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Abstract: The Siamese fighting fish (Betta splendens) is a well-known ornamental fish and emerging
model species for studying animal morphology, physiology, and behavior. A key concern of betta
inbreeding is the decline in genetic diversity resulting from commercial breeding programs. There-
fore, it is essential to develop markers for understanding the genetic bases of the domestication and
phenotypic diversification of this species. We utilized the previously assembled genome of Siamese
fighting fish to identify and characterize microsatellites and compare their genomic organization
across different species. We annotated 812,134 microsatellite loci spanning 30.70 Mb, accounting for
6.57% of the Siamese fighting fish genome. We performed in silico polymorphism screening of mi-
crosatellites in the Siamese fighting fish and related species and present these sequences as candidate
markers for cross-species amplification. In addition, we successfully validated two microsatellite loci us-
ing PCR-based assays in different species, which can promote further genetic characterization of diverse
betta lineages. The set of polymorphic markers identified in this study may facilitate the assessment of
genetic diversity and population structure and marker-assisted selection, among other applications.

Keywords: betta; microsatellite; genome; diversity; sex chromosome; transferability

1. Introduction

Fighting fish or betta (Betta spp.) is a popular pet fish that is native to Southeast
Asia and well known for its ornamental attributes [1]. Of the 91 identified species of
fighting fish, the most well-known is the Siamese fighting fish (Betta splendens, Regan,
1910) [2]. The Siamese fighting fish is an emerging model species in biology and is eco-
nomically important as an ornamental fish. This species is also subject to conservation
concerns [1,3–5]. Features such as the species’ unique body color pattern, scale iridescence,
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body shape, and fin size have promoted a flourishing global market for Siamese fighting
fish [1,3]. Changing the breeding patterns of the species following ornamental trends is
preferable for a commercial strategy to generate higher profits for local sale and export.
Those with novel body and fin color and shape patterns are mostly demanded for customers
around the world. As a result, the species has been cross-bred to establish a niche market
for ornamental fish, and wide varieties in morphology, pigmentation, body size, and fin
shape have emerged during captive breeding that exhibit remarkable genetic differences
from wild populations [6–9]. One limitation of captive breeding is that it limits the effective
population of a species to the number of captive individuals that are available to interbreed.
Limited effective population size in the captive breeding results in increased inbreeding
that can deplete the viability of cultured fish [1,8,10,11]. The cultured fish that are greatly
different from wild populations or those significantly inbred can be potentially threatening
for autochthonic fish when escape from breeding farms. Moreover, widespread escapes
of fish from breeding farms and artificial selection activities have resulted in outbreeding
depression in various wild populations as well as significant inbreeding in commercial
breeds of this species. Therefore, developing microsatellite markers to monitor the genetic
condition of the wild Siamese fighting fish populations and to carry out marker-assisted
selection (MAS) of broodstocks is necessary to effectively conserve the species’ biodiversity.

DNA polymorphisms can be detected using various molecular markers, such as
random amplified polymorphic DNA, restriction fragment length polymorphism, mi-
crosatellites, and mitochondrial DNA markers (COI and Cytb) [12–22]. Microsatellites
are polymorphic loci derived from the repetition of short sequence motifs of 1–6 bp in
length. They occur at thousands of locations within an organism’s genome, including
both coding and noncoding regions [23]. The advantages of microsatellite markers over
other markers include high reproducibility, co-dominant transmission, high polymorphism,
and multi-allelic nature [24–27]. In fighting fish, although DNA polymorphisms have
been identified in different species using microsatellite markers to facilitate species-level
genetic diversity analysis, a large portion of these sequences remains unexplored [8,14,28].
Next-generation sequencing (NGS) has provided excellent opportunities for biodiversity
and breeding programs [29–32]. NGS is an effective method for detecting a large number of
DNA markers such as single nucleotide polymorphisms (SNPs) in a short period based on
diversity arrays technology (DArTseq™) and restriction-site associated DNA sequencing
(RAD-seq) [7,8,33]. However, NGS-based genotyping is expensive and laborious, which
limits its applicability in biodiversity conservation and local breeding programs. Farmers
breeding small numbers of Siamese fighting fish may not have the budget for utilizing
NGS to identify a large number of markers. In this context, microsatellite markers, as
relatively inexpensive, can be used by small laboratories for genotyping Siamese fighting
fish. The characterization of genome-wide microsatellites provides an economical approach
for improving conservation and breeding. Microsatellites as markers are a tool for assessing
genetic diversity, genetic map construction, comparative genomics, and MAS. Therefore,
microsatellite markers contribute significant value in genotyping research and industry.

