish umbrella (UM) and oral arms (OAs). Desalted and rehydrated UM and OAs were
subjected to drying and milling processes to produce jellyfish flours (UMF and OAF). Five cornmeal
snacks were made: 100% CM and ones containing 20% UMF; 50% UMF; 20% OAF; and 50% OAF.
Meanwhile, gelatin was obtained from UM and OAs through 0.5 M HCl hydrolysis and thermal
and cold maturation treatment. Jellyfish flours increased the protein content of cornmeal snacks.
Only OAF improved its antioxidant activity. The addition of 20% OAF did not affect the sensory
characteristics of cornmeal snacks. Gelatin from UM had a lower crude protein level, and a gelatin
β-component was not observed. Higher hydroxyproline content by HPLC and proton peaks at
higher 1H–NMR fields were observed in OA gelatin. OA gelatin exhibited higher viscosity, foam,
and in vitro antioxidant properties.

Keywords: antioxidant; cannonball jellyfish; dry-salted jellyfish; gelatin; snack

1. Introduction

The proliferation of jellyfish in many countries’ coastal waters and the growth of
sustainable and novel foods present the possibility of considering these organisms as
alternative raw materials for novel foods [1]. Moreover, these organisms are characterized
by their nutraceutical attributes [2–12]. Furthermore, no allergic reaction has been detected
in jellyfish chemical compounds [13].

Among the commercially exploited jellyfish species, brown cannonball jellyfish
(Stomolophus meleagris) are emerging in fisheries in the Pacific Ocean, ranging from Cali-
fornia to Ecuador. They thrive during the summer and fall months when they approach
shallow waters to reproduce, representing 16% of the biomass of the region’s coastal
zone [14]. Given their intrinsic physical and chemical properties such as high moisture
content and high perishability, jellyfish are usually exported dry-salted to Asian countries,
where they are considered a delicacy with therapeutical properties [14]. It is noteworthy
that during the dry-salting process, umbrella and oral arms are separated, and the price
of oral arms is generally lower than the umbrella region. Despite jellyfish fisheries being
profitable in the Americas [10], jellyfish is not a common food or food ingredient in Western
countries [10,14]. Because of this situation, the development of processing technologies that
include umbrella and oral arms in the food industry will likely lead to their consumption
by Western consumers.

Recently, it was stated that jellyfish have the potential to be a food of the future
due to their high population density during seasonal blooms and bioactive properties [15].
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Since jellyfish may improve consumers’ health and nutrition, they are of the particular
interest to those involved in their capture and commercialization who seek to devise new
jellyfish production and acquisition processes [10]. However, these processes must be
designed to maintain the jellyfish´s nutritional properties and have sensory attributes
suitable for consumers [1]. Within the context that most consumers’ products are cereal-
based snacks, which are low in overall nutritional value [16], fried cornmeal snacks could
be an attractive option.

Concerning fried cornmeal snacks, numerous studies have been conducted on the use
of different types of seafood in the fortification of cereal snack products [16–19]. This is
due to seafood being an excellent source of bioactive compounds that can be incorporated
into cereal snacks to improve their bioactive properties [20]. However, they can affect the
sensory attributes of products, so for success in the market, fried cornmeal snacks must
retain their normal sensory attributes [21]. In this context, the application of dry-salted
jellyfish has not yet been considered.

Based on the market opportunities for novel marine collagens, another alternative for
jellyfish is to produce gelatin powder [11]. Several studies have reported that commercial
gelatins obtained from pork and bovine by-products are limited mainly due to health-,
social-, and culture-related concerns [22]. Marine gelatins have been studied as suitable
replacements for terrestrial animal collagen [22]. However, few studies have reported the
production of edible jellyfish gelatin [5,6,11,23–25]. Moreover, although the antioxidant
activity of protein extracts, protein hydrolysates and peptides from jellyfish has been
reported [3,5,7,8,10,12], information about the antioxidant capacity of gelatin obtained from
commercial dry-salted cannonball jellyfish umbrella and oral arms is still scarce.

In order to achieve high added value and comprehensive utilization of brown can-
nonball jellyfish (Stomolophus meleagris), this study focused on determining the feasibility
of producing two highly demanded products from commercial dry-slated S. meleagris:
(1) fried cornmeal snacks from umbrella flour and oral arm flour, and (2) gelatin from
rehydrated umbrella and oral arms. Analyses were conducted to determine the chemi-
cal composition and antioxidant activity in the dry-salted S. meleagris anatomical regions
and flour, along with the evaluation of the physicochemical and antioxidant properties of
S. meleagris gelatin.

