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Abstract: Among Chinese soft-shelled turtles, Pelodiscus sinensis, males have a richer nutritional
value and higher market price than females. All-male offspring were obtained by 17β-estradiol (E2).
However, the molecular mechanisms of E2 inducing sexual reversal remain unclear. In this study, we
cloned estrogen nuclear receptors (ERs) from P. sinensis and investigated their expression profiles.
We examined the responses of ERα and ERβ after treatment with different concentrations of 1.0,
5.0, and 10 mg/mL E2. ERs showed abundant expressions in the adult gonad, ERα for ovary, and
ERβ for testis. E2 can up-regulate the expression of ERα, which showed a remarkable increase while
the promotion of ERβ was unobvious. They reached a high level at stage 17 after the treatment of
E2, genes of the female-related genes Rspo1, Wnt4, β-catenin, Foxl2, Cyp19a1, and Sox3 exhibited a
significant raise at stage 17 with the increase in the concentration of E2 while the male-related genes
Sox9, Dmrt1, and Amh were significantly inhibited. Our study cloned the full length of ERs and
analyzed their structures and expressions, laying a foundation for the further study of the effect of
estrogen on sex determination.

Keywords: Chinese soft-shelled turtle (Pelodiscus sinensis); sexual reversal; estrogen receptors; estrogen

1. Introduction

The Chinese soft-shelled turtle, Pelodiscus sinensis, is an economically important aquatic
species that is widely distributed in China [1]. It has typical features of sexual growth
dimorphism which mean males grow significantly faster and have richer nutritional value
and higher market price than females [2]. In order to expand the breeding efficiency of
breeding enterprises, the all-male breeding of P. sinensis using sex control approaches
has become a practical requirement. Sex determination in reptiles can be divided into
two categories. One is genotypic sex determination (GSD), in which sex determination
genes on sex chromosomes first regulate and induce the cascade reaction of related sex
determination genes, and finally regulate the development of primordial gonads towards
the testis or ovary [3]. The other type is environment-dependent sex determination (ESD).
The most typical ESD model is temperature-dependent sex determination (TSD), and
the sex determination of embryos is affected by the environmental temperature during
embryonic development, rather than genetic material. Researchers have confirmed that P.
sinensis is a GSD species with ZZ/ZW heteromorphic micro-sex chromosomes [4], which
was significantly different from the typical TSD in Trachemys scripta [5].

To obtain all-male offspring, E2 treatment is administered to male embryos (ZZ), E2
can induce gonads to develop into ovaries, but does not change the genotype, thus forming
an individual with a female phenotype and male genotype called pseudo-female turtles
(∆ZZ). These individuals could be used as the female parent while the male turtle was
used as the male parent (ZZ) for breeding work, and their offspring would all be male [6,7].
In vertebrates, the sexual reversal process was co-regulated by the female-related genes
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(Rspo1/Wnt/β-catenin/Foxl2/Cyp19a1/Sox3) and male-related genes (Sox9/Amh/Dmrt1),
and the male-to-female sexual reversal could be caused after estrogen treatment during
embryonic development [8]. Rspo1, known as a female-determining factor, functions
upstream of the female sex determination pathway to activate the Wnt/β-catenin signaling
pathway in mammals [9]. In humans, the deletion or mutation of Rspo1 could lead to
female-to-male sexual reversal [10]. In mice, the over-expression of β-catenin reversed the
sex of male XY individuals to female XY individuals [11]. The Sry-related gene Sox9 was
involved in the differentiation of Sertoli cells in male gonads of vertebrates with different
kinds of sex determination which could be inhibited by estrogen resulting in male-to-
female sexual reversal [12]. The medaka, Oryzias latipes, the pattern of male-to-female
sexual reversal could be achieved by estrogen treatment and its special sex determination
gene named DM-domain gene on the Y chromosome (Dmy) was clearly suppressed during
the embryonic development stage [13]. In Gulf pipefish, Syngnathus scovelli, males were
exposed to estrogen, which led to the feminization of the male liver transcriptome in a
pipefish having undergone sexual reversal [14].