Microsatellite regions have a higher mutation rate than other areas of genome, they are
characterized by a high level of polymorphism and have been applied in DNA fingerprinting,
genetic diversity analysis, population structure analysis, and linkage mapping [8,14,34–36].
Genome-wide coverage and low requirements for expertise with instrumentation are
attractive features of microsatellite genotyping. The traditional method for microsatellite
isolation is expensive and time-consuming, involving the construction of microsatellite-
enriched genome libraries, cloning, and sequencing using the Sanger method [14]. Another
classical approach involves identifying microsatellite repeat motifs in DNA databases,
such as expressed sequence tag sites [37,38]. The advent of NGS technologies and high-
throughput whole-genome sequencing (WGS) has offered a faster and more cost-effective
approach for genotyping by facilitating the detection of thousands of microsatellite loci in
the genome of a target or non-model species [39]. Therefore, NGS is now frequently used in
animal genetic diversity studies for identifying neutral markers such as microsatellites [40,41].
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Several recent bioinformatics tools, such as Krait [42], MISA-web [43], and WebSat [44]
have adapted and improved methods to identify microsatellite regions and developed
markers using reference assemblies and WGS data. Reference genome assemblies and
resequencing reads facilitate the identification and profiling of a large number of genome-
wide polymorphic microsatellite markers. Chromosome-level genome assembly data of
Siamese fighting fish (accession no: GCA_900634795.3) are available, which enables the
identification and development of microsatellite markers [45–48]. In this study, we aimed
to explore the genome of Siamese fighting fish to identify microsatellite-containing regions
and to develop a set of polymorphic microsatellite markers via in silico genotyping. We
further aimed to validate a subset of markers following PCR amplification and fragment
sizing with small wild Siamese fighting fish populations. The validated markers were then
evaluated for cross-species transferability to other fighting fish species using both in silico
genome sequence comparison and PCR-based assays. These markers may facilitate the
assessment of genetic diversity, population structure, MAS, and other applications.

2. Materials and Methods
2.1. Genome Sequences for Microsatellite Identification

Genome sequences of Siamese fighting fish (accession no: GCA_900634795.3, BioPro-
ject: PRJEB30365) were obtained from NCBI (http://www.ncbi.nlm.nih.gov/) in FASTA
format (accessed on 3 June 2022). The genome was assembled along 21 chromosomes, and
the sequence of each chromosome was analyzed individually [49].

2.2. Characterization of Microsatellites in Siamese Fighting Fish Genome

Microsatellites in the Siamese fighting fish genome were identified using Krait version
1.3.3 with default parameters of scanning for perfect, imperfect, and compound microsatel-
lites [42] (Figure S1). The minimum repeat numbers for each perfect microsatellite were
set to 12, 7, 5, 4, 4, and 4 for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides, re-
spectively. The imperfect microsatellite selection criteria were as follows: (i) minimum
sequence length and sequence repeat number were set to 8 bp and 3 times, (ii) maximum
consecutive edits (including substitutions and indels) were specified as 3 bp, and (iii) the
penalty cost was set to 1 for mismatch and 2 for indels (gaps), and the minimum required
score to identify imperfect microsatellites was set to 10. For compound microsatellites,
the maximum distance allowed between adjacent microsatellites was specified as 10 bp.
To facilitate comparison among different repeat types, relative density (RD) and relative
abundance (RA) as parameters were used for microsatellite analysis. Relative abundance
(RA) indicates the number of microsatellites per Mb of the sequence analyzed, and relative
density (RD) is the length (in bp) of microsatellites per Mb of the sequence analyzed. Krait
v1.3.3 was applied to estimate the GC content and chromosome sequence size of Siamese
fighting fish (accession no: GCA_900634795.3) [50]. Pearson’s correlation coefficient was
used to define correlations between variables, including the number of microsatellites,
length of microsatellites, RA, RD, and chromosome sequence size. Correlation scatter plots
and p-values were calculated using the ‘ggscatter’ function (from ggpubr package) in R
version 4.2.0 [51]. The Circos program (http://circos.ca) (accessed on 20 June 2022) was
used to draw Circos maps in which genome sequences were assembled into chromosomes.
Microsatellites were mapped onto chromosomes using “circos.conf” files containing locus
information [52], and microsatellite densities were identified as numbers in a sliding win-
dow of 3 Mb, with a step size of 100 kb. We also mapped microsatellites to different genomic
regions (introns, intergenic regions, exons, and coding sequence (CDS)) using an annotation
file (generic feature format: GFF) of Siamese fighting fish (accession no: GCA_900634795.3).
To assign putative functions to the microsatellite-containing CDS region, the gene names
of corresponding CDS-containing microsatellite loci were extracted. Gene Ontology (GO)
analysis was then performed by functional classification using PANTHER (version 17.0)
(http://www.pantherdb.org/) (accessed on 26 June 2022) setting zebrafish (Danio rerio,
Hamilton, 1822) [53], Japanese rice fish (Oryzias latipes, Temminck and Schlegel, 1846) [54],
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and spotted gar (Lepisosteus oculatus, Winchell, 1864) [55] as reference databases [56]. GO
categorization was expressed as three independent hierarchies for biological processes,
cellular components, and molecular functions.

2.3. Microsatellite Marker Development

A total of 10,000,000 reads (5,000,000 forward and 5,000,000 reverse reads) were ex-
tracted from the raw Illumina sequence of Siamese fighting fish (SRA: SRX14372870, Bio-
Project: PRJNA778896) using seqtk toolkit and then used as the baseline data for marker
development [50]. Microsatellite sequences were isolated from the extracted raw Illu-
mina reads using QDD version 3.1 [57]. We focused on perfect microsatellites with high
polymorphism, which exhibit significantly higher levels of genetic variation than other
microsatellite types [58,59]. Mononucleotides were not considered because of the difficulty
in distinguishing true microsatellites from sequencing or assembly errors [60]. Many mi-
crosatellites from raw Illumina sequences that contain reads do not have sufficient flanking
sequences to allow PCR primer development [61–64]. We used the NCBI BLASTN program
to blast microsatellites against the Siamese fighting fish genome with an additional 200 bp of
flanking regions, in accordance with E-values < 0.005 and query coverage > 90% similarity.
All markers were assigned to different Siamese fighting fish chromosomes (Table S1 and
Figure S2). Oligonucleotide primers were designed using Primer3Plus [65] (accessed on
23 June 2022, https://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). De-
fault parameters to generate PCR products 100–400 bp in length had minimum, optimum,
and maximum values of primer length (bp) 18–24 and Tm (◦C) 50–60.