2. Materials and Methods
2.1. Raw Material

Dry-salted umbrella and oral arms from brown cannonball jellyfish (Stomolophus
meleagris) were obtained from Pesquera Asia, Rocky Point, Sonora, Mexico. The samples
were transported to the laboratory in sealed cuvettes. Approximately 40 salted umbrellas
and 40 oral arms were rinsed and soaked in tap water for seven days at 4 ◦C, with water
refills every 48 h to remove the salt and rehydration.

2.2. Preliminary Characterization of Dry-Salted Umbrella and Oral Arms

Dry-salted jellyfish umbrella and oral arms were ground using a Hamilton Beach
coffee grinder, and then analyzed for moisture, protein, total lipid, and ash using AOAC
methods #925.45, #2001.1, #920.39, and #942.05, respectively [26]. The in vitro antioxidant
activity was evaluated using three spectrophotometric assays: the quenching of DPPH•
radical (1,1-Diphenyl-2-picrylhydrazyl) method [27], the quenching of ABTS·+ 2,2′-azino-
bis (3-ethylbenzothiazoline-6-sulfonic acid) radical [28], and ferric reducing/antioxidant
power (FRAP) [29].

2.3. Preparation of Rehydrated Umbrella Flour and Oral Arms Flour

Rehydrated umbrella and oral arms were dried at 60–70 ◦C in a tunnel dryer for 7 h.
Dried samples were ground using a Hamilton Beach coffee grinder and later with a Wiley
1 mm mesh grinder. Finally, flours were passed through a 30 cm sieve and packed in
high-density polyethylene bags for later use during the creation of fried snacks.
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2.4. Preparation of Cornmeal Snacks and Analysis

Umbrella flour (UMF) and oral arm flour (OAF) were used in the creation of snacks.
Commercial cornmeal (CM) was used as a base flour, and the treatments were: (T1) 100%
CM (control); (T2) 80% CM–20% UMF; (T3) 50% CM–50% UMF; (T4) 80% CM–20% OAF;
and (T5) 50% CM–50% OAF.

Different ratios of the flours were mixed, and water was added until an appropriate
consistency was reached for the doughs to be shaped. Once the doughs were ready,
a tortilla was shaped, cut into 4 triangular sections, and fried in corn oil at 160 ◦C for
5–6 min. Tortilla chips were cooled down at room temperature (25 ◦C) and vacuum-packed
for later analysis.

2.4.1. Chemical Analysis of Flour and Snacks

Moisture, protein, lipids, and ash of the cornmeal, jellyfish flour, and fried snacks were
determined using the AOAC methods [26]. The carbohydrate-free nitrogen content of fried
snacks was calculated, along with the differences in 100 g of all the analyzed components,
using the method #986.25 [26].

2.4.2. Antioxidant Activity of Flour and Snacks

The antioxidant activities of cornmeal, jellyfish flour, and cornmeal fried snacks were
evaluated using the DPPH•, ABTS·+, and FRAP assays.

The DPPH assay was carried out according to the method described previously [27].
Samples of 1 mg were dissolved in 1 mL of methanol. Afterward, an aliquot of 20 µL of
each extract was combined with 200 µL of DPPH solution (0.004% w/v). The samples
were left in the dark for 30 min at 25 ◦C, and their absorbance was read at 517 nm using
a microplate reader (Thermo Fisher Scientific Inc. Multiskan GO, NY, USA). The results
were expressed as the scavenging activity percentage of Abs517 (RSA%).

The ABTS radical assay was performed using the method based on the ABTS·+ radical
discoloration due to interactions with hydrogen and electron donor species [28]. For this
purpose, 19.3 mg of ABTS·+ was dissolved in 5 mL of water. The solution was kept at 25 ◦C
for 16 h in the dark before use; then, 20 µL of the samples (0.75 mg/mL) was added to
270 µL of the cationic radical solution diluted with ethanol, and after 30 min, the absorbance
was read at 734 nm. Water was used as a control. A Trolox curve was made, and the results
were expressed as µM TE/g ds.

