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Abstract: This study aimed to assess the impacts of dietary supplementation with passionfruit (Passi-
flora edulis) peel powder (PSPP) on the growth, immune response, and expression of immune and
antioxidant-related genes in Nile tilapia (Oreochromis niloticus) maintained in a biofloc system. Fish
were fed basal diets supplemented with different doses of PSPP at 10 g kg~! (PSPP10), 20 g kg~!
(PSPP20), 40 g kg~ ! (PSPP40), and 80 g kg~ ! (PSPP80). The basal diet, without PSPP-supplementation,
was used as a control at0 g kg_1 (PSPP0). We observed that the dietary supplementation groups fed
different levels of PSPP exhibited no substantial difference or only slight increases in growth perfor-
mance and immunological response in Nile tilapia (p > 0.05), whereas fish fed diets supplemented
with PSPP at concentrations of 10 g kg_l, 20¢g kg_l, and40 g kg_1 had significantly higher mRNA
transcripts (approximately 1.5-4.5 fold) of immune (il-1, il-8, and Ibp) and antioxidant (gst-a, gpx, and
gsr) gene expressions than fish in the control treatment group (0 g kg™1). These findings suggest that
dietary supplementation with PSPP may effectively stimulate the immune and antioxidant defense
system and may function as feed additives in Nile tilapia cultured in a biofloc system.

Keywords: feed additives; immune gene expressions; antioxidant defensive system

1. Introduction

Nile tilapia (Oreochromis niloticus) has been extensively produced in more than 100 nations
globally, generating around 7.3 million tons in 2021, because of its flexibility, high growth,
resistance to stress and disease, and great economic value [1-4]. Nonetheless, like with
any intensively cultured fish, tilapia farming imposes significant strains on the water
quality for fish farming and increases the occurrence of pathogenic infections—especially
bacterial diseases [5,6]—resulting in a high mortality rate (up to 95%) and massive economic
losses [7,8]. Antibiotics and chemotherapeutics have been commonly used by farmers all
over the world to control disease outbreaks in fish farming [9]. However, these activities
have caused the outgrowth of antibiotic-resistant bacteria [10,11]. Due to restrictions on the
use of antibiotics in aquaculture, the development of innovative ways to supply appropriate
feed additives and develop cost-effective methods of disease prevention and treatment
for fish has become a top concern [12,13]. Consequently, natural immunostimulants (such
as prebiotics, probiotics, and synbiotics) are promising alternatives for modifying the
bacterial population and attempting to control infectious disease outbreaks in aquaculture
by enhancing dietary intake, nutritional absorption, and immune defense systems in
aquatic animals [14-17]. In this respect, fruit by-products have been identified as potential
supplements in the diets of aquatic species [18-20]. Fruit by-products used as feed additives
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have the potential to minimize waste, reduce aquafeed costs, and offer raw materials for the
nutritional sectors [21]. Additionally, utilizing these by- and co-products would also have a
positive influence on the environment and provide additional advantages to farmers [22,23].

Passionfruit (Passiflora edulis) is a species of the Passifloraceae family, which has
more than 500 species [24]. It is found mostly in North America, but also in tropical
and subtropical Southeast Asia, Australia, and New Zealand due to its economic and
medicinal properties [25,26]. The passionfruit extract market is projected to reach USD
1028.6 million by 2029 [27]. Peels are created in great amounts during the processing
of passionfruit to produce passionfruit juice [28]. Moreover, passionfruit peel is a by-
product of the fruit processing industry that makes up around 50% of the weight of
the fruit [29], which is typically thrown away as waste [30,31]. The passionfruit peel
includes a variety of bioactive components, including phenolic compounds, flavonoids,
cyanogenic chemicals, anthocyanin, minerals, polysaccharides, and vitamins [28,32-35].
Numerous investigations using passionfruit by-products as feed additives have been
conducted on sheep [36], swine [37,38], quail [39,40], and poultry [41,42]. For fish farming,
the incorporation of passionfruit seed meal (including its oil residue) in diets for tambaqui
(Colossoma macropomum) [43,44] and passionfruit juice in tilapia has been investigated [45].
However, there have been few studies on the influences of passionfruit peel powder (PSPP) on
the growth and overall wellbeing of common commercial fish species—particularly Nile tilapia.

