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Abstract: Dike-ponds in fisheries often present multiple pond conditions such as pure, suspended
sediment, water bloom, semidry conditions, etc. However, the impact of these conditions on the
performance of extracting dike-pond from remote sensing images has not been studied. To solve this
problem, we explore the existence of such impacts by comparing the performance of four rule-based
methods in two groups of test regions. The first group has few multiple pond conditions, while the
second has more. The results show that various measure values deteriorate as the proportion of multi-
ple pond conditions in the regions increases. All four methods performed worse in the second group
than the first, where the overall accuracy decreased by 8.80%, misclassification error increased by
3.69%, omission error raised by 10.53%, and correct quantity rate dropped by 8.23%, respectively.
The extraction method that ingested multiple pond conditions performed indistinguishably from the
other methods in the first group. However, it outperformed the other methods in the second group,
with a 4.22% improvement in overall accuracy, a 10.25% decrease in misclassification error, and a
19.03% increase in the correct quantity rate. These findings suggest that multiple pond conditions can
negatively impact the extraction performance and should be considered in dike-pond applications
that require a precise pond size, number, and shape.

Keywords: dike-pond; classification; rule-based method; multiple pond conditions

1. Introduction

Aquaculture ponds supply essential fishery products in many countries [1–3]. A
dike-pond is a particular type of aquaculture pond mainly located in the low-lying river
delta of China’s eastern coast [4,5]. The pond water is used for farming aquatic organisms,
such as fish, shrimp, and mollusks, while the dike land is used to grow cash crops, such as
vegetables, mulberries, and fruits. Due to its combination of water and land resources to
adapt to the local environment [6–8], the dike-pond is designated as a globally important
agricultural heritage system by the food and agriculture organization of the United Nations
(FAO). Moreover, dike-pond as a type of artificial wetland benefits regional ecology, and
thus is recognized as a sustainable development agriculture system [9–12]. In the last
decade of rapid urban sprawl in China’s eastern coastal economic zone, significant changes
in the size, quantity, and pattern of dike-ponds have occurred [13,14]. These changes play
an essential role in the local economic development and ecological services.

As important fishery resources, sustainable use of dike-ponds requires efficient mon-
itoring and mapping. Conventional methods of sampling the fisheries from field inves-
tigation are limited in spatial and temporal distribution, making it difficult to examine
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the entire ecosystem [15]. With the development of remote sensing technologies, it has
become possible to examine the extensive fishery resources in acceptable temporal-spatial
resolution. For example, based on remote sensing, precise mapping of pond aquaculture
can be used to estimate fishery production [16]. Chlorophyll concentrations and sea surface
temperature derived from remote sensing have been used to monitor fishery resources and
control fisheries [17]. Remote sensing is also applicated to identify fish distributions and
abundance by satellite data-based sea surface temperature and chlorophyll-a anomalies, in-
dicating the contribution of remote sensing to fisheries management and conservation [18].
Other applications monitor the temporal and spatial changes of fishery resources [19,20].

Remote sensing from earth observation satellites provides timely data for tracking
dike-pond landscape dynamics [21–23]. There are three types of methods for extracting
dike-ponds from remote sensing images. The first method is visual interpretation. The
features of a dike-pond in an image (such as color, size, shape, and relationships) are visually
recognized and interpreted [2,22–24]. Theoretically, this method can accurately extract dike-
ponds with structure and shape details; however, the accuracies depend on the interpreter,
and the method is time consuming. The second method is supervised classification. Several
samples representing dike-ponds are selected from an image at first. Then, classifiers
estimate which pixels or objects (groups of pixels) within the image match the features of
the dike-pond samples [13,25–27]. Maximum likelihood and decision tree are the common
classifiers in extracting ponds. This method has higher efficiency than visual interpretation,
but the conventional classifiers encounter some difficulties, such as distinguishing dike-
ponds from other classes with similar spectral features. The third method is rule-based
classification. After an image is segmented into groups of neighboring homogeneous pixels
(object) [16,23,28–30], a series of spectral, textural, and spatial rules are applied to identify
dike-pond objects. Previous studies mainly employed rules of near-infrared (NIR) [31,32]
and normalized difference water index (NDWI) [20,21,33,34]. Since these classification
rules can be flexibly set and combined, in recent years, some studies have used this method
to extract aquaculture ponds with Google Earth Engine expeditiously [3].