2.4. In Silico Polymorphism Screening of Siamese Fighting Fish Species

To evaluate the polymorphism level of developed microsatellite markers in silico,
Siamese fighting fish genome sets were retrieved from the NCBI database (Table S2). The
quality of Illumina reads was evaluated using FastQC [66], and the raw reads were trimmed
to discard adapters using the Trimmomatic software V0.32 [67]. The cleaned reads were
then aligned against sequences of the chromosome level genome assembly of Siamese fight-
ing fish to investigate variations in the number of microsatellite repeat units within multiple
individual genome accession numbers. The paired-end reads of each of the fighting fish
accessions were mapped to the chromosome sequences of the Siamese fighting fish refer-
ence genome using BWA mem v.0.7.17 [68]. SAMtools v.1.9 [69] was used to convert SAM
to BAM format, discard the unmapped reads, and sort and index the final alignment file.
Mapping and in silico genotyping were performed at the Center for Agricultural Biotech-
nology (CAB), Kasetsart University. A bed file containing the chromosome name, start and
end positions of microsatellite loci, motif length, number of repeat units in the reference se-
quence, and microsatellite locus name was created for each of the selected microsatellite loci
received from QDD version 3.1 [57]. The aligned bam files of the 11 accessions of Siamese
fighting fish were SRR18231392, SRR18231393, SRR18231394, SRR18231395, SRR18231396,
SRR18231397, ERR4790883, ERR4790879, ERR4790878, ERR4790875, and ERR4790873, and
the bed file contained the microsatellite regions in the reference genome. The reference
chromosome sequences used to identify the microsatellites were implemented to alleles in
the HipSTR program [70]. The HipSTR program was run using external stutter models and
microsatellite calling in de novo allelic generation mode.

2.5. In Silico Cross-Species Transferability

The genomes of the following 16 fighting fish species were retrieved from the NCBI
database: Mahachai betta (B. mahachaiensis, Kowasupat et al., 2012) [71], Mekong fighting
fish (B. smaragdina, Ladiges, 1972) [72], peaceful betta (B. imbellis, Ladiges, 1975) [73],
Toba betta (B. rubra, Perugia, 1893) [74], scorpion betta (B. brownorum, Witte and Schmidt,
1992) [75], spotfin betta (B. macrostoma, Regan, 1910) [2], Chukai betta (B. tussyae, Schaller,
1985) [76], betta pulchra (B. pulchra, Tan and Tan, 1996) [77], betta livida (B. livida, Ng and
Kottelat, 1992) [78], betta burdigala (B. burdigala, Kottelat and Ng, 1994) [79], slim betta
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(B. bellica, Sauvage, 1884) [80], betta compuncta (B. compuncta, Tan and Ng, 2006) [81], betta
hipposideros (B. hipposideros, Ng and Kottelat, 1994) [82], betta ideii (B. ideii, Tan and Ng,
2006) [81], snakehead betta (B. channoides, Kottelat and Ng, 1994) [79], and betta mandor
(B. mandor, Tan and Ng, 2006) [81] (Table S2).

All sequence management was performed using previously described bioinformatic
methods to detect specific microsatellite loci. The aligned bam files of the 26 accessions
(from 16 species) were performed using SAMtools mpileup and BCFtools [83] for variant
calling, and the vcfutils.pl and vcf2fq commands (https://github.com/lh3/samtools/blob/
master/bcftools/vcfutils.pl) were used to create consensus FASTQ files. The FASTQ files
were then converted to FASTA files using the seqtk seq command. The FASTA files of the
26 accessions were subjected to in silico PCR analysis using Geneious software v2022.1.1
(Biomatters, Auckland, New Zealand; https://www.geneious.com) (accessed on 30 June
2022) to examine cross-species transferability in all designed primers (Table S1).

2.6. Specimen Collection and DNA Extraction

Twelve fighting fish species were collected from the wild in Thailand; details are
presented in Table 1. All animal care and experimental procedures were approved by the
Animal Experiment Committee of Kasetsart University, Thailand (approval no. ACKU63-
SCI-007) and conducted in accordance with the regulations on animal experiments at
Kasetsart University. Caudal fin clips were collected from each fish and preserved in
70% ethanol solution for DNA extraction. Total genomic DNA was isolated following
the standard salting-out protocol as described previously [84] with slight modifications.
DNA quality and concentration were determined by 1% agarose gel electrophoresis and
spectrophotometry (NanoDrop One Microvolume UV-Vis Spectrophotometer, The Thermo
Scientific™), respectively.

Table 1. Details of fighting fish used for microsatellite marker testing.