The estrogen receptors expressed in vertebrates and a few invertebrates undertake the
effect of estrogen on sex-related genes [15]. Estrogen receptors were mainly divided into two
categories: classical estrogen nuclear receptors (ERs) and novel membrane receptors. The
first estrogen binding protein discovered is known as estrogen receptor α (ERα, also known
as ER1 or Esr1) [16]. The second nuclear estrogen receptor was named estrogen receptor β
(ERβ, also known as ER2 or Esr2) [17]. Both of them are nuclear transcription factors that
were involved in the regulation of many complex physiological processes [18,19]. In the
nuclear, ERs act as ligand-dependent transcription factors, when the hormone signal enters
the cytoplasm, it binds to the estrogen nuclear receptor, forming the hormone–nuclear
receptor complex. It was transported through the nuclear envelope to the nucleus which
regulated the transcription factor activity by recognizing specific DNA fragments, thereby
achieving the transcriptional regulation of sex-related genes [20]. ERs also regulate gene
expression via binding to other transcription factors such as nuclear transcription factor-κB
(NF-κB) [21]. Researchers found that the other is novel membrane receptors, that estrogen
could rapidly up-regulate endometrial cyclic adenosine monophosphate (cAMP) levels
through the cell membrane binding site, and thus speculated the existence of the membrane
estrogen receptor (mER) [22], which was later discovered as G protein-coupled estrogen
receptor 30 (GPER30) [23]. By way of membrane receptors, G-protein-coupled receptors were
activated after binding with ligands, and their coupled proteins linked hormones to cAMP
in the cytoplasm, thus playing a regulatory role [8].

Exogenous estradiol (E2) is critical in the process of all-male offspring; however, the
molecular mechanism between E2 and estrogen receptors in sex determination remains
unclear. In the present study, we cloned the ERs from P. sinensis and characterized their
expression in normal adults and embryos. We further investigated the effects of E2 on the
expression of nuclear receptors in male embryos. The results will contribute to further
investigations of sex determination, sex differentiation, and the breeding work in Chinese
soft-shelled turtles.

2. Materials and Methods
2.1. Maintenance of the Chinese Soft-Shelled Turtles

One-year-old healthy turtles (3 males and 3 females, mean weight 1100 ± 100 g) and
fertilized eggs were obtained by random sampling from Anhui Xijia Agricultural Develop-
ment Company (Bengbu, Anhui, China). Following euthanasia by MS-222 (600 mg/kg),
the turtles were dissected and eight tissues including the heart, liver, spleen, lung, kidney,
brain, ovary, or testis were collected and stored in liquid nitrogen for RNA isolation. All
animal handling and experimental procedures were conducted under the guidelines for
the care and use of the laboratory and approved by the Yangtze River Fisheries Research
Institute Animal Care Committee.
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2.2. Estradiol Treatment

The fertilized eggs were incubated in the constant temperature humidity incubator
(Xinmiao, Shanghai, China) and kept at 30 ± 0.5 ◦C and 80–85% humidity for 15 days. We
diluted E2 (MedChemExpress, Wuhan, China) with ethanol (Xilong, Guangdong, China)
into a reagent of 1 mg/mL, 5 mg/mL, and 10 mg/mL which were the experimental groups.
We dipped a cotton swab in a small amount of hydrochloric acid (HCl) (Xilong, Guangdong,
China), and gently smeared it on the soft-shelled turtle fertilized eggs to make the egg-shell
soft at stage 12 (15 days) of embryo development which was the critical period of sex
differentiation. A micro-syringe (Gaoge, Shanghai, China) was used to inject 5 µL of one
of the E2 solutions into each fertilized egg, the control group was injected with an equal
volume of ethanol, and the blank group does not do any processing [24]. Two hundred
fertilized eggs were inoculated at each concentration, and the blank control group raised
200 fertilized eggs for sampling. The injected site was then disinfected with 50 mg/mL
of ampicillin and sealed with paraffin, putting the eggs back in the constant temperature
humidity incubator.