Biofloc technology (BFT) is an alternative approach that mixes aggregates of algae,
protozoa, or bacteria with particulate organic substances to improve water quality, waste
treatment, and disease prevention in intensive aquaculture systems. It has been proposed
as a cost-effective alternative to intensive systems since it improves water quality without
requiring water exchange and produces microbial protein for aquatic species. Biofloc is
a microbial community composed mostly of prokaryotic and eukaryotic microorganisms
and different organic particulates [46—48]. Biofloc functions as a nutrition supply for
aquatic creatures in this system, assisting in growth enhancement, pathogen reduction,
and zero-water exchange. Additionally, BFT has a beneficial impact on the host immune
system, increasing resistance to diseases and infections [49,50]. Therefore, this study aimed
to assess the influence of dietary supplementation with powdered passionfruit peel on
growth, immunological responses, and the expression of key immune-antioxidant-related
genes in Nile tilapia raised in a biofloc system.

2. Materials and Methods
2.1. Preparation of Powdered Passionfruit Peel and Experimental Diets

Passionfruit was obtained from local markets at Chiang Mai (Thailand). Passionfruit
peels were oven-dried at 60 °C for 48 h. The dried peel was then ground into a powder
using a mill and stored at 4 °C until used in the fishes’ diets. To prepare the dough, the
feedstuffs were blended and then soybean oil and distilled water were added. The dough
was then pelleted (2 mm in diameter) in a pelleting machine. Pellets were dried at 50 °C
to attain 10% moisture and stored in sealed polyethylene bags at 4 °C until used. The
proximate composition of the diets was determined using the techniques recommended by
AOAC [51], and the crude fat content was measured using an extractable matter machine
(SoxtecTM 8000, Hilleroed, Denmark). The basal diets were modified according to the
descriptions reported previously [52], which proved their suitability for Nile tilapia by their
different levels of PSPP. The ingredients and elemental composition of the basal diets are
shown in Table 1.
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Table 1. Formulation and proximate composition of the experimental diets (g kg~!).
PSPP PSPPO PSPP10 PSPP20 PSPP40 PSPP80
Fish meal - 150 150 150 150 150
Corn meal - 200 200 200 200 200
Soybean meal - 390 387 384 383 380
Wheat flour - 70 70 70 70 70
Rice bran - 150 150 150 135 100
PSPP - 0 10 20 40 80
Cellulose - 20 13 6 2 0
Soybean oil - 5 5 5 5 5
Premix - 10 10 10 10 10
Vitamin C (98%) - 5 5 5 5 5
Total - 1000 1000 1000 1000 1000
Proximate composition of the experimental diets (%)
Crude protein 10.1 32.80 35.2 34.5 33.6 32.3
Crude lipid 1.01 2.85 3.45 4.18 3.62 3.60
Fiber 25.73 3.68 4.36 5.45 521 6.44
Ash 8.02 7.59 8.38 7.96 7.87 7.99
Dry matter 95.13 99.16 97.05 96.16 98 97.69
Gross Energy (cal/g) 2731 4273 4278 4203 4185 4085

2.2. Culture Conditions

Three weeks before starting the experiment, floc inoculants were generated in each
tank (150 L) by adding sea salt (400 g), dolomite (5 g), wheat flour (2 g), and molasses
(5 g). After formation, the floc quantity was kept constant throughout the experiment at a
level of approximately 8.21 & 0.15 mL per tank, by maintaining the NH3 concentration at
0.11 + 0.005 mg L~! and modifying the C:N ratio (15:1) by adding molasses and probiotics
(PondPlus, Bayer Thai Co., Ltd., Bangkok, Thailand) [53]. The C:N ratio was calculated
using a diagrammatic representation of residual nitrogen grades and food intake [54].