The FRAP assay using the method based on the reduction of a complex formed by
2,4,6-tripyridyl-s-triazine (TPTZ) and ferric iron (Fe+3), a colorless complex, as opposed to
Fe+2, exhibited a greenish-blue color when antioxidants were present in an acid medium [29].
For this purpose, 20 µL of the sample was mixed with 280 µL of a FRAP solution (acetic
acid–sodium acetate (pH 3.4), TPTZ and FeCl3, 10:1:1) and placed in a microplate reader.
After 30 min, the absorbance was read at 638 nm. The results were expressed as µM TE/g ds.

2.4.3. Sensory Analysis of Snacks

To evaluate the consumer acceptance, sensory analysis was carried out by employing
quantitative descriptive analysis [30] and following the methods described in the Codex
Alimentarius (CXS 222-2001) [31]. Twenty-five consumers, students and professors at
the University of Sonora (14 females and 11 males aged between 20 and 50 years old),
evaluated the five created types of snacks. The session of sensory analysis was about 45 min
in duration. Before the sensory analysis, each consumer was informed about the sensory
attributes in this study: odor (1 = dislike extremely, 5 = like extremely), color (1 = dark,
5 = yellow), crunchy (1 = very soft, 5 = very crunchy), and flavor (1 = dislike extremely,
5 = like extremely). All samples were served simultaneously to each consumer and coded
with a three-digit number. The different treatments were served on a white plate under
normal white light simultaneously to carry out the evaluation. Each panelist received
a total of five samples plus an evaluation sheet and a glass of water for mouth washing.
Samples receiving a rate below 2.5 were considered as unacceptable.
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2.5. Preparation and Analysis of Gelatin Powders

The process for producing gelatin powder was the same as a previously described
method but with some modifications [6]. Rehydrated umbrella and oral arms were chopped,
soaked in HCl 0.5 M in the ratio 1:15 (m/v), and homogenized with UltraTurrax equipment
(IKA-UltraTurrax T–25, Germany) at 500 rpm for 15 min. Then, the mixtures were stirred
continuously at 4 ◦C for 24 h using a stirring plate (Thermo Scientific, SP88857100, Marietta,
OH, USA). After that, the samples were filtered using a double layer cheesecloth. The
pellet samples were sequentially treated with tap water until a neutral pH was achieved
and heated at 60 ◦C for 12 h, with constant stirring, in a water bath (Model 2870 Thermo
Scientific, Marietta, OH, USA). The gelatin solutions were cooled down at 4 ◦C for 12 h and
then freeze-dried. The extraction yield was calculated gravimetrically, using the weight of
the dry-salted jellyfish sample as a reference.

2.5.1. Chemical Analysis

Moisture content, crude protein, content lipid content, and ash content of gelatin
powder was determined using the AOAC methods [26]. A factor of 5.55 was used to
convert nitrogen values to gelatin protein [32].

The proline and hydroxyproline content of gelatin were analyzed with a reverse-
phase high-performance liquid chromatography (HPLC) system (Agilent Technologies
Inc., Palo Alto, CA, USA). Proline and hydroxyproline were quantified from standard
curves measured with amino acid standards. Prior to the analysis, the samples were
hydrolyzed in 6 M HCl containing sodium thioglycolate (1:1 v/v), at 150 ◦C for 6 h. The
hydrolyzed samples were diluted with 0.4 M sodium borate buffer and derivatized at
60 ◦C for 5 min with 9-fluromethyl chloroformate. Amino acid separation was performed
with a C18 column (4.6 mm ID × 100 mm; Agilent Technologies, Inc., Palo Alto, CA,
USA). Chromatograms were analyzed using ChemStation software [33]. The results were
expressed as mg/100 g protein.

2.5.2. Electrophoretic Profile (SDS-PAGE)

The protein pattern of jellyfish gelatin was established by using sodium dodecyl
sulphate (SDS)-polyacrylamide (PAGE) gels with 8% and 4% concentration, respectively,
and separation systems were prepared. In total, 20 µL of the sample was injected. The gels
were stained with Coomassie R–250 blue and destained with methanol: water (1:1, v/v)
solution [34].

2.5.3. Nuclear Magnetic Resonance of Proton (1H-NMR)
1H–NMR spectra were obtained with a nuclear magnetic spectrometer Bruker Advance

400 (Billerica, MA, EE. UU.) at 400 MHz. The dried gelatin samples (1 mg) were dissolved
in 0.5 mL of deuterated KaOH 1% (v/v) in 40% deuterated water. Dimethylsilapentane-5-
sulfonic acid (DSS) was used as a reference. The spectral frame was 20 ppm and we carried
out the readings at 24 ± 1 ◦C [35].