2.3. Samples Collection

Samples, i.e., the embryos, were collected from stages 13 to 20, the fertilized eggs were
broken up with tweezers and the embryos were removed and placed in cryogenic tubes,
first in liquid nitrogen, and at the end of sampling, all samples were placed at −80 ◦C.
Twelve samples were collected at each stage. The sex of all embryos was detected using
sex-related markers (Ps4085-F/R, COI-F/R) developed by our laboratory [2]. After sex
determination, the number of male embryos at each stage varied from 3 to 8. In order to
ensure the consistency of the number of samples at each stage, we randomly selected 3 male
embryonic samples from each stage for further analysis. Male samples of the experimental
group and control group were used to explore the expressions of ERs during the embryonic
development stage after the E2 treatment of adult turtle samples was used to detect the
tissue distributions of ERs. Blank group samples were used to detect the expression of ERs
during the normal embryonic development stage. All adult turtles were targeted for RNA
extraction from organs (i.e., heart, liver, spleen, lung, kidney, brain, ovary, or testis), while
total embryos after sex determination were targeted for RNA extraction.

2.4. RNA Extraction

The samples were taken out from −80 ◦C and thawed on ice, and then the samples
were quickly decomposed. The gonads of the embryonic samples and part of the tissue
samples of the adult turtles were placed into a 2 mL EP tube with 1 mL Trizol kit (Life
Technologies, Shanghai, China) and three grinding beads. Then, the tissue crushing instru-
ment was used at 120 Hz for 60 s, the solution was absorbed into a new 1.5 mL EP tube,
and then chloroform was added and shaken for 5 min and centrifuged for 10 min. The
supernatant was absorbed into a new 1.5 mL EP tube after centrifugation and blended with
an equal volume of pre-cooled isopropyl alcohol, and centrifuged for another 10 min. After
the supernatant was aspirated, 1 mL of pre-cooled 75% ethanol was added to 1.5 mL EP for
centrifuging for 5 min to wash the RNA precipitate. The washing procedure was repeated
three times, and then the liquid was poured out and dried on the ultra-clean table, and ster-
ile water was added to dissolve for 10 min. Then, the concentration of the extracted RNA
was detected by a Nanophotometer NP60 spectrophotometer (Implen, Munich, Germany)
and the integrity of the RNA was detected by 1% agarose gel electrophoresis.

2.5. Full-Length cDNA Cloning of ERs

The cDNAs were synthesized using Hiscript®III 1st Strand cDNA Synthesis Kit
(+gDNA wiper) (Vazyme, Nanjing, China) according to the manufacturer’s instructions.
Sequences from conserved domain amplification, 3′ RACE, and 5′ RACE were assembled
to generate the full-length cDNA. Then, polymerase chain reaction (PCR) amplification for
the conserved domain was carried out in the following programs: 95 ◦C for 2 min; 35 cycles
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of 95 ◦C for 30 s; 60 ◦C for 30 s and 72 ◦C for 30 s; and a final extension at 72 ◦C for 5 min.
The PCR products were detected by 1.2% agarose gel electrophoresis and sequenced by
the Tianyihuiyuan Biotech Company (Wuhan, China). The programs of 5′ and 3′ RACE
were set as 94 ◦C for 5 min; followed by 5 cycles of 94 ◦C for 30 s and 72 ◦C for 3 min;
5 cycles of 94 ◦C for 30 s, 70 ◦C for 30 s, and 72 ◦C for 3 min; and 25 cycles of 94 ◦C for 30 s,
68 ◦C for 30 s, and 72 ◦C for 3 min. The PCR products were purified using a gel extraction
kit (Omega, Wuhan, China) and the purified products were ligated to a pMD18T vector
(Takara, Dalian, China), and the recombinant plasmids were subsequently transformed
into competent Escherichia coli DH5α cells (Biomed, Beijing, China). Positive clones were
screened and sequenced by the Tianyihuiyuan Biotech Company. Primers based on the
transcriptome sequences (https://ngdc.cncb.ac.cn/gsa/, accessed on 10 November 2021
with accession number CRA005737) were designed and other primers for related genes
were used (Table 1).

Table 1. Primers are used for PCR.