The above-mentioned methods are compatible with a single pond condition, most
often the “pure” condition (Figure 1a). When pond conditions become diverse (as shown in
Figure 1), this leads to substantial challenges identifying dike-ponds in multiple conditions
using exiting methods. Through field investigations, it was found that ponds can become
turbid during farming activities. For example, operating oxygen machines or fish foraging
agitate the water and induce sediment to suspend. In addition, farmers regularly or
irregularly deliver feed or medicine into ponds. These suspended sediments block sunlight
from penetrating the water body, resulting in different spectral features than the pure
condition (Figure 1b). Furthermore, water blooms also occur during breeding. It is the
result of nutrients entering the ponds and causing excessive growth of algae. A rapid
increase or accumulation in the population of algae makes the pond exhibit more vegetative
features other than water (Figure 1c). Moreover, farmers drain the water after one round
of breeding for cleaning purposes, at which time the pond will appear dry or semidry
(Figure 1d). The different pond conditions result in a wide range of spectral features of dike-
ponds. However, there is a lack of research to explore whether multiple pond conditions
cause performance degradation of the extraction methods.

To fill this knowledge gap, this study aims to explore the existence of the impact of mul-
tiple pond conditions on extraction performance to help improve the extraction accuracy
of dike-ponds. For this purpose, we analyze the features of various pond conditions and
then compare the extraction performance between methods with and without considering
multiple pond conditions. Moreover, the methods used and potential applications of this
research are discussed prior to conclusions.
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Figure 1. Actual scenes and corresponding images of various pond conditions.

2. Data and Methods
2.1. Data

The image used in this study was taken by the panchromatic and multi-spectral (PMS)
cameras of the Chinese Gaofen-2 satellite on December 3rd, 2017. Within the spectral range
of the cameras (0.45–0.90 µm), there are four spectral channels blue (B), green (G), red (R),
and near-infrared (NIR). The panchromatic band has a spatial resolution of 0.8 m, and the
multi-spectral bands have a spatial resolution of 3.2 m. The image has been preprocessed
using systematic radiometric correction and atmospheric correction. After that, we use
cubic convolution for resampling and use the NNDiffuse method for pan-sharpening.

The image has a stripe width of 23 km (22.67–22.92 N, 112.97–113.23 E) covering the
center of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) (Figure 2). This
area is a delta landform created by the Pearl River, featuring dense river networks. Local
farmers constructed dike-ponds in low-lying areas that are unsuitable for traditional rice
farming. After hundreds of years of development, the areas have become one of the most
concentrated centers of dike-ponds. The dike-ponds here have diverse pond conditions
and shapes, making them ideal areas for this study.

2.2. Methods

We use two groups of regions to test the extraction performance of four methods. The
first group has fewer multiple pond conditions, and the second group has more. We believe
that if the extraction performance gets worse in the second group, it indicates that the
impact of pond conditions needs to be seriously taken care of.

Each group has two test regions, the two regions in the first group are marked as
regions #1 and #2, and another two regions in the second group are marked as regions #3
and #4. Four test regions with 1000 × 1000 pixels are selected from the image (Figure 2).
Four accuracy measures (overall accuracy, misclassification error, omission error, and
correct quantity rate) are computed to assess the extraction performance of the methods.
The first three measures are calculated based on the confusion matrix. A confusion matrix
is used to summarize the true/false pixels between the extraction results and the ground
truth of the test region [35]. The fourth measure “correct quantity rate” is introduced in
this study to assess the accuracy of dike-pond quantity. Such a rate is defined as the ratio
of the number of correctly extracted dike-ponds to the number of actual dike-ponds based
on ground truth. The value range of the correct quantity rate is 0–100%. A larger value
indicates a higher correct rate.
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2.2.1. Rule-Based Methods

The four methods of dike-pond extraction compared in this study are all rule-based,
marked as methods A, B, C, and D. The classification rules mainly consist of feature values
or their derived indices to determine the class of each object. There are three indices that are
used in four methods, including NDWI, normalized difference vegetation index (NDVI),
and entropy of gray-level co-occurrence matrix (GLCM).

The NDWI is a spectral indicator that can be used to identify water bodies [36,37]. It is
calculated as follows.

NDWI =
G − NIR
G + NIR

(1)

where G and NIR represent the values of the green and the near-infrared band, respectively.
A positive NDWI value generally indicates that the ground is covered by water.