Species Common Name Breeding Type Location Latitude Specimens

Betta splendens Siamese fighting fish Bubble nesting
Bangkok 13.7563◦ N, 100.5018◦ E 10

Chumphon 10.4930◦ N, 99.1800◦ E 5
Surat Thani 9.1342◦ N, 99.3334◦ E 6

Betta mahachaiensis Mahachai betta Bubble nesting Samut Sakhon 13.5498◦ N, 100.2741◦ E 2
Betta siamorientalis Eastern wild betta Bubble nesting Chachoengsao 13.6904◦ N, 101.0780◦ E 2

Betta imbellis Peaceful betta Bubble nesting Krabi 8.0863◦ N, 98.9063◦ E 2
Betta smaragdina Mekong fighting fish Bubble nesting Mukdahan 16.5436◦ N, 104.7024◦ E 2

Betta prima Three-lined
mouth-brooder Mouth-brooders Chanthaburi 12.6112◦ N, 102.1038◦ E 2

Betta simplex Simple
mouth-brooder Mouth-brooders Unknown - 2

Betta pi Pi betta Mouth-brooders Unknown - 2
Betta pallida Pallida betta Mouth-brooders Unknown - 1
Betta apollon Apollon betta Mouth-brooders Unknown - 2
Betta ferox Ferox betta Mouth-brooders Unknown - 2

Betta pugnax Penang betta Mouth-brooders Phatthalung 7.6167◦ N, 100.0740◦ E 2

2.7. Microsatellite Genotyping of Siamese Fighting Fish

Twelve developed microsatellite markers were used for test genotyping of Siamese
fighting fish. The 5′-end of the forward primer of each set of primers was labeled with
a fluorescent dye (6-FAM or HEX; Macrogen Inc., Seoul, Korea) (Table 2). PCR amplifi-
cation was performed using 15 µL of 1× ThermoPol buffer containing 1.5 mM MgCl2,
0.2 mM dNTPs, 5.0 µM primers, 0.5 U Taq polymerase (Apsalagen Co., Ltd., Bangkok, Thai-
land), and 25 ng genomic DNA. The PCR protocol was as follows: initial denaturation at
94 ◦C for 3 min, followed by 35 cycles of denaturation at 94 ◦C for 30 s, annealing at
52–61 ◦C for 30 s, and extension at 72 ◦C for 30 s, with a final extension at 72 ◦C for
10 min. The PCR products were separated by electrophoresis on a 1% agarose gel. For
each sample, PCR amplification was performed at least thrice to reduce the impact of
erroneous alleles. Fluorescently labelled PCR amplification products were genotyped

https://github.com/lh3/samtools/blob/master/bcftools/vcfutils.pl
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using an ABI 3730XL automatic sequencer (Applied Biosystems, Foster City, CA, USA)
at the DNA sequencing service of Macrogen, Inc. Allelic size was determined using the
Peak Scanner version 1.0 software (Applied Biosystems, Foster City, CA, USA). The geno-
typic data generated in this study have been deposited in the Dryad Digital Repository
(https://doi.org/10.5061/dryad.fbg79cnxq).

2.8. Microsatellite Marker Polymorphism Testing

The developed microsatellite markers were used to genotype 21 Siamese fighting
fishes (B. splendens) (Table 2). The number of alleles (Na), observed heterozygosity (Ho),
and expected heterozygosity (He) were calculated using GenAlEx version 6.5 [85]. PIC was
estimated using the Excel Microsatellite Toolkit [86]. For comparison with the previous eight
microsatellite markers [14], we also genotyped the wild Siamese fighting fish population
using PCR, as mentioned above.

2.9. Cross-Species Amplification Test of Microsatellite Markers

We genotyped 21 individuals belonging to 11 fighting fish species—Mahachai betta
(B. mahachaiensis), Eastern wild betta (B. siamorientalis, Kowasupat, Panijpan, Ruenwongsa
and Jeenthong, 2012) [87], peaceful betta (B. imbellis), Mekong fighting fish (B. smaragdina),
three-lined mouth brooder (B. prima, Kottelat, 1994) [79], simple mouth brooder (B. simplex,
Kottelat, 1994) [79], pi betta (B. pi, Tan, 1998) [88], pallida betta (B. pallida, Schindler and
Schmidt, 2004 [89], apollon betta (B. apollon, Schindler and Schmidt, 2006) [90], ferox betta
(B. ferox, Schindler and Schmidt, 2006) [90], and Penang betta (B. pugnax, Cantor, 1849) [91]—
to investigate potential cross-species amplification of microsatellite markers (Table 1). PCR
amplification for microsatellite genotyping was performed as mentioned above.

https://doi.org/10.5061/dryad.fbg79cnxq
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Table 2. Characteristics of microsatellite markers investigated in this study.

Locus Primer Sequence (5’ to 3’) Repeat Ta (◦C) Size Range (bp) Chromosome Gene Genomic Region Source

BettaMS4 F: GTTTCATCAGGAGCAGCAGCATAA
R: CTGTTTGATGGCCGACTTTT (GAn ) 59 259–315 12 Noncoding gene - [13]

BettaMS5 F: GTTTCGTCACCTTCTGAGCAAACA
R: AAATGCGCTGGGTAGACTTG (GAn ) 59 198–218 3 ush2a Between intron and

exon [13]

BettaMS8 F: CGTGAGCTGCAAAGAAAACA
R: GCTGTTGCACATGAATCCAG (GAn ) 57 223 14 tcf7 Intron [13]

BettaMS15 F: ACTGTAACCGGGCTGTTCTG
R: AACGCACCCAGAAACAAATC (GAn ) 57 216–225 22 dlgap2a Intron [13]