2.3. Experimental Design

Nile tilapia fingerlings were purchased from a tilapia hatchery in Chiang Mai, Thai-
land. Fish were acclimatized and fed a commercial meal CP-9950 (Charoen Pokphand
Foods Public Co., Ltd., Bangkok, Thailand) for two weeks. Prior to conducting additional
experiments, twenty randomly selected fish were subjected to bacterial and parasite ex-
aminations to guarantee their health. A total of 300 Nile tilapia (14.22 £ 0.05 g) were
randomly assigned into five dietary treatment groups with PSPP supplemented as follows:
control-PSPP0 (0 g kg 1), PSPP10 (10 g kg~ 1), PSPP20 (20 g kg~ '), PSPP40 (40 g kg 1), and
PSPP80 (80 g kg ~!). Fish were maintained in 150 L glass tanks. The experimental trials
were conducted in triplicate with 20 fish per tank. Fish were fed twice daily at 8:30 a.m.
and 4:30 p.m. at 3% body weight for eight weeks. Temperature, pH, and dissolved oxygen
were maintained at 25-29 °C, 7.5-7.9, and 5 mg L1, respectively.

2.4. Growth Rates
Initial weight (IW), weight gain (WG), survival rate (SR), specific growth rate (SGR),
and feed conversion rate (FCR) in Nile tilapia were determined after four and eight weeks

of feeding trial as follows [55]:
WG (g) =FW — IW

SGR (% day™") =100 x L\éo_ de
FCR (g) = total feed given
8/~ " Weight gain

SR (%) = _fujlél number % 100
initial number



Fishes 2022, 7, 233

40f13

Weights were measured using a balance with an accuracy of 0.1 g. Additionally, any
dead fish were tallied and the mortality rate computed during the experiment.

2.5. Immune Response Analysis
2.5.1. Sample Collection

To examine immunological activities, skin mucus and blood samples (6 fish/treatment)
were collected. Before collecting samples, clove oils (5 mL L~!) were used to anesthetize
fish. For skin mucus sample collection, the experimental fish were gently rubbed for 2 min
in a plastic bag containing 10 mL of 50 mM NaCl (Merck, Germany). The mixture was
immediately transferred into new sterile tubes and centrifuged at 1500x g at4 °C for 10 min.
The mucus samples (1 mL) were then kept at —80 °C until used. For blood sampling, blood
was collected according to the protocols previously reported [56]. Briefly, approximately
1 mL of fish blood was obtained using a 1 mL syringe at the caudal vein. Blood samples
were promptly withdrawn and placed into sterile tubes (without adding anticoagulant).
The samples were kept for an hour at room temperature and at 4 °C for a further hour. The
samples were then centrifuged, and the serum samples were collected and stored at —80 °C
for further analysis.

2.5.2. Lysozyme and Peroxidase Assay

Lysozyme assays were conducted following the procedures reported by Parry, et al. [57],
with the minor modifications in Van Doan et al. [55]. The equivalent unit of activity for
each sample was calculated in accordance with the standard curve, which was constructed
by plotting the decrease in the optical density value against the concentration, ranging from
0-20 uL mL~! of hen egg-white lysozyme (Sigma-Aldrich, Inc., USA) and represented as
ug mL~! of serum.

Peroxidase activity was determined according to the protocols described in Quade
and Roth [58] and Cordero, et al. [59], with minor modifications in Van Doan et al. [55].
The peroxidase assay was represented in units (U) per mg of skin mucus or serum proteins,
where a unit was defined as the quantity of serum or mucus proteins that produced a
change in absorbance equal to one.