The NDVI is a widely used indicator for assessing whether an object contains live
green vegetation [38]. It is calculated as follows:

NDVI =
NIR − R

NIR + R
(2)

where R and NIR represent the values of the red and near-infrared bands, respectively. The
value of NDVI varies between −1 and 1, and a positive value generally indicates vegetation
coverage.

The GLCM characterizes the texture by considering the spatial relationship of the
pixels [39]. It determines how often pairs of pixels with specific values occur in the image.

Pi,j =
Vi,j

∑N−1
i,j=0 Vi,j

(3)
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where i,j represent the row and column numbers of the matrix, respectively; N is the
number of rows or columns of the matrix; Vi,j is the value of the cell (i, j) of the matrix; and
P is the normalized value of the cell. When all the values in the GLCM are equal or reach
maximum randomness, the GLCM entropy is high.

We create three methods with reference to existing studies of pond extraction [3,20,31–34].
Method A uses an NDWI rule to extract water bodies, including dike-ponds, then uses
shape rules (the shape index is the standardized ratio of the perimeter to the area of
the object, rectangular fitting compares the area of the object to the area of the oriented
bounding box enclosing the object) to exclude rivers, then NIR and GLCM rules to exclude
lakes and other water bodies (Figure 3a). Method B uses NDVI and NIR rules to extract
dike-ponds. A size rule with an empirical threshold is used to exclude the small water
areas (Figure 3b). Method C uses an NDWI rule to identify water bodies, including
dike-ponds, then uses shape rules (border ratio compares the length of the shared border
between the object and another class object to the length of the object border) to exclude
other water bodies (Figure 3c). The rules of these three methods are not set for multiple
dike-pond conditions.
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Method D is proposed in this study because no existing method has been developed
to identify multiple pond conditions (Figure 3d). The process and indices of this method
are similar to the above-mentioned three methods so they can be compared together. The
rules of method D are set according to the result of feature analyses of four pond conditions,
including pure, suspended sediment, water bloom, and semidry. We select 100 samples
of each pond condition and statistically analyze their feature values of NIR, brightness,
NDWI, NDVI, and GLCM entropy.

2.2.2. Image Segmentation

We execute object-based segmentation on the image before implementing the rule-
based method. It can reduce within-class spectral variation and derive spectral, spatial,
and textural information by grouping neighboring pixels together based on their homo-
geneity. This study applied a multi-resolution segmentation algorithm within eCognition
9.0 software (Trimble Germany GmbH, Munich, Germany).

The segmentation results vary based on a series of parameters settings. The scale
parameter defines the maximum standard deviation of the homogeneity criterion. Higher
values of the scale parameter result in larger objects, while lower values result in smaller
objects. Color/shape and compactness/smoothness are two pairs of homogeneity criteria.
The sum of each pair equals a value of one, such that they balance each other. Color is the
value of an image pixel, and the shape criterion includes compactness and smoothness.
Compactness is a ratio of the perimeter to the area of the object; smoothness is a perimeter
ratio of the object to a minimum bounding box of the object. We set these parameters
through comparative experiments. As shown in Figure 4, the scale parameter 70 presents
under-segmentation results. The polygon marked in red is an object that covers more than
one pond. This setting is subject to causing classification errors because each object is only
assigned to one class. When the scale parameter is set to 60 or 50, the red polygon becomes
smaller and covers a part of one pond, such that the two ponds are separated. The scale
parameter is set to 60 in this study due to the higher classification efficiency. Similarly, the
shape parameter is set to 0.10, and the color is set to 0.90. The compactness parameter is
0.50, and the smoothness is 0.50.
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3. Results
3.1. Feature Analysis