BettaMS17 F: AAGCAGGTCTTTCACCTCCA
R: TCACCCTGCGTCTAAGTCAA (GAn ) 61 194–221 16 Noncoding gene - [13]

BettaMS23 F: GTTTGAGAGAAATGGGTTCTTCG
R: TCACTACGCTGCCAAATCAG (CTn ) (CAn ) 55 277–296 4 LOC114853122+ Intron [13]

BettaMS25 F: GTTTGGGTAAAACCCAACTCTGG
R: AACGTCACGTGGAACAGATG (GTn ) 55 194–224 15 ctu2 Between intron and

exon [13]

BettaMS40 F: CAGTACATTTGACTGATCGCAGA
R: CAGGATGCTTCCTTGGGTAA (GAn ) 57 136–165 12 Noncoding gene - [13]

BettaMS10.1 F: TCTGAGGAAGGAGGCGATTA
R: GCGTGCACTGAAGCATAAAG (CAn ) 55 280–313 9 slc20a2 Between intron and

exon This study

BettaMS14.1 F: GGGCTGCACCTTAAACTCAT
R: GTCCACTGGGCTGATGTTCT (TCCA)n 55 324–396 2 LOC114850832 + Between intron and

exon This study

BettaMS2.2 F: ATTCCTTTCTGCCGCTAA
R: AAAGAGGGCACTAAGCCA (TG)n 50 165–199 22 meis2a Intron This study

BettaMS14.2 F: CCCGGTTTCTTGTCATTC
R: CGCTGATGGAAATTGAGT (TG)n 50 228 21 Noncoding gene - This study

+ Uncharacterized gene.
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3. Results
3.1. Microsatellite Distribution in Siamese Fighting Fish Genome

The total length of the Siamese fighting fish genome was 441,388,503 bp with a
GC content of 45.3%. A total of 812,134 loci, consisting of 204,272 (72%), 585,320 (25%),
and 22,542 (3%) perfect, imperfect, and compound microsatellite loci, respectively, were
identified (Table 3, Figure 1). The microsatellites were frequent in the intronic region as
428,817 loci (52.80%). However, 41,588 microsatellite loci (5.12%) were located in functional
gene regions, and almost all such microsatellite loci occurred in functional genes associated
with cellular processes, binding, and cellular anatomical entities (Figure S3). The RA of
perfect microsatellites was 462.82 loci/Mb, and the RD was 15,884.54 bp/Mb, while those
of imperfect and compound microsatellites were 1,326.18 loci/Mb and 49,843.92 bp/Mb,
respectively (Table 3). The most frequent motif of perfect and imperfect microsatellites was
(AC)n, whereas the most frequent motifs of compound microsatellites were (CA)n–(CA)n.
Negative correlations were significantly observed between the frequency of microsatellite
motifs and their length (R = −0.83, p < 0.01) (Figure 2). The average length of perfect
microsatellite loci (total perfect microsatellite length/total perfect microsatellite counts)
was approximately 34 bp, whereas that of imperfect microsatellite loci (total imperfect
microsatellite length/total imperfect microsatellite counts) was approximately 38 bp, and
that of compound microsatellite loci (total compound microsatellite length/total com-
pound microsatellite counts) was approximately 75 bp (Table 3). Chromosome 4 was the
largest (approximately 34.86 Mb) in the Siamese fighting fish genome, with a high propor-
tion of microsatellite repeat motifs with perfect, imperfect, and compound microsatellites
(16,333 loci, 569,518 bp; 45,851 loci, 1,747,106 bp; and 1,886 loci, 144,813 bp, respectively).
The smallest chromosome was chromosome 12 (approximately 14.65 Mb), with perfect,
imperfect, and compound microsatellites (6,918 loci, 240,601 bp; 19,617 loci, 745,206 bp; and
768 loci, 58,841 bp, respectively) (Tables S3–S5). The microsatellite count and length of all
Siamese fighting fish chromosomes were strongly positively correlated with chromosome
size (Figures S4 and S5).

Table 3. Summary of perfect, imperfect, and compound microsatellites detected in the whole genome
of Siamese fighting fish (Betta splendens, Regan, 1910 [2] (accession no: GCA_900634795.3, 441 Mb).

Description Perfect
Microsatellite

Imperfect
Microsatellite

Compound
Microsatellite

Total number of
microsatellites Unit 204,272 585,320 22,542

Total length of microsatellites bp 7,010,790 21,999,074 1,692,553

Average of microsatellites Total microsatellite length/total
microsatellite count (bp) 34.33 37.58 75.08

Microsatellites per sequence Total microsatellite
counts/sequence counts 2918 8,362 322

Percentage of sequence
covered by microsatellites

Total microsatellite length/total
sequence length (%) 1.59 4.98 0.004

Relative abundance Total microsatellites/total valid
length (loci/Mb) 462.82 1326.18 51.07

Relative density Total microsatellite length/total
valid length (bp/Mb) 15,884.54 49,843.92 3,834.86
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their lengths.