2.6. Total RNA Extraction and Real-Time PCR (gPCR) Analysis

A total of 40-50 mg of fish tissues (gills and liver) was sampled for RNA extraction
using TRIzol and an RNA extraction kit (Invitrogen, Waltham, MA, USA). The quality and
quantity were measured using spectrophotometers (Thermo Fisher Scientific, Waltham,
MA, USA) at wavelengths of 260 and 280 nm. The first-strand complementary DNA (cDNA)
was synthesized with 1 ug total RNA using the iScript™ cDNA Synthesis Kit (BIO-RAD,
Hercules, CA, USA). The analysis was conducted in triplicate using 100 ng of cDNA and
iTaq Universal SYBR Green on a CEX Connect™ real-time PCR (BIO-RAD, Hercules, CA,
USA). The qPCR was conducted at 95 °C for 30 s, 40 cycles of 95 °C for 15 s, and 60 °C
for 30 s and followed by 95 °C for 15 s, 60 °C for 60 s, and 95 °C for 15 s. Expression levels
was analyzed according to the 2~4Ct method [60] The qPCR results were normalized to the
185 rRNA gene. The primers used for the qPCR analysis in this study are presented in Table 2.

Table 2. Primers used for the qPCR analysis in this study.

Target Product

/_ i o
Genes Sequence (5'-3') Tm (°C) Size (bp) Ref.
GTGCATGGCCGTTCTTAGTT
185 rRNA CTCAATCTCGTGTGGCTGAA 60 150 [61]
‘ GTCTGTCAAGGATAAGCGCTG
i1 ACTCTGGAGCTGGATGTTGA 59 200 [61]
s CTGTGAAGGCATGGGTGTG 5 106 1l

GATCACTTTCTTCACCCAGGG
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Table 2. Cont.

Target )t o Product
Genes Sequence (5'-3') Tm (°C) Size (bp) Ref.
ACCAGAAACTGCGAGAAGGA
Ibp GATTGGTGGTCGGAGGTTTG 59 200 [61]
i ACTGCACACTCATGGGAACA 0 190 (61]
8 TTAAAAGCCAGCGGATTGAC
N GGTGGATGTGAATGGAAAGG 0 190 (01]
8 CTTGTAAGGTTCCCCGTCAG
o CTGCACCAAAGAACTGCAAA 60 17 (61]
& CCAGAGAAGGCAGTCCACTC

Note: F: Forward, R: Reverse, bp: base pair.

2.7. Statistical Analysis

The Kolmogorov-Smirnov test was used to evaluate the normality of the data. Means
were compared using Duncan’s multiple range test. Growth rates, immunological re-
sponses, and gene expression levels were analyzed using ANOVA analysis. SAS v9.4 statis-
tical software (Cary, NC, USA) was used for all the statistical analyses [62]. p < 0.05 was
denoted as a significant difference.

3. Results
3.1. Growth Performance Analysis

In this study, the growth parameters observed in different dietary treatment groups are
presented in Table 3. There was no significant difference in final weight (FW), weight gain
(WG), feed conversion ratio (FCR), or specific growth rate (SGR) between fish fed PSPP-
supplemented diets and those fed only a basal diet (0 g kg~! PSPP) after four and eight
weeks of the experimental trial. The survival rate (SR) of all treatment groups exceeded
95% at the conclusion of the feeding studies. No significant difference in any groups of the
dietary PSPP-supplemented diets were detected (p > 0.05).

Table 3. Growth performances and feed utilization in Nile tilapia with different levels of PSPP-
supplemented diets after four and eight weeks of the feeding trial. Different letters in the same row
indicate statistically significant differences (p < 0.05). Data are presented as mean + SE.

PSPP 0 PSPP 10 PSPP 20 PSPP 40 PSPP 80

W (g) 1422 +0.04%  1423+0042 142540052 141540032 1423 +0.03°
FW (g)

f weeks 2860 +1.642 2905+ 1.11° 2869+ 0642  2973+1232  29.67+0.372

8 weeks 55.03 £ 0.642 550140912  5384+1352 5593 +1.362 5405+ 0792
SGR (%)

4 weeks 23240182 23740132 2.33 4 0.06 2 247 +0.132 2.45 4 0.052

8 weeks 2.26 £0.02°2 2254 0.03° 2214 0.042 2.29 4 0.042 222 £0.032
WG (g)