We analyze the surface reflectance values of 100 samples of four pond conditions and
other object classes (e.g., vegetation, bare soil, roads, and buildings) to show the feature
differences in various pond conditions. First, the pure conditions of dike-pond can be
distinguished from other classes based on the NDWI (Figure 5a). Like those of a typical
water body, such condition samples usually have NDWI values greater than zero, while
those from other classes are generally less than zero. Then, different indices are used to
further analyze other conditions. Note that the suspended sediment condition has a low
reflection in the NIR band compared to other classes, despite the sediments within the
water obstructing some light. The NIR feature values of such condition samples are mostly
around 0.1 (Figure 5b). The condition samples of water bloom have higher NDVI values
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than other classes, except for vegetation (Figure 5c). Therefore, the GLCM entropy is added
to differentiate water bloom condition from vegetation. Water bloom condition samples
have lower entropy values than vegetation due to their smoother texture (Figure 5d). When
the pond water is drained, the mud at the bottom is exposed. As the mud has been soaked
in water for a long time, its spectral feature differs from bare soil. The feature values of
brightness from a semidry condition sample are generally between 0.08 and 0.12 (Figure 5e).
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We set the classification rules and their thresholds for method D based on the above
feature analysis. The extraction result of method D shows that the multiple pond conditions
are identified. As shown in Figure 6a, the pond is in suspended sediment condition and is
fully extracted (Figure 6d). The pond in Figure 6b is in water bloom condition, and it is
identified in two parts: the main part is a bloom shown in green, and the other part is pure
shown in blue (Figure 6e). Four ponds in Figure 6c are in semidry condition; many of them
are extracted in red (Figure 6f). These results suggest that method D can extract most of the
dike-ponds in multiple pond conditions with different spectral features.
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Gaofen-2 to represent multiple pond conditions, and d–f are the corresponding classification results.

3.2. Impact Analysis

The impact of multiple pond conditions is explored by comparing the extraction
performance of the four methods in the two group regions. Regions #1 and #2 are the first
group, and regions #3 and #4 are the second group with more non-pure conditions pond
(suspended sediment, water-bloom, semidry). Only 4.59% of the ponds in the first group
are non-pure conditions, and up to 15.14% of the ponds in the second group are non-pure
conditions. The classification rules of method A, B, and C are not based on multiple pond
conditions, whereas method D is.

We analyze the impact on various accuracy measures as the proportion of multiple
pond conditions in the test regions increases. The trends of the overall accuracy from the
methods are similar in that their measure values are nearly 90% in the first group but drop
to around 80% in the second group (Figure 7a). This means overall accuracy decreases
as the proportion of multiple pond conditions in the regions increases. In the first group
with few pond conditions, the overall accuracy of the methods differs by no more than
1% except for method A. While in the second group, the overall accuracy gap between
the methods widens to an average of 4.22%. Method A has the lowest overall accuracy
among the four methods in all four regions. The overall accuracy values using methods B
and C in the second group are both less than 80% and decrease by an average of 11.89%
compared to the first group. Comparing to the other three methods, method D has the
highest overall accuracy and maintains an overall accuracy above 80% in the second group.
This indicates that the proportion of multiple pond conditions has a negative impact on the
overall accuracy measure for all four methods. In addition, the method based on multiple
pond conditions is less affected than the method based on a single pond condition.
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Next, we compare the changes in misclassification error and omission error of the
four methods. Lower error values indicate better extraction performance. Misclassification
error of the methods, except method D, increased from the first group to the second group,
with method A increasing by 15.01%, method B increasing by 18.97%, and method C
increasing by 10.86% (Figure 7b). The increasing misclassification error means that there are
more extracted results which are not true dike-ponds. For example, there are 77.55% in the
first group and only 69.62% in the second group of method A results are true dike-ponds.
Methods B, C, and D have similar misclassification errors in the first group. However, in
the second group, the errors of methods B and C rise to over 13%, while that of method
D has hardly changed and remains below 10%. On average, 90.78% of method D results
are true dike-ponds. These findings indicate that the increasing proportion of multiple
pond conditions increases the misclassification error of the method based on a single pond
condition but has little effect on that of the method based on multiple pond conditions.

The omission error of the methods also rose from the first group to the second group
(Figure 7c). The exception is method A, which has a low omission error. The other three
methods have similar omission errors in the first group, with an average error of 11.02%,
and have a higher error in the second group, with an average error of 25.99%. There is
an average error gap of 0.31% between methods B/C and method D in the first group,
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and the gap widened to 7.87% in the second group. That means methods B/C misses
more dike-ponds than D when the proportion of multiple pond conditions increases. With
multiple pond conditions, it is difficult for most methods to achieve both low errors of
misclassification and omission. The misclassification error of B is higher than that of C, and
the omission error of B is lower than that of C. There are two spectral rules (NDVI and NIR)
in method B, which help it identify more dike-ponds than C. However, method B did not
include other rules, such as spatial rules, making its result show more false dike-ponds than
C. Method D produces the lowest misclassification error and the second-lowest omission
error, as the methods identify multiple pond conditions based on classification rules.