The RD of perfect, imperfect, and compound microsatellites displayed on all chro-
mosomes (Figure 3). The RA of perfect microsatellites ranged from 407.99 loci/Mb on
chromosome 2 to 516.04 loci/Mb on chromosome 11, whereas the RD of perfect microsatel-
lites ranged from 13,415.20 bp/Mb on chromosome 18 to 17,984.98 bp/Mb on chromosome
1 (Table S6). The lengths of all chromosomes were not correlated with the RA and RD
of perfect microsatellites. Similar patterns were observed in the case of imperfect and
compound microsatellites (Figures S6 and S7).
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Figure 3. Association analysis of perfect microsatellites in the Siamese fighting fish genome. Circos
was used to plot the assembled chromosomes and perfect microsatellite density. The outermost layer
shows the chromosomes with numbers indicating the length in Mb. The dark green layer indicates
the distribution of perfect microsatellites in 3 Mb windows with 100 kb steps. The blue gradient layer
indicates the distribution of perfect microsatellites from mono (darkest blue) to hexa (lightest blue) in
3 Mb windows with 100 kb steps.

3.2. Polymorphic Microsatellite Identification through In Silico Genome Sequence Comparison and
a PCR-Based Assay

Candidate microsatellites for marker development were selected from intronic and
exonic genome regions located on different chromosomes. Forty primer pairs were ran-
domly selected from all data and subsequently examined for polymorphism using two
approaches: in silico genome sequence comparison and a PCR-based assay. For in silico
genome sequence comparison, 11 Siamese fighting fish genomes were retrieved from NCBI
and subjected to homology searching for 40 markers using the HipSTR program (Table S1).
Of 40 microsatellite loci, 16 (BettaMS2.1, BettaMS4.1, BettaMS6.1, BettaMS7.1, BettaMS8.1,
BettaMS9.1, BettaMS14.1, BettaMS1.2, BettaMS3.2, BettaMS4.2, BettaMS5.2, BettaMS7.2,
BettaMS9.2, BettaMS12.2, BettaMS14.2, and BettaMS18.2) were identified as polymorphic.
Furthermore, 21 wild Siamese fighting fish from three different localities in Thailand were
genotyped for 40 microsatellite markers using PCR-based assays to estimate of their poly-
morphism level. From these, four markers were successfully amplified with polymorphic
allelic profiles, and 46 alleles were observed among the four loci with a mean number of
alleles per locus of 11.500 ± 4.330 (Table 4). The PIC values of all Siamese fighting fish
ranged from 0.000 to 0.939, Ho values ranged from 0.000 to 0.952 (mean ± standard error
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[SE]:0.417 ± 0.203), and He values ranged from 0.000 to 0.942 (mean ± SE:0.667 ± 0.223)
(Table 4). Marker-level descriptive statistics are presented in detail in Table S7.

Table 4. Descriptive statistics for microsatellite markers based on 21 Siamese fighting fish (Betta
splendens, Regan, 1910) [2].

Experiment Na Ho He PIC
This study Mean 11.500 0.417 0.667 0.659

S.E. 4.330 0.203 0.223 0.221
Chailertrit
et al., 2014 Mean 11.125 0.570 0.779 0.762

S.E. 1.529 0.093 0.068 0.070

Both
Mean 11.250 0.519 0.742 0.728
S.E. 1.643 0.089 0.082 0.082

Number of alleles (Na); allelic richness (Ho); expected heterozygosity (He); polymorphic information
content (PIC).

3.3. In Silico Cross-Species Transferability and Cross-Species Amplification

The potential for cross-species amplification of the developed microsatellite markers
was determined in silico in 16 fighting fish species with 26 accessions using 40 primer
pairs, and 24.42% were successfully amplified. Most were species belonging to the bubble-
nesting group (Table S8). Cross-species amplification was performed to determine the
transferability of microsatellite markers using PCR-based assays, and 82.73% microsatellite
markers were successfully amplified in 11 fighting fish species (Table S9).

4. Discussion

In this study, we examined 1–6 bp long motif microsatellites in the whole genome
of Siamese fighting fish and analyzed their distribution in different genomic regions.
We identified 812,134 microsatellite loci making up 6.57% of the whole genome. The
distribution frequency of microsatellites or the RA (approximately 600–700 loci/Mb) es-
timated in Siamese fighting fish genome was comparable to those in the genomes of
other teleosts but lower than those in the genomes of green anole (1336 loci/Mb), chicken
(1206 loci/Mb), mouse (1862 loci/Mb), and humans (1439 loci/Mb) [92,93]. A negative
correlation between microsatellite frequency and microsatellite length was also found as
in other vertebrates [45,48]. Although it remains unclear whether variability in frequency
and sequence length of microsatellites can reshape genomic dynamics, it is hypothesized
that microsatellites with longer repeat lengths are likely highly variable and derived from
mutations in which longer repeats have higher mutation rates with replication slippage,
which leads to reduced stability [94,95]. Consistent with previous studies on Nile tilapia
(Oreochromis niloticus, Linnaeus, 1758) [96], Japanese puffer (Takifugu rubripes, Temminck
and Schlegel, 1850) [97], and zebrafish (D. rerio), dinucleotide repeats were the most abun-
dant microsatellites, followed by mono-, tri-, tetra-, penta-, and hexa-repeats [93]. The most
abundant mononucleotide, dinucleotide, and trinucleotide motifs were A, AC, and AAT,
which are similar to those in Japanese rice fish, zebrafish, and Nile tilapia, but different
from that seen in Mexican tetra (Astyanax mexicanus, De Filippi, 1853) [98] and coho salmon
(Oncorhynchus kisutch, Walbaum, 1792) [99]. This dynamic distribution of different repeat
motif in a species- and genomic-specific manner suggests that the differential abundance
of mononucleotide, dinucleotide, and trinucleotide motifs is likely influenced by selective
forces and mismatch repair systems during genome evolution in teleosts [100]. Interest-
ingly, the microsatellite mononucleotide and dinucleotide repeats are highly dynamic with
higher levels of frequency, sequence length variations, and mutation rate as compared
to trinucleotide, tetranucleotide, and pentanucleotide repeats [93]. However, differences
between species may also arise due to variations in search criteria, database size, and
bioinformatics software tools used in different studies for microsatellite detection [101,102].
Although GO annotation of microsatellite-containing genes revealed many functional genes
involved in various biological activities of Siamese fighting fish. However, we did not find
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any specific functions with significant enrichment score of gene ontologies. This suggests
that microsatellite repeats might be associated with diverse functions of biological process
with no preferential tendency to accumulate nonspecific gene sets. This result agrees with
noncoding regions, which generally contain more abundant microsatellites than coding
regions [93].