2.5.4. Viscosity

Gelatin solutions (6.7% w/v) were prepared in distilled water following heating to
60 ◦C [36]. The viscosity (cP) of 200 mL of gelatin solution was evaluated in a rheometer
(Anton Paar MCR 102) [37]. The gradient in velocity was a fixed constant at 100/s. The
viscosity was registered as the average of 30 data points over 240 s [37].

2.5.5. Foaming Properties

The foaming capacity (FC) and foaming stability (FS) of umbrella and oral arm gelatins
were determined following a method described elsewhere [38], and 50 mL of gelatin
solution (1%) was mixed for 2 min using UltraTurrax equipment. The solution was carefully
transferred to a graduated cylinder. FC (Equation (1)) was calculated by measuring the
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foam volume within 10 s after the foam was set in the cylinder (zero time). FS (Equation (2))
was calculated as the percentage of foam remaining after 60 min at 25 ◦C.

FC (%) = ((Va −VB)/VB)× 100 (1)

FS (%) = (V60/V0)× 100 (2)

where Va is the volume after homogenization, Vb is the volume before homogenization,
V60 is the volume after 60 min, and V0 is the volume at time zero.

2.5.6. Antioxidant Properties

The antioxidant activity of the gelatin was determined by the DPPH and ABTS meth-
ods described previously. The DPPH and ABTS results were expressed in terms of the
sample concentration required to inhibit 50% radical DPPH or ABTS (IC50). The IC50 value
was determined using a standard curve with the % inhibition against different gelatin
concentrations.

2.6. Statistical Analyses

The design of the experiments applied in the present work was wholly randomized,
and each of the trials was repeated at least three times. The data obtained were analyzed
through a one-way analysis of variance. A comparison of means was carried out using
the Tukey–Kramer method. The non-parametric Kruskal–Wallis trial was used during the
sensory analysis. A significance level of p < 0.05 was used for every case. All the data were
analyzed using the INFOSTAT statistical software. Descriptive statistics was applied for
the electrophoretic analysis and RMN data.

3. Results and Discussion
3.1. Preliminary Characterization of Jellyfish Umbrella and Oral Arms

Knowledge of the original composition of any sample is considered critical in the
development of any particular food, especially one with functional attributes [11]. As
expected, dry-salted umbrella and oral arms had a high content of ash (Table 1). The ash
value was significantly higher (p < 0.05) in the umbrella compared with oral arms. The
umbrella of jellyfish is responsible for the floating capacity of the organisms; hence, its
high content of ash can be due to more minerals present in this anatomical region, which
are remnants of the buffering activities of the organism to maintain osmotic balance [5].
Although soft-bodied invertebrates commonly contain a high content of water, the moisture
of the jellyfish was very low due to the salt-drying process applied [39]. Similar findings
were reported for the same jellyfish species [11]. Remarkably, it was found that jellyfish
oral arms have approximately 22% more protein content than the umbrella region. The oral
arms of jellyfish are mainly responsible for the movements of the organism, resulting in
relative higher density of muscle cells and proteins [5]. Comparable results for other edible
jellyfish species have been reported [5].

The antioxidant results (Table 1) suggested that both umbrella and oral arms possess
free-radical-scavenging capacity and reducing power. The highest free-radical-scavenging
capacity, measured by DPPH and ABTS assays, was found in oral arms. No differences
(p > 0.05) were observed between FRAP capacity of umbrella and oral arms. The antioxi-
dant activity of jellyfish [2–4,7–10,12] was linked to the capacity of marine organisms to
produce many chemical compounds with different functional and biological properties.
This capacity may be attributed to the fact that they are exposed to various environmental
changes and have developed multiple mechanisms to adapt and defend themselves [10].
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Table 1. Chemical composition (%) and antioxidant activity measured in terms of DPPH (%), ABTS-
radical scavenging activity (µM TE/g dm) and FRAP activities (µM TE/g dm) of dry-salted jellyfish
umbrella (SUM), oral arms (SOA) and umbrella (UMF), oral arm (OAF) flour and cornmeal (CM) 1.