The last measure is the correct quantity rate, which is used to assess the accuracy
of dike-pond counting. A similar trend appears in such rate of the four methods; that
is, a lower rate in the second group than in the first group (Figure 7d). The decrease is
the smallest (3.24%) when using method D, and the other three methods have an average
decrease of 9.89%. The different declines indicates that the multiple pond conditions have
less impact on the method based on multiple pond conditions. The correct quantity rate
is mainly reflected by missed and inaccurately connected ponds, which can be further
confirmed by the extraction results. In the region #1 (first row in Figure 8), some missed
and connected dike-ponds appear in the result of method A (Figure 8b), and there is not
much visual difference in the results of the other three methods (Figure 8c–e). The results of
methods A (Figure 8g) and C (Figure 8i) show more missed dike-ponds on the left side of
region #2 (second row in Figure 8). In regions #3 and #4 (third and fourth row in Figure 8),
method A missed more dike-ponds and connected many separate dike-ponds (Figure 8l,q).
When these adjacent ponds are connected, the extracted number is less than the ground
truth number. Inaccurate quantity causes a series of dike-pond applications to be unreliable;
for example, underestimated number, overestimated average yields, and chaos pattern
measurement. Method B missed more dike-ponds and generated fragments at the bottom
of region #4 (Figure 8r). Method C extracts fewer dike-ponds than the other three methods
in regions (Figure 8n,s). Method D presents fewer missing dike-ponds than the other three
methods and keeps most of the adjacent ponds separate (Figure 8o,t), thus avoiding an
inaccurate dike-pond quantity reduction. This suggests that method D achieves the highest
correct quantity rate at around 90%.

All four accuracy measures prove that the performance of dike-pond extraction deteri-
orates as the proportion of multiple pond conditions increases. From the first group to the
second group, the average degradation of overall accuracy is 8.80%, misclassification error
is 3.69%, omission error is 10.53%, and correct quantity rate is 8.23%. An exception is that
the omission error of method A is smaller in the second group than the first group. This is
primarily because method A sets the rules with a low NDWI threshold to identify more
water bodies. However, the cost of this setting is that it has the lowest overall accuracy,
highest misclassification error, and lowest correct quantity rate in both the first and second
groups (Figure 7).

The classification rules set for multiple pond conditions can mitigate the negative
impact of multiple pond conditions on extraction performance. Faced by the regions
with more pond conditions, method D has an average of 4.22% higher overall accuracy,
10.25% lower misclassification error, and 19.03% higher correct quantity rate than the other
three methods without considering multiple pond conditions. The smaller decrease in
performance indicates that considering multiple pond conditions in the extraction method is
beneficial for weakening the adverse effects of the increased proportion of pond conditions.
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4. Discussion

The results of the aforementioned accuracy measures show that all the methods
performed worse in the second group of test regions than the first. There may be other
causes besides multiple pond conditions, since in reality it is difficult to find two regions
that only differ in pond conditions. Nonetheless, the performance degradation is more due
to multiple pond conditions, as suggested by the performance gap between methods within
the same group. In the first group with less multiple pond conditions, the performance of
method D, which sets classification rules for multiple pond conditions, is indistinguishable
from the other methods; while in the second group with more multiple pond conditions,
assuming the degradation is due to other factors, method D would not outperform the
other methods either, but it overthrows the assumption. Furthermore, the distinctive
features of different pond conditions are not only confirmed in our feature analysis, but also
documented in studies of specific water bodies, such as water bloom [40–42], suspended
sediment [43–45], or semidry lake [46,47]. Therefore, it is reasonable to believe that multiple
pond conditions are the main cause of performance degradation.
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Another concern is the methods used in this paper. We did not demonstrate a novel
extraction method, because it is not our goal to develop a new method or choose the best
method of dike-pond extraction. The methods are used to explore the impact of multiple
pond conditions on the extraction performance. For this purpose, they are primarily derived
from existing methods of dike-pond extraction. NDWI is the most popular rule for pond
extraction [3,34,48], and for this, methods A, C, and D all contain a similar NDWI rule. NIR
rule also appears in existing research, but their functions in the dike-pond extraction are
not the same [49,50]. In this paper, method A uses NIR to exclude lakes from dike-ponds.
Method B uses it to extract dike-pond regardless of conditions, and method D applies this
rule to identify dike-ponds in suspended sediment condition. The methods used in this
paper all are rule based, so they can set rules for specific pond conditions, better showings
the impact of multiple pond conditions. In contrast, the visual interpretation method is
mainly affected by the interpreter [22], and the supervised classification is influenced by the
classifier [51,52]. It can be seen that all the four methods have similar indices and processes;
hence, they are comparable. Among considerable existing methods, the methods we used
are representative. Method A represents those methods that attempt to extract more ponds
(low omission error), but few of their results are true dike-ponds (high misclassification
error). Methods B and C represent those methods that tried to reduce the false extraction
but identified few ponds. The extraction results demonstrated that the methods based on a
single pond condition perform poorly in the regions with multiple pond conditions, since
they hardly strike a balance between extracting as many ponds as possible and ensuring
that the extracted ponds are correct as much as possible.