Primer Name Primer Sequence (5′–3′) Application Related References

ERα-F GTTGATCCCTCCGCTGACAGT

CDS amplificationERα-R CTCGCAAGACCAGACTCCATAAT

ERβ-F TGACGTTACTACAGCCAGCATCAC
ERβ-R CGACCTCCACATCAGACCCATC

ERα-GSP5-1 ATCTGGTGGAGCATGGCAACTC

5′ RACE
ERα-GSP5-2 GAATCTGGTGGAGCATGGCAAC

ERβ-GSP5-1 TAATCAAAGCTCGTGGAGTGGC
ERβ-GSP5-2 GCGTACGTGTATTTGTCGGTCA

ERα-GSP3-1 GCCAGTTAACAACTGCATCAACTT

3′ RACE
ERα-GSP3-2 AAGCAGGGAAGATGAGAATTTGC

ERβ-GSP3-1 ATGCTAGATGCTCACCGATTGC
ERβ-GSP3-2 CAGGCACATGAGCAATAAAGGG

UPM short CTAATACGACTCACTATAGGGC
5′ and 3′ RACEUPM long CTAATACGACTCACTATAGGGCAAGCA

ERα-F CCGACTGCGAAAGTGCTATGA

qPCR

ERα-R ACGCTGGACTGTTCTTCTTGCTA

ERβ-F GCAACAGACAACTCGCATGG
ERβ-R GTGTGTGCATTCAGCATCTCC

Rspo1-F CCTGCTGGAGAGGAATGACA [7]
Rspo1-R CCCACTCGCTCATTTCACA

Wnt4-F GAGGTGATGGACTCGGTGCG
Wnt4-R CCCGTTCTTGAGGTCGTGGTC

β-catenin-F GCTTTGGGACTCCACCTTACAG
β-catenin-R ATCACCAGCCCGAAGAACAGT

Foxl2-F ATCTGTTTTTATTAGCACGGTT [25]
Foxl2-R CCTTCTCAGGAGGAGTTTCGT

Cyp19a1-F TCGTGGCTGTACAAGAAATACGAA [26]
Cyp19a1-R CCAGTCATATCTCCACGGCTCT

Sox3-F GAGTGTAGAGGTGGAATGGAAACG
Sox3-R AAACCCTCAAGCAGGATACGG

Sox9-F TACGACTACACCGACCACCA
Sox9-R GTAGTGTCTGCAATGGGCGT

Dmrt1-F CCGCCTCGGGAAAGAAGTC [27]
Dmrt1-R TGCTGGATGCCGTAGTTGC

Amh-F CGGCTACTCCTCCCACACG
Amh-R CCTGGCTGGAGTATTTGACGG

Ps4085-F GTTTGAAGTGCTGCTGGGAAG

Sex identification [2]Ps4085-R TTCCCCGTATAAAGCCAGGG

COI-F CAACCAACCACAAAGACATTGGCAC
COI-R ACCTCAGGGTGTCCGAAAATCAAA

Gapdh-F AGAACATCATTCCAGCATCCA
Internal controlGapdh-R CTTCATCACCTTCTTAATGTCGTC

https://ngdc.cncb.ac.cn/gsa/
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2.6. Sequence and Phylogenetic Analysis

Sequences of ER protein from different species were downloaded from the NCBI
database and aligned using DNAMAN. The protein domains were predicted using online
software. A phylogenetic tree was then constructed by the neighbor-joining (NJ) method,
with 1000 bootstrap replicates using MEGA 7.0 (http://www.megasoftware.net, accessed
13 December 2021).

2.7. Gene Expression Analysis by Quantitative Real-Time Reverse Transcription-PCR

The expression patterns of ERs genes and the transcriptional response to E2 were
investigated based on quantitative real-time reverse transcription-polymerase chain re-
action (qRT-PCR). Total RNAs were isolated from each tissue of the Chinese soft-shelled
turtles according to the Trizol kit, 1500 ng/µL of total RNA was reverse-transcribed to
single-strand cDNA using a HiScript®II Q RT SuperMix for qPCR (+gDNA wiper) (Vazyme)
according to the manufacturer’s instructions. The primers used for qRT-PCR (Table 1) were
designed according to the ERs sequences. The Gapdh gene was used as an internal control.
The qRT-PCR was performed using SYBR Select Master Mix (Vazyme) with the following
thermal cycling conditions: 95 ◦C for 1 min, 40 cycles of denaturation at 95 ◦C for 15 s,
annealing at 60 ◦C for 30 s. Each group was performed for three replicates to reduce the
error of the experiment. The relative expression levels of ERs were normalized to that of
Gapdh quantification by the 2−∆∆Ct method. The same method was used to examine the
expression levels of other genes.