Sample SUM SOA UMF OAF CM

Moisture 1.02 ± 0.26 c 1.35 ± 0.15 c 17.52 ± 0.29 a 16.94 ± 1.02 a 7.86 ± 0.38 b

Protein 19.42 ± 1.66 b 23.65 ± 1.29 a 18.56 ± 1.14 b 22.67 ± 1.31 a 12.12 ± 0.80 c

Lipids 1.15 ± 0.11 b 1.23 ± 0.16 b 1.33 ± 0.15 b 1.59 ± 0.21 b 6.91 ± 0.17 a

Ash 78.35 ± 1.31 a 73.57 ± 1.71 b 37.65 ± 0.66 a 35.37 ± 0.35 b 1.71 ± 0.20 c

DPPH 18.9 ± 0.81 b 24.8 ± 0.99 a 17.70 ± 1.20 b 23.40 ± 1.08 a 16.98 ± 1.13 b

ABTS 7.1 ± 0.52 b 11.6 ± 0.60 a 6.04 ± 0.42 b 10.90 ± 0.90 a 2.91 ± 0.68 c

FRAP 2.05 ± 0.25 a 2.75 ± 0.38 a 1.94 ± 0.63 a 2.26 ± 0.48 a 2.02 ± 0.35 a

1 Data represent the mean standard deviation of three replicates. Values with different letters for each column are
statistically different (p < 0.05).

3.2. Snacks
3.2.1. Chemical Analysis of Flours and Snacks

The content of moisture, protein, and lipids of the jellyfish umbrella and oral arms
flours did not differ (p > 0.05) from dry-salted jellyfish (Table 1). As previously noted, oral
arm flour had the lowest ash and highest protein content. When comparing jellyfish flours
with cornmeal, those from jellyfish flours showed the highest (p < 0.05) moisture, protein,
and ash content, but lower lipid concentration (Table 2). The inclusion of umbrella and oral
arm flours in cornmeal snacks resulted in a slightly lower effect on the moisture content,
with values ranging from 4.36 to 4.69 (Table 2). This was probably due to the lower initial
moisture content in the jellyfish flours, as well as its lower hydration properties, hence
retaining less moisture after frying. However, there was a significant increase in the levels
of protein and ash, and a significant decrease in the lipid and carbohydrate-free nitrogen
content (p < 0.05) regarding the concentration of jellyfish increment. The protein content
increased because jellyfish flour had about 18 to 22% protein compared with cornmeal
being 12%. The high ash content in jellyfish snack samples is due to the high amount of
salt, which might be due to the low carbohydrate levels in the snacks. Higher protein and
ash and lower carbohydrate levels were also found with red fish meat in fried snacks [40].

Table 2. Chemical composition 1 of corn snacks: 100% CM (T1), 80% CM–20% UMF (T2), 50%
CM–50% UMF (T3), 80% CM–20% OAF (T4), and 50% CM–50% UMF (T5) 2.

Sample Moisture
(%)

Protein
(%)

Lipids
(%)

Ash
(%)

Carbohydrate-Free
Nitrogen (%)

T1 5.30 ± 0.43 c 8.63 ± 0.66 f 5.00 ± 0.29 b 4.71 ± 0.28 d 76.37 ± 0.41 a

T2 4.48 ± 1.06 c 11.30 ± 0.72 e 4.40 ± 0.25 c 24.21 ± 0.29 c 55.62 ± 0.58 c

T3 4.36 ± 0.97 c 15.78 ± 0.53 d 4.23 ± 0.35 c 22.15 ± 0.64 c 53.48 ± 0.62 c

T4 4.60 ± 0.35 c 13.63 ± 1.02 de 4.10 ± 0.20 c 22.20 ± 0.42 c 55.47 ± 0.50 c

T5 4.69 ± 0.55 c 17.12 ± 1.09 c 4.40 ± 0.30 c 20.45 ± 1.77 c 53.34 ± 0.93 c

1 Data represent the mean and standard deviation of three replicates. Values with different letters for each column
are statistically different (p < 0.05). 2 Treatments (CM, UMF, OAF) are indicated in Table 1.