Our research contributes a reference for those pond extraction studies that required
high classification accuracy. Using high-resolution image data (e.g., Sentinel [30,53] and
Worldview [33] satellites) or powerful classification methods (e.g., support vector ma-
chines [54] and deep learning [27,55]) are two major ways to capture high accuracy. To
further improve the accuracy based on the data and method, the characteristics of the
extracted objects can be incorporated into the method design and processing flow of the
extraction. On the basis of this study, it can be expected that considering multiple pond
conditions in pond extraction can achieve better accuracy than the same method and the
same data without considering pond condition. Higher accuracy means that dike-pond
mapping has more complete size, more accurate quantity, and more precise shape, which
are beneficial for dike-pond applications [13,16,23,56]. For example, fishery production
estimate is based on size, pond productivity comparison is based on quantity, pond pat-
tern analysis is based on shape, and dike-pond landscape dynamics tracking is based on
spatiotemporal mapping.

Other potential dike-pond applications can also be inspired by our research, such as
the assessment of pond degradation. As integrated agricultural systems, dike-ponds play
an important role in ecological sustainability, such as purifying water quality, stabilizing
water bodies, and maintaining aquatic biodiversity. Within our study area, pollutants
from widely used synthetic fertilizers and medicine are damaging the ecosystem service
of dike-ponds [57,58]. Some publications have focused on examining dike-pond system
degradation and restoration [9,59]. In contrast with these studies, our research identifies
dike-ponds in suspended sediment, water bloom, and semidry conditions from remote
sensing images, indicating that our method has the potential application to monitor the
health of dike-ponds. We can construct an evaluation system inspired by our research idea
of formulating classification rules for multiple pond conditions. The evaluation indices
are selected according to the feature of different pond health states, and then based on the
statistical value of the sample measurement data to make the index screening process more
flexible and targeted. Water managers use this evaluation system to monitor the health
state of ponds: where are the unhealthy ponds and how many are there? Improvement
measures will be carried out when unhealthy ponds are found, so as not to disrupt fishery
production. For example, a water bloom indicates an overgrowth of algae which can
lead to the death of organisms in the pond. Using time-dependent evaluating before and
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after implementation, water managers can obtain the change in pond health and assess
the effective of the measures on water ecological restoration. These quantitative dike-
pond resource management and developmental environmental restoration methods can be
considered in future research.

5. Conclusions

In summary, after comparing the performance of the four methods in the two groups’
test regions, we concluded that multiple pond conditions are essential for the performance
of dike-pond extraction. As the proportion of multiple pond conditions in the region
increases, various measure values deteriorate—the average of overall accuracy, misclassifi-
cation error, omission error, and correct quantity rate dropped by 8.80%, 3.69%, 10.53%, and
8.23%, respectively. In addition, the extraction performance between most of the methods
does not differ much in the regions with few multiple pond conditions. However, in the
regions with more multiple pond conditions, the method of classification rules setting for
multiple pond conditions can weaken the negative impact of multiple pond conditions. It
reduced performance degradation by 4.22% in overall accuracy, 10.25% in misclassification
error, and 19.03% in correct quantity rate compared to the other three methods not based
on multiple pond conditions. These findings provide insight into the impact of multiple
pond conditions on extraction performance. We recommend considering non-pure pond
conditions (e.g., suspended sediment, water bloom, semidry) in the extraction method,
which is beneficial for dike-pond applications that require complete extraction of ponds,
not just ponds in pure condition.
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