2.8. Statistical Analysis

The qRT-PCR data were expressed as mean ± SD and statistical analysis (one-way
ANOVA) was performed by one-way analysis of variance (ANOVA) followed by Duncan’s
multiple comparison test. The level of statistical analysis was set at p < 0.05 and was
considered significant.

3. Results
3.1. Sequence Analysis of P. sinensis ERs Gene

The full-length cDNA sequence of ERα was 3014 bp, with an 900 bp 5′ untranslated
region (UTR), a 260 bp 3′ UTR with poly (A) tail, and an open reading frame (ORF) of
1854 bp, coding 617-amino acid. ERα protein contained a DNA-binding domain (DBD;
amino acids 203–284), a ligand-binding domain (LBD; amino acids 333–570), and a final
C-terminal (amino acids 580–617). (Figure 1). The amino acid sequence of P. sinensis ERα
shared 88.33, 82.80, and 79.77% identity with that of Mauremys mutica, Chelonia mydas,
and Chrysemys picta bellii, respectively (Table 2). The phylogenetic analysis showed that P.
sinensis formed a clade with other turtle species with high similarity (Figure 2).

Table 2. Comparative identity of the amino acid sequence of ERs.

ERα ERβ

Species Accession
Number Identity (%) Accession

Number Identity (%)

Mauremys mutica XP 039386245.1 88.33 XP 039390595.1 93.17
Chelonia mydas XP 007060399.2 82.80 XP 007068065.2 86.35

Chrysemys picta bellii XP 042702245.1 79.77 XP 005285947.1 87.54
Numida meleagris XP 021237930.1 76.01 XP 021259551.1 80.03

Gallus NP 990514.1 74.28 XP 040556512.1 80.38
Homo sapiens NP 000116.2 67.49 NP 001428.1 69.11

Sus scrofa XP 020938661.1 67.49 NP 001001533.1 70.31
Mus musculus NP 001289460.1 66.47 NP 997590.1 72.01
Equus caballus XP 023488612.1 64.88 NP 001296408.1 70.31

Danio rerio XP 009297713.1 41.18 NP 851297.1 49.66

http://www.megasoftware.net
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Figure 1. The cDNA sequence and amino acid of ERs of P. sinensis. The start codon and end codon
are in bold black, * denotes the termination codon, and the underline denotes the 3′ untranslated
region with the tailing signal AATAAA. SP: signal peptide. DBD: DNA-binding domain. LBD:
ligand-binding domain. (A) The cDNA sequence and amino acid of ERα. (B) The cDNA sequence
and amino acid of ERβ.
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Likewise, the full-length cDNA sequence of ERβ was 2950bp and comprised a 483-bp
5′ UTR, a 1671-bp open reading frame, and a 796-bp 3′ UTR. The 556-amino acid ERβ
protein with an N-terminal (NH2) signal peptide (SP; amino acids 60–107), a DBD (amino
acids 173–233), and an LBD (amino acids 305–523). The blast results show that the ERβ
protein sequence had a high identity with, M. mutica, C. bellii, and C. mydas of 93.17, 87.54,
and 86.35%, respectively (Table 2).

3.2. Tissue and Embryonic Development Stage Distribution of ERs

The expression of ERs in different tissues and embryonic development stages between
ZZ-male and ZW-female were evaluated by qRT-PCR. In normal adults, ERs were detected
in the heart, liver, spleen, lung, kidney, brain, muscle, and gonad. Both ERα and ERβ had
the highest expression in the gonad while the muscle had the lowest level for ERα, the
heart for ERβ in females (Figure 3A), the lung for ERα, and the spleen for ERβ in males.
ERβ had a higher expression value than ERα only in the testis and kidney (Figure 3B). The
ERs expression of embryonic development stages between ZZ-male and ZW-female in the
blank group held a prominent discrepancy that ERα had higher expression levels than ERβ
across all developmental stages for both sexes in the blank group, suggesting that ERα may
play a greater role during these developmental stages (Figure 3C,D).
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Figure 3. Expression profiles of ERs cloned from P. sinensis in normal adult females (A) and male
tissues (B), and expression analysis in blank group female embryos (C) and male embryos (D) at
different embryonic development stages. Data are mean ± SD (n = 3). Significant differences at
p < 0.05 are labeled with different letters.
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3.3. Effect of Estradiol on ERs Expression and Sex-Related Genes