3.2.2. In Vitro Antioxidant Activity of Flour and Snacks

The antioxidant activity was measured by DPPH, ABTS, and FRAP assays to evaluate
the potential antioxidant power of jellyfish flour and snacks. Overall, antioxidant activity
was detectable in jellyfish flour (Table 1) and snacks (Table 3). The DPPH, ABTS, and FRAP
values of the jellyfish umbrella and oral arm flours did not significantly differ (p > 0.05)
from dry-salted jellyfish (Table 1). The highest DPPH and ABTS radical scavenging ability
was found in oral arm flour and its related snack products. There were no differences
among the flours in terms of FRAP values, and the inclusion of jellyfish in snacks did
not affect the snack’s capability to reduce ferric ions (Table 3). Although jellyfish showed
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a similar capacity to reduce ferric ions to cornmeal flour (since there are several antioxidant
mechanisms), the obtained results suggest that dry-salted oral arm flour has a better capac-
ity than umbrella flour to increase the antioxidant activity of the snacks. This behaviour
could be attributed to the high protein observed in oral arms [5,10].

Table 3. Antioxidant activity of corn snacks 1: 100% CM (T1), 80% CM–20% UMF (T2), 50% CM–50%
UMF (T3), 80% CM–20% OAF (T4), and 50% CM–50% UMF (T5), as measured in terms of DPPH,
ABTS-radical scavenging activity, and FRAP-activities 2.

Sample DPPH
(%)

ABTS
(µM TE/g dm)

FRAP
(µM TE/g dm)

T1 11.18 ± 1.15 e 1.50 ± 0.22 d 1.14 ± 0.27 a

T2 12.43 ± 0.81 e 2.12 ± 0.44 cd 1.32 ± 0.58 a

T3 13.23 ± 1.21 e 2.62 ± 0.54 cd 1.86 ± 0.83 a

T4 16.73 ± 1.14 d 3.09 ± 0.68 c 1.27 ± 0.42 a

T5 21.30 ± 0.75 c 4.71 ± 0.79 b 1.91 ± 0.46 a

1 Data represent the mean an standard deviation of three replicates. Values with different letters for each column
are statistically different (p < 0.05). 2 Treatments (CM, UMF, OAF) are indicated in Table 1.

3.2.3. Sensory Analysis of Snacks

The objective of this section was to establish if the addition of umbrella flour or oral
arms flour would affect the attributes of odor, color, texture, and flavor of corn snacks
(Figure 1). Concerning odor, the lowest score was given to corn snacks prepared with 50%
jellyfish flour, while a high rating was given to corn snacks and samples with 20% jellyfish
oral arm flour. The dominance of odor in 50% jellyfish snacks was due to the characteristic
jellyfish smell compared with cornmeal. The yellow color score of snacks was high in 100%
corn and 20% jellyfish snacks, while further addition of 50% jellyfish umbrella decreased
the color ratings. It is noteworthy that the incorporation of jellyfish flour did not affect
the crunchiness attribute of the corn snacks. For the evaluation of flavor, the highest score
was given to snacks prepared with 100% cornmeal and 20% oral arm flour. Although more
studies are required, fried snacks with 20 g oral arm flour per 100 g may be formulated on
a commercial scale.
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(T2), 50% cornmeal–50% umbrella snacks (T3), 80% cornmeal–20% oral arms snacks (T4), and
50% cornmeal–50% oral arms snacks (T5). Different letters among snacks for each sensory attribute
are statistically different (p < 0.05).



Fishes 2022, 7, 277 8 of 13

3.3. Gelatin
3.3.1. Yield

To obtain gelatin, collagen is subjected to a thermal process, using methods that
break the inter- and intramolecular collagen crosslinks, avoiding peptide cleavage, for the
polypeptide chain to remain intact [41]. In this study, chemical hydrolysis was performed,
resulting in an acid-solubilized gelatin solution followed by a thermal treatment at 60 ◦C.
The higher extraction yield was obtained in jellyfish oral arms (Table 4). One of the factors
that may have influenced the gelatin yield extraction is the protein content in the tissue
analyzed. The lower yield in umbrella can be due to the low protein content in this
anatomical region.

Table 4. Yield and chemical composition of umbrella and oral arm gelatins from dry-salted brown
cannonball jellyfish 1.