4 weeks 1438 +161%  14.82+£1.132 144440598 1558 +1.212 1544 +£0.39°2

8 weeks 4081 +0642  4078+090° 3959 +1332  41.78+1342  39.82+0.822
FCR

4 weeks 1.00 + 0.07 2 1.03 + 0.03 2 111 + 0.08 2 0.98 + 0.06 1.01 £ 0.002

8 weeks 0.96 + 0.032 1.01 +0.032 1.01 +0.022 0.98 + 0.022 1.01 £ 0.022
SR (%)

4 weeks 100 98 97 100 98

8 weeks 98 95 95 98 98

Note: IW: Initial weight; FW: Final weight; SGR: Specific growth rate; WG: Weight gain; FCR: Feed conversion
ratio; SR: Survival rate.

3.2. Analysis of Skin Mucus Immune Responses

Lysozyme and peroxidase activities in skin mucus in Nile tilapia after four and eight
weeks of feeding are presented in Figure 1. No significant difference (p > 0.05) in lysozyme
activity was observed between fish fed PSPP-supplemented diets and those fed only a
basal diet (0 g kg~! PSPP) after four and eight weeks of feeding. Only fish fed the 20 g kg ™!
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PSPP (PSPP20) diet had significantly (p < 0.05) higher peroxidase activity than those with
other treatments after four weeks of feeding trial (Figure 1B). No significant difference was
found in peroxidase activity after eight weeks of feeding (p > 0.05).

(A) (B)
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00 - 0.00 -
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=== DSPP40 === DSPP80

Figure 1. Lysozyme (A) and peroxidase (B) activity in the skin mucus of Nile tilapia after four and
eight weeks of feeding with experimental diets: 0 g kg~ (PSPP0) control, 10 g kg~ (PSPP10), 20 g kg !
(PSPP20), 40 g kg~ (PSPP40), and 80 g kg~ (PSPP80) cultivated for eight weeks. Data are presented
as mean =+ SE. Significantly different levels are denoted by superscript letters (p < 0.05). “ns” denotes
no significant difference.

3.3. Analysis of Serum Immune Responses

Serum immunological activities (lysozyme and peroxidase) were determined in this
study using serum samples obtained after four and eight weeks of feeding. Figure 2 sum-
marizes the impact of the experimental diets on serum immunological activity. Peroxidase
and lysozyme activities in serum showed substantially higher levels in fish fed dietary
PSPP-supplemented diets than those fed the basal diet without PSPP supplementation
after four and eight weeks of the experimental trial. No statistically significant differ-
ences in lysozyme activity were detected in any of the dietary supplementation treatments
(p > 0.05) after four or eight weeks of feeding. On the other hand, the PSPP10 diet substan-
tially enhanced serum peroxidase activity compared to the control PSPP0 group (p < 0.05).
At eight weeks post-feeding, a statistically significant change in the activity of peroxidase
was detected between the PSPP-supplemented treatments (PSPP20 and PSPP80) and the
PSPPO control treatment (p < 0.05).

(A) (B)
0.5 7

—
&)

=
(==}
©

o

0.4
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0.3 1

0.2 4

Lysozyme activity (ug mL-1)
Peroxidase activity (U mL-1)

4 weeks 8 weeks 4 weeks 8 weeks

= PSPPQ) === PSPP10 === PSPP20
= PSPP40 =3 PSPP80

Figure 2. Lysozyme (A) and peroxidase (B) activity in the serum of Nile tilapia after four and eight
weeks of feeding with experimental diets: 0 g kg_l (PSPPO) control, 10 g kg‘1 (PSPP10),20 g kg‘1
(PSPP20), 40 g kg~ (PSPP40), and 80 g kg~ (PSPP80) cultivated for eight weeks. Data are presented
as mean =+ SE. Significantly different levels are denoted by superscript letters (p < 0.05).
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3.4. Analysis of Immune and Antioxidant-Related Gene Expression