To analyze the influence of E2 on ERs, their expressions were investigated in the
experimental group during embryonic development in the Chinese soft-shelled turtles
throughout qRT-PCR. The relative expressions of ERs after treatment with different concen-
trations of E2 were measured (Figure 4). Compared with the control group, the expression
of ERα gradually increased from stage 13 to 20, which was more obvious after stage 14. The
expression of ERα was markedly up-regulated and peaked at stage 17 after the injection
of 1 mg/mL and 5 mg/mL E2 (Figure 4A,B) while the expression of ERβ owed a stable
increase (Figure 4D,E). The expression of ERα was enhanced and peaked at stage 19 after
treatment with 10 mg/mL E2, and ERβ expression was significantly increased and peaked
at stage 19 during the embryonic development stage (Figure 4C,F). Additionally, the ex-
pression level of ERα peaked at stage 17 with the concentration of E2 for 1 mg/mL, and
5 mg/mL and it would continue to grow to stage 19 for 10 mg/mL. Meanwhile, ERβ also
reached its highest expression level at stage 17 for 10 mg/mL. Thus, to further explore the
effect of ERs on sex differentiation, sex-related genes that responded to E2 were measured
at stage 17 (Figure 5). The expression levels of Rspo1, Wnt4, β-catenin, Foxl2, Cyp19a1, and
Sox3 had an increased expression with increasing concentrations while Sox9, Dmrt1, and
Amh were significantly inhibited.
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4. Discussion

Sex determination and the gonadal development mechanism in P. sinensis were of
concern because of the economic characteristics associated with significant sexual dimor-
phism [28]. To obtain all-male offspring, the pseudo-females (∆ZZ) could be obtained by
the treatment of E2 to male embryos, then the pseudo-females (∆ZZ) and male (ZZ) can
produce all-male individuals [6,24]. In the present study, the full-length cDNA sequences
of ERα and ERβ were cloned and their expressions in normal adult tissues and embryonic
development stages were investigated.

RT-qPCR analysis in this study revealed that ERs exhibited different expression profiles
in the tissues of females and males, indicating their different physiological functions [29].
Both of them were detected in the gonads with high expression levels, suggesting that they
were related to the development of gonads and sex differentiation. Even knocking down
estrogen receptor-related factor (ERRF) in Drosophila led to improperly developed testis [30].
In the present study, the expression of ERα was higher than ERβ in the ovary, suggesting
that ERα may play a critical role in early female sex differentiation and ovary development.
There have been articles that suggest ERα plays a major role in the differentiation of the
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gonad of P. sinensis [31]. ERβ was mostly distributed in the ovary and testis which was
similar to Mandarin fish [32]. In P. sinensis, it has been shown that ERα agonists could
induce ovarian differentiation and sexual reversal [33]. In mammals, the expression of
ERα was located in the interstitial cells and germinal epithelium, and ERβ was expressed
in mesenchymal–epithelial cells of the early ovarian development phase, indicating that
both of those were indispensable for germ cell differentiation and ovarian lumen devel-
opment [34,35]. The expression level of ERβ in the testis was higher than that of ERα and
showed a high level in the kidney. Previous research showed that the expression level
of ERβ represented obvious sex differences which were 4–8 times higher in males than
in females [36]. In teleost fishes, there is another type of ER named ER-γ whose DBD
(ERβ for amino acids 155–234, ERβ2 for amino acids 171–252) shared 88.4% identity and
had similar expression levels in the pituitary [20] and has been re-named ERβ2 [37]. The
similarity between ERβ and ERβ2 seems to be specific for teleost fishes likely due to a gene
replication event causing the receptor’s emergence. In tilapia, the homozygous mutants
of ERβ resulted in decreasing spermatogonia and an abnormal increase in spermatozoa,
and the mutation of ERβ2 could cause reproductive tract malformations, indicating that
ERβ was critical for spermatogenesis while ERβ2 was indispensable for the development
of a male reproductive organ [38]. Additionally, the high expressions of ERα and ERβ
were observed in the spleen, brain, and liver which were similar to the results in mice and
humans [39,40].