Analysis Umbrella Oral Arms

Yield (g/100 g jellyfish, wet basis) 4.13 ± 1.23 b 6.81 ± 1.26 a

Moisture (%) 13.86 ± 0.62 a 13.60 ± 0.46 a

Protein (%) 71.23 ± 1.38 b 71.67 ± 1.55 a

Lipids (%) 1.17 ± 0.21 a 1.49 ± 0.31 a

Ash (%) 13.32 ± 0.52 a 13.13 ± 0.81 a

Proline (mg/100 g) 13.60 ± 0.42 a 15.26± 0.25 a

Hydroxyproline (mg/100 g) 18.65 ± 0.38 b 22.87 ± 0.16 a

Imino acids 2 32.25 ± 0.40 b 38.13 ± 0.21 a

1 Data represent the mean and standard deviation of three replicates. Values with different letters for each row are
statistically different (p < 0.05). 2 Imino acids represent proline and hydroxyproline.

Yield values were lower for those reported for jellyfish Lobonema smithii (26.4%) ob-
tained under similar conditions [6]. The lower degree of conversion of collagen to gelatin
detected in this work was likely due to the loss of extracted collagen through leaching dur-
ing the washing process [41] and properties of the jellyfish species that were employed [22].

3.3.2. Chemical Composition

The chemical composition of the jellyfish umbrella gelatin and oral arm gelatin indi-
cated significant differences (p < 0.05) among samples in protein and ash (Table 3). The
protein content in both gelatins were comparable to those of gelatin extracted from jelly-
fish Rhopilema hispidum (75.3%) [23] and higher in the same jellyfish species (29.54%) [11],
indicating the efficiency of the used extraction method.

The moisture values of both gelatins were similar to the ones reported for Rhopilema
hispidum jellyfish gelatin (12.2%) [23] but higher than those reported for the same jellyfish
species (4.8%) [11]. The lower ash found in the umbrella and oral arm gelatins compared
to the same jellyfish species (56.6%) [11] could explain the higher moisture level of our
gelatin. However, according to US standards of food [42], the maximum ash content of
gelatin is 3%. Thus, the obtained gelatin from dry-salted jellyfish contained higher ash than
the regulation level. Therefore, future studies should establish better methods to eliminate
the salt.

The analysis of the total imino acids (Proline, Pro + hydroxyproline, Hyp) revealed
that gelatin from oral arms had a higher (p < 0.05) Hyp content than umbrella (Table 3).
Unlike Hyp content, no difference (p > 0.05) was observed between the Pro content of the
umbrella and oral arms. It is known that glycine, proline and hydroxyproline are the most
abundant amino acids found in gelatin, but their values depend on the source, as imino
acids participated in hydrogen bond formation [43]. The total amounts of imino acids
(proline and hydroxyproline) of both anatomical regions are comparable to the umbrella of
desalted jellyfish (Lobonema smithii) gelatin (30 mg/100 g protein) and the content of oral
arms was 40 mg/100 g protein [44]. Under the conditions of this study, this result indicated
that the collagen tissue derived from oral arms possessed a higher degree of crosslinks than
umbrella. This was confirmed by SDS-PAGE.
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3.3.3. Electrophoretic Profile

The electrophoretic pattern of the obtained jellyfish umbrella gelatin exhibited
two different bands in a continuous position, with a molecular weight of approximately
116 kDa and 97 kDa (Figure 2, Lane B). This suggests that the umbrella gelatin molecules
comprise at least two different α collagen-chains, α1 and α2 [45]. Meanwhile, the elec-
trophoretic pattern of oral arm gelatin comprises the α chains and the crosslinked com-
ponent β (band about 190 kDa) (Figure 2, Lane C); this component is considered a dimer
of α-chains [46]. Moreover, bands with a lower molecular weight of the α2 chain were
detected in umbrella gelatin, which might affect its functional gelatin properties [47].
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Figure 2. SDS-polyacrylamide protein pattern of jellyfish (Stomolophus meleagris) gelatin. Lane A:
molecular weight marker; Lane B: umbrella; and Lane C: oral arms.

3.3.4. Nuclear Magnetic Resonance of Proton (1H-NMR)

The 1H-NMR analysis of umbrella and oral arm gelatin (Figure 3) indicated the
presence of water molecules (4.8 ppm), proline (4.47 ppm), histidine (3.1), imino amino
acid groups of hydroxymerodesmosine (HMD) (3.8 ppm), glutamate (2.1 ppm), isoleucine
(1.8 ppm), threonine (1.2 ppm), and lysine (0.7 ppm) [46]. Proton alpha-Pro and protons
present in HMD chemical displacements were similar in both samples. However, the
intensity of this peak varied. More intense peaks were observed in gelatin from oral arms
than in umbrellas. These observations are consistent with the above-discussed Pro and
Hyp content. In addition, the NMR results further help with the partial characterization of
the proteins present in the jellyfish samples.