Fish tissues (gills and liver) were collected to investigate relative immune and an-
tioxidant gene expressions by qPCR. Three relative immune genes (Ibp, il-1, and il-8) and
three antioxidant genes (gsr, gst-a, and gpx) were investigated in this study. A significant
upregulation (approximately 2-2.7 fold) was found in the gill tissues of fish fed with dietary
supplementation with PSPP compared to those fed the basal diet without PSPP supplemen-
tation (the control group, PSPP0). The greatest level of mRNA transcripts was observed
in the PSPP20 diet groups (approximately 3.1-3.7 fold) in Ibp, gst-a, and gpx, whereas il-1
and il-8 had the highest levels in the dietary PSPP40 and PSPP10 treatments, respectively
(Figure 3).

. Gill tissue

EPSPP 0

BPSPP 10
BPSPP 20
4 EPSPP 40

DPSPP 80
b
|I | |I IT

b
c a
b b
] .
Dl
IL1 GSTa GPX GSR

Figure 3. Expression transcript levels of interleukin-1 (il-1), interleukin-8 (il-8), lipopolysaccharide-

Relative transcriptlevels
2.

binding protein (Ibp), glutathione S-transferase-o (GST-«), glutathione peroxidase (gpx), and glutathione
reductase (gsr) in gill tissues of Nile tilapia (1 = 5) fed diets supplemented 0 g kg~! PSPP, 10 g kg~
PSPP, 20 g kg~ ! PSPP, 40 g kg~ ! PSPP, and 80 g kg~ PSPP after eight weeks of feeding. The mRNA
transcript levels of immune and antioxidant genes were normalized by 18S rRNA. The mRNA transcript
level of the 0 g kg~! PSPP control group was set at 1. Data are presented as mean = SE. Significantly
different levels are denoted by superscript letters (p < 0.05).

A substantial difference in the mRNA transcripts of the examined genes was identified
in liver tissues (Figure 4). Fish given the dietary PSPP20 expressed the greatest levels of
mRNA transcripts in all target genes (except Ibp) compared to the other dietary treatment
and the control group (approximately 2—4.3 fold). Lbp expression was considerably up-
regulated in fish fed with dietary PSPP40 (approximately 2.5-fold), followed by PSPP20
(approximately 2.0-fold) and PSPP10 (approximately 1.8-fold).

Liver tissue
5 a WPSPPO
a TPSPP 10
2 @PSPP 20
24 @PSPP 40
= DOPSPP S0
&
23
=
[+]
b
° a
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=
&
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O —
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Figure 4. Expression transcript levels of interleukin-1 (il-1), interleukin-8 (il-8), lipopolysaccharide-
binding protein (Ibp), glutathione S-transferase-« (gst-a), glutathione peroxidase (gpx), and glutathione
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reductase (gsr) in liver tissues of Nile tilapia (1 = 5) fed diets supplemented 0 g kg_1 PSPP, 10 g kg_1
PSPP, 20 g kg~ ! PSPP, 40 g kg~! PSPP, and 80 g kg~ PSPP after eight weeks of feeding. The mRNA
transcript levels of immune and antioxidant genes were normalized by 185 rRNA. The mRNA transcript
level of the 0 g kg~! PSPP control group was set at 1. Data are presented as mean = SE. Significantly
different levels are denoted by superscript letters (p < 0.05).

4. Discussion

The use of fruit by-products as feed additives in aquaculture is an efficient approach
to conserve the environment and generate more income for farmers. By-products, such as
peels and seeds, contain many substances with health-promoting effects [63-65].