Estrogen exerted a variety of important physiological effects, which have been sug-
gested to be mediated via the two known ERs [41]. In this study, ERα played a major role
during the embryonic development stages of both sexes and had a more marked change
than ERβ after the stimulation of E2, which suggested that ERα and ERβ may play different
roles and even have antagonistic effects. In American alligators, studies have shown that it
was ERα, rather than ERβ, that regulated the sexual reversal induced by estrogen [42]. In
mice, Erα-mediated estrogen effects in female reproductive tracts while ERβ antagonized
ERα-mediated estrogenic action [43]. Moreover, ERβ inhibited ERα-mediated gene tran-
scription in the presence of ERα, whereas, in the absence of ERα, it could partially replace
ERα and even regulate the transcriptional activity of ERα [44]. In Branchiostoma belcheri, the
staining of the related cells of gonads revealed that the ERα and ERβ co-existed in the same
cell, but the target cell localization was different, suggesting that ERα and ERβ may have
different roles in the mediated estrogen signaling pathway and the mechanism of gene
transcription [45]. In tilapia, mutations in ERα caused a loss of reproductive function in
both males and females, while ERβ mutants showed significantly delayed ovarian develop-
ment and follicle growth in females while males showed fewer spermatogonia and more
abnormal sperms. The ERβ2 mutants displayed the abnormal development of the ovary
and testis, resulting in infertility in females and males, respectively, although they produced
gametes in their gonads [38]. These mutation results of ER subtypes further suggest that
different ERs may play different roles during embryonic development stages [46].

Furthermore, the sex-related genes were detected at stages 17 after the E2 treatment
to male embryos, but the expression of genes showed a different expression change with
ERs. With the increase in E2 concentration, the expression levels of female-related genes
Rspo1/Wnt4/β-catenin/Foxl2/Cyp19a1 were clearly increased. Conversely, the expres-
sion levels of male pathway genes such as Sox9/Dmrt1/Amh were significantly inhibited.
Compared with ERs, the expression levels of genes of male and female pathways changed
differently after E2 treatment. At stage 17, with the increase in E2 concentration, the ex-
pression level of ERα compared with ERα under 1 mg/mL and 5 mg/mL E2 treatment was
decreased, this is different from the higher expression of female sex-related genes and the
lower expression of male sex-related genes with increasing concentration. Moreover, the
peak value stage of ERs clearly shifted backward, which was ERα for stage 17, stage 17,
and stage 19 while ERβ for stage 15, stage 16, and stage 17 under 1 mg/mL, 5 mg/mL and
10 mg/mL E2, respectively. This may be because sex-related genes were not only regulated
by ERs but also undertook the effect of some other factors such as nuclear transcription
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factor-κB (NF-κB) [21,47] which was generally referred to as “transcriptional cross-talk” [48].
When the ERs bond to the NF-κB, inhibition of NF-kB activity by ERα and ERβ would be
caused if the AF-1 of ER was activated [49,50]. The ability of ERα to activate cooperatively
transcription with NF-kB required the AF-1 domain [51]. Thus, due to the combination of
NF-kB and ERs, the signal entering the nucleus to bind to ERs would be reduced, resulting
in different expression trends of ERs and sex-related genes.

The sex determination and sex differentiation of animals are very complex physio-
logical processes, focusing on the mechanisms underlying sex differentiation by the ERs
will aid in the development of effective breeding strategies. ERα and ERβ are necessary
for mediating the effects of E2; in the present study, ERα may play a more important role
than ERβ during embryonic development stages. Their detailed molecular mechanisms in
the sexual reversal process and reproduction deserve further study. Subsequent studies
can specifically explore their functions by knocking down individual nuclear receptors
and the experimental research results will hopefully serve as useful feedback informa-
tion for improvements for the Chinese soft-shelled turtle’s gonadal differentiation and
breeding efforts.

5. Conclusions

In this study, the pseudo-females could be obtained by injecting estradiol, in which
the sex was reversed with the male genotype and female phenotype. The full-length of ERα
was 3014 bp, while ERβ was 2095 bp. After treatment with different concentrations of E2,
the expression levels of ERα and ERβ were enhanced clearly. Besides, female sex-related
genes Rspo1/Wnt4/β-catenin/Foxl2/Cyp19a1 were also increased while male sex-related
genes Sox9/Dmrt1/Amh were down-regulated significantly. This study provides a reference
for further investigations of the molecular mechanism of sex determination and all-male
breeding of P. sinensis.
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