3.3.5. Viscosity

The viscosity of the obtained gelatin solution (10%) from the cold maturation process
varied significantly (p < 0.05) among the evaluated jellyfish anatomical regions. The greatest
value obtained from oral arm gelatins (Table 5) could be due to differences in the proportion
of hydroxyproline and the proline content in each region. Moreover, the low viscosity
detected in the umbrella gelatin could be associated more with the bands with a lower
molecular weight than the α2 observed in this gelatin [45]. Although only the value
from the oral arm gelatin is comparable to those observed for jellyfish Lobonema smithii
(7.7 cP) [25], the viscosity of both anatomical regions could be considered acceptable due to
the results agreeing with commercial gelatin [37].
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Figure 3. 1H-NMR spectra of jellyfish umbrella (A) and oral arm (B) gelatins. Amino acids are
indicated by their corresponding peaks: Lysine (Lys), threonine (Thr), isoleucine (Ile), glutamate
(Glu), proline (Pro), histidine (His) and imino amino acid group of hydroxymerodesmosine (HMD).

Table 5. Viscosity (VIS), foaming capacity (FC), and antioxidant activity as measured in terms of
DPPH and ABTS-radical scavenging activity, of umbrella and oral arms gelatins from dry-salted
brown cannonball jellyfish 1.

Analysis Umbrella Oral Arms

VIS (cp) 4.63 ± 0.60 b 7.30 ± 0.56 a

FC (%) 51.90 ± 2.30 a 81.69 ± 3.29 a

IC50 DPPH (mg protein/mL) 2.54 ± 0.47 a 1.95 ± 0.07 b

IC50 ABTS (mg protein/mL) 2.47 ± 0.02 a 2.09 ± 0.08 b

1 Data represent the mean and standard deviation of three replicates. Values with different letters for each row are
statistically different (p < 0.05).

3.3.6. Foaming Properties

Foam analysis determines the ability of protein molecules to penetrate the air–water
interface and to form a strong, flexible, and cohesive film, inhibiting the bubble coales-
cence [48]. Oral arm gelatin demonstrates better foam capacity than umbrella gelatin
(Table 5); both gelatins were maintained at 100% foam formation for 60 min after the gelatin
solution was homogenized. Moreover, the foam formed with jellyfish gelatin had excellent
stability, and oral arm gelatin showed a similar FC to that reported for giant grouper skin
gelatin (81.6%) [47], but lower than the umbrella gelatin of dried desalted jellyfish Lobonema
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smithii gelatin (250%) [6]. The lower FC detected in the umbrella gelatin suggests that the
obtained gelatin might contain a lower ratio of nonpolar/polar side chains [49].

3.3.7. Antioxidant Properties

The ability to trap DPPH and ABTS radicals of both jellyfish umbrella gelatin and oral
arm gelatin (Table 5) confirms previous reports on the antioxidant activity of
jellyfish [3,4,7,8,10,12]. The highest antioxidant activity produced was with oral arm gelatin
(Table 4). This result agreed with previous work, where the umbrella showed lower an-
tioxidant activity than oral arms separated from Aurelia coerulea, Cotylorhiza tuberculate,
and Rhizostoma pulmo [10]. Finally, the antioxidant activity of the obtained gelatin was
considered effective since their IC50 value (Table 5) was similar to those for some fractions
from white jellyfish (Lobonema smithii) protein hydrolysates [12]. The antioxidant activity
of jellyfish collagen is linked to its high content of certain amino acids, such as glycine,
proline, glutamic, aspartic, valine and arginine [50].

4. Conclusions

This work demonstrated that dry-salted brown cannonball jellyfish (Stomolophus
meleagris) have the potential to be used as a source of protein supplement in cornmeal
snacks and for the creation of gelatin products, mainly using their oral arms. When 20%
or 50% (w/w) oral arms of jellyfish was used, the antioxidant activity of cornmeal snacks
increased. The sensory attributes indicated that the samples with 20% oral arms flour were
not affected. Moreover, oral arm gelatin showed better viscosity, foaming and antioxidant
properties. This information could form a base of knowledge for further investigations to
find new applications for dry-salted cannonball jellyfish as a functional ingredient in the
food industry.
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