After eight weeks of feeding, we observed that growth performance and feed con-
sumption were unaffected by the PSPP supplement diets. The findings of this study were
consistent with those of earlier studies on Jaraqui (Semaprochilodus insignis) and tambaqui
fed passionfruit seed cake [66]; silver catfish (Schilbe intermedius) fed grape, orange, guava,
and fig residues [67]; Nile tilapia and African catfish (Clarias gariepinus) fed dehydrated
lemon peels [68]; Nile tilapia fed passionfruit seed oil and pomegranate peel [69,70]; rain-
bow trout (Oncorhynchus mykiss) fed dehydrate lemon peel [71]; Asian sea bass (Lates
calcarifer) fed fermented lemon peel [72,73]; and giant freshwater prawn (Macrobrachium
rosenbergii) fed biogas sludge meal [74], suggesting that the PSPP may not promote the
production of digestive enzymes or intestinal absorption due to the large levels of soluble
and insoluble fiber in PSPP [75]. Dietary fiber in PSPP has been shown by Vuolo, et al. [76]
to decrease glucose and lipid absorption, resulting in less energy storage and increased
lipid and glucose excretion. There was no discernible difference between the dietary PSPP-
supplemented groups in this study. According to Ramli, et al. [33], PSPP has various
valuable active components, including phenolic compounds, flavonoids, cyanogenic chem-
icals, anthocyanin, minerals, polysaccharides, and vitamins—which may account for its
beneficial impact on growth performance [28,34,77]. Additionally, the PSPP contains con-
siderable amounts of vitamin C that can be fortified into fish feed [78]. More investigations
are needed to clarify the impact of these extracts on the growth performance of Nile tilapia
cultivated in biofloc systems.

Skin mucus plays an important role in fish immune responses [79]. Lysozyme and
peroxidase are important indicators of the immune defense system of fish; it has lytic
action against bacteria and participates in phagocytic activity, neutrophil activation, and
the complement system [80,81]. Lysozyme and peroxidase activities were greater in fish fed
PSPP diets than in the control group after four and eight weeks of the feeding experiment.
The addition of fruit by-products or extracts to diets, especially powdered passionfruit
peel, has a beneficial effect on the immunological activity of Nile tilapia, striped catfish
(Pangasianodon hypophthalmus), black rockfish (Sebastes schlegelii), and gilthead seabream
(Sparus aurata) [61,82-84].

il-1 and il-8 are responsible for regulating inflammatory processes in the innate immune
system to stimulate phagocytes to engulf microorganisms [85]. Antioxidant-related genes
are involved in the glutathione protection mechanism, responsible for hydrogen peroxide
removal (H,O;). A phase II xenobiotic metabolic enzyme, glutathione S-transferase (GST),
combines with electrophilic chemicals to produce bigger endogenic complexes known as
glutathione S-conjugates, which are then expelled from the body [86]. GPX transforms
H,0; into H,O via the oxidation of glutathione (GSH) to glutathione disulfide (GSSG).
GSH is revived by GSR after it has been oxidized by the oxidative reduction of NADPH [87].
Increased immune responses and gene expression levels in fish fed powdered passionfruit
peel are likely to be the result of an overall improvement in health and wellbeing due
to a combination of several health benefits associated with dietary PSPP. These include
(i) greater immunity against pathogens, indicated by elevated lysozyme and peroxidase
levels in skin mucus and serum, and by elevated il-1, i[-8, and Ibp mRNA transcript levels
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in the gills and liver tissues; (ii) enhanced antioxidant activity, indicated by elevated mRNA
transcript levels of gst-a, gpx and gsr; and (iii) PSPP may stimulate the immune defense
system in fish, thereby improving survival rates and disease resistance in fish.

The successful application of biofloc in aquaculture depends on the presence of both
prebiotics and probiotics. The addition of PSPP in a biofloc aquaculture system may be
involved in several processes, such as stimulating the proliferation of favorable bacteria,
inhibiting the growth of pathogenic microorganisms, and improving the gastrointestinal
condition of fish [61,88-90]. On the other hand, the recycling of nitrogen via its conversion
to microbial biomass in biofloc increases the populations of favorable bacteria, enhancing
host immunity [91].

5. Conclusions

Diets containing powdered passionfruit peel at concentrations of 10 to 20 g kg~!
improved expression levels of innate immune and antioxidant-related genes in Nile tilapia
cultured in a biofloc system. However, fish fed PSPP-supplemented feed had no signifi-
cantly differences in growth performance; further studies should explore this issue to gain
a better understanding of the impacts of PSPP in Nile tilapia.
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