4.1. Coincidence of Microsatellite Density and in Sex-Determining Regions of Siamese Fighting Fish

We found that in the Siamese fighting fish genome, chromosome size was significantly
positively correlated with the number of microsatellites but negatively correlated with
their RA and RD. This finding reflects those reported for spotted sea bass (Lateolabrax
maculatus, Cuvier, 1828) [103], domesticated cattle (Bos taurus, Linnaeus, 1758) [96], water
buffalo (Bubalus bubalis, Linnaeus, 1758) [96], wild yak (Bos mutus, Przewalski, 1883) [104],
sheep (Ovis aries, Linnaeus, 1758) [96], goats (Capra hircus, Linnaeus, 1758) [96], and Ti-
betan antelope (Pantholops hodgsonii, Abel, 1826) [47,105,106]. Different repeat types were
observed between chromosomes within the genome; however, the density of repeats varied
among different chromosomes. Microsatellite density is generally higher in telomeres than
in other regions, as observed in the human and mouse genomes [107,108]. Furthermore,
microsatellite density is higher in autosomes than in the X chromosome in mammals [109].
This is caused by differential degrees of euchromatin and heterochromatin on different
chromosomes. Chromosome 9 (a sex chromosome) is the second largest chromosome in
Siamese fighting fish, and microsatellite density in Siamese fighting fish chromosome is
comparable to that of autosomes [5]. Similar cases have been observed in the Japanese rice
fish (Oryzias latipes) and zebrafish (Danio rerio) [110,111].

Novel satellite DNA may emerge to support the process by which sex chromosome
differentiation occurs [8]. For example, the mammalian sex chromosomes X and Y show
high differentiation, and large microsatellite amplification has been observed in the Y
chromosome as the counterpart of X to accelerate differentiation [100,112]. Autosomes do
not undergo chromosome differentiation. Large microsatellite repeat motif amplifications
observed in Y or W sex chromosomes are frequently observed in many vertebrates showing
high sex chromosome differentiation [113–116]. However, most teleost sex chromosomes,
including those of Siamese fighting fish, are likely to be in the early stage of sex chromosome
differentiation, and a few microsatellite accumulations are expected to appear.

A comparison of the draft genome assembly of Siamese fighting fish with the genome
sequences of Japanese rice fish (O. latipes, OLA) and zebrafish (D. rerio, DRE) showed
conserved chromosomal syntenies among the three species [8,48,110,111]. This genomic
information provided a new perspective on the comparative genomics of teleosts, which
in turn facilitated extensive comparison of genomic structures at the molecular level. The
XX/XY sex chromosome type is represented in Siamese fighting fish as BSP chromosome
9 (BSP9) and Japanese rice fish (O. latipes) (OLA9), whereas the ZZ/ZW type is represented
in zebrafish (D. rerio) (DRE4). Recent studies have shown that vertebrates have com-
plex genetic networks triggering sexual differentiation and are composed of substantially
different factors [113]. In particular, the significant diversity of master sex-determining
genes that influences genetic hierarchies has become apparent. A well-known master
sex-determining gene in fish, the dmrt1 gene, has been previously mapped on both BSP9
and OLA9 [8,114]. Interestingly, our analysis revealed a high density of microsatellite
distribution near the dmrt1 locus, suggesting the possible role of microsatellite repeats in
sex chromosome evolution (Figure 4). However, the colinear block of homology is prob-
ably different as a consequence of intrachromosomal rearrangements, such as inversion
or segmental duplication during chromosome evolution (Figure 4) [115]. BSP9 contains a
putative sex-determining region (pMDR) in the long arm of the chromosome (BSPq) [8],
and a high microsatellite distribution was identified around this region and its neighboring
region. This suggests that the segment of differentiation expands in the sex chromosomes
of Siamese fighting fish lineages. Although DRE4 does not contain dmrt1, a high density
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of microsatellites has been observed in DRE4q, which contains functional genes of sex
development and large sites of sex-determining regions [116].
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4.2. Microsatellite Marker Development for Genetic Diversity Studies, Conservation, and Future
Breeding Programs

The increasing intensity of anthropogenic activities, such as urbanization and indus-
trial development, have compromised the habitats of Siamese fighting fish. Most wild
fighting fish are currently listed as threatened according to the IUCN Red List [1,4,117,118].
The significant biodiversity of Siamese fighting fish is rapidly declining owing to the influx
of invasive species or hybrids into the wild, leading to genetic admixture [1,10,11]. The
development of reliable and effective approaches for monitoring the genetic diversity of
fighting fish is urgently required for conservation management. Microsatellites are among
the most useful markers for measuring the genetic diversity among species and have in-
creased the potential of conservation genetics. However, a few polymorphic microsatellite
markers are based on compound or imperfect motifs, which are difficult to interpret in rou-
tine genotyping assays because of allele binning difficulties [119,120]. Perfect microsatellite
markers are more suitable, although they represent only a small fraction (approximately
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2%) of the Siamese fighting fish genome. Currently, the use of microsatellite markers for
Siamese fighting fish management is limited [14,28]. The identification and characteri-
zation of molecular markers is the first step in implementing microsatellite marker use
for species management. Recent developments in NGS techniques have facilitated the de
novo development of microsatellite loci; however, doing so is expensive, and subsequent
polymorphism screening is time-consuming [121,122]. Obtaining good polymorphic loci
requires further validation by PCR. In this study, 40 anonymous microsatellite markers
were developed, of which 11 polymorphism markers were determined by in silico genome
sequence comparison and four by PCR-based assay. Only two polymorphic microsatellite
markers were successfully validated using these two approaches. The discrepancy in
microsatellite polymorphisms between the two approaches may have resulted from the
different Siamese fighting fish samples examined. The in silico genome sequence compar-
ison was performed using ornamental commercial Siamese fighting fish available in the
NCBI database (Table S2), whereas the PCR-based assay was performed with wild Siamese
fighting fish from three localities. Xia et al. (2018) asserted that microsatellite repeat length
was negatively correlated with the substitution rate in nearby flanking sequences, wherein
a low substitution rate in nearby flanking sequences increased the rate of successful am-
plification [123]. Therefore, testing large and varied Siamese fighting fish populations is
necessary to confirm the usefulness of microsatellite markers. The low polymorphism
determined in our study may have resulted from reduced genetic differentiation of the
Siamese fighting fish samples used in the screening or because the markers tested were
located in more conserved regions of the genome.

More than 15–20 molecular markers are necessary to assess the genetic diversity in
fish [124–127]. Polymorphic markers are often selected for subsequent studies; however, this
might introduce ascertainment bias and generally overestimate genetic diversity [128,129].
Although we were able to screen hundreds of microsatellite loci using in silico method, more
microsatellite markers must be identified from our sequence library to experimentally test
polymorphisms in large and varied populations. Flanking sequences for all loci have been
provided, and more primer sequences can be designed (Dryad Digital Repository. Dataset,
https://doi.org/10.5061/dryad.fbg79cnxq). The flanking sequences can subsequently be
used to redesign primers with different product sizes to fit multiplex runs. However, all
microsatellite markers should be located on different linkages or chromosomes to avoid
linkage disequilibrium. At minimum, four new polymorphic markers were developed
from the Siamese fighting fish reference genome to add to the eight markers from previous
studies, with average PIC values of more than 0.5 [14]. All markers were located on
different chromosomes, namely, chromosomes 2, 3, 4, 9, 12, 14, 15, 16, 19, and 20. We also
compared Siamese fighting fish microsatellite markers with those of other fighting fish
species. Using in silico genome sequence comparisons, the percentage of cross-species
transferability to other species of the bubble nesting group was high (33.59%), and it
decreased in species belonging to the mouth brooders group (9.75%), consistent with the
phylogenetic relationships of fighting fish [12,16–20]. This also suggests the possibility of
chromosome synteny or linkage homology analysis. We identified more highly conserved
syntenic blocks among the bubble nesting group than the mouth brooders group, further
confirming the close evolutionary relationships and interspecific hybridization events.
These blocks are necessary to identify large-scale intrachromosomal rearrangements in the
same chromosome. Whether partial chromosome inversion affects genetic mapping and
the study of some traits is worth exploring in the future. Similar results were observed
when we performed cross-amplification PCR-based assays with other fighting fish. PCR
products were obtained for at least 82.73% of the examined markers in all other fighting
fish. This suggests that a substantial proportion of Siamese fighting fish microsatellite
markers can be used in genetic studies on a wide range of fighting fish lineages. However,
inherent problems such as allele size homoplasy, polymorphism bias, null allele presence,
broken repeat motifs, or amplification of non-orthologous loci can arise, especially in studying
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Fishes 2022, 7, 251 15 of 21

phylogenetically distantly related species [130–132]. De novo development of species–specific
microsatellite markers is strongly recommended, especially for mouth-brooding fish.

5. Conclusions

This paper reports a genetic approach for monitoring the diversity and conservation of
betta fish using molecular markers. We applied bioinformatic methods to detect novel mi-
crosatellite markers and investigate their genomic organization. To test the species-specific
transferability of microsatellite markers, we used the PCR-based cross-species amplification
and successfully validated two loci. The genomic-wide microsatellite characterization
distribution provides evolutionary insights with species- and chromosome-specific dy-
namic distributions. Additionally, the prospective microsatellites highlighted in this study
could be used in the genetic characterization of diverse betta lineages. Our approach of
identifying polymorphic microsatellite markers will expedite the development of useful
markers with known physical locations on chromosomes and avoid laborious preliminary
molecular screening for polymorphisms.
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