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Abstract: The WAC Bennett Dam was completed in 1968 and impounded the Upper Peace River
to form the Williston Reservoir in north central British Columbia. In 1990, an enhancement project
was initiated to stock Columbia River Kokanee (non-anadromous Sockeye Salmon; Oncorhynchus
nerka) from southeastern British Columbia into tributary streams that drained into regions of the
reservoir that were accessible by anglers. The current distribution of spawning Columbia-origin
Kokanee in the Williston Reservoir watershed, however, does not reflect the locations where these
fish were initially stocked and suggests extensive straying. Whether or not Kokanee will develop
fidelity to specific spawning locations is not known, but it is important information to effectively
manage these introduced fish. We used otolith microchemistry to estimate fidelity to natal streams
by Columbia-origin Kokanee in the Williston Reservoir. Otolith elemental signatures for the region
of the otolith that formed during the larval period and characterized the natal redd environment
showed considerable variation among samples. Natal signatures tended to cluster for each river but
not for all spawners, suggesting elemental signatures from other rivers. Homing to one of the four
natal streams we examined was classified to be 73% based on linear discriminant analysis, although
variation in the elemental signatures within each group suggests that homing by Kokanee to specific
natal streams may be as low as 55%. Based on similarity of water elemental signatures for tributaries
within large rivers, however, the proportion of fish that returned to their general region was likely
higher and estimated to be approximately 83%. The result of regional homing could be reproductive
isolation and adaptation to local conditions. It is unclear, however, if the current estimated level of
straying will limit genetic differentiation and prevent local adaptation.

Keywords: otolith microchemistry; Kokanee; homing; stocking

1. Introduction

Homing to natal streams for spawning is an important life history characteristic for
Pacific salmon within the genus Oncorhynchus to ensure success of their progeny [1]. A
location that historically served for successful incubation of embryonic and larval fish is
likely to provide the greatest potential for survival for the next generation. Consequently,
salmonids often show fidelity to specific spawning locations within a watershed—even
at the microhabitat scale [2,3]. Selection of a spawning site is crucial because the highest
rates of mortality in salmonids generally occur during the incubation period [1], and this
mortality is closely related to the features of the spawning and incubation site. Intragravel
variables influence spawning site selection at the microhabitat scale [4,5]—particularly
temperature, where intragravel water temperature is less variable than surface water [6].
Colonization of new habitat and range expansion, however, is also important as the area
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of spawning habitat is linked to effective population size—an indicator of population
resilience to stochasticity [7].

A major stocking program of Kokanee (non-anadromous Sockeye Salmon; Oncorhynchus
nerka) to the Williston Reservoir provided us with an opportunity to assess fidelity to
spawning locations for fish introduced to a novel environment. The Williston Reservoir
was formed in 1968 following the construction of the WAC Bennett Dam in the canyon
near Hudson’s Hope, British Columbia, Canada. The Dam impounded the headwaters
of the Peace River and lower reaches of the Parsnip River, Finlay River, and many major
tributary rivers, creating the largest lentic freshwater system in British Columbia. Kokanee
were among the assemblage of species that naturally colonized the Williston Reservoir
from headwater lakes when it formed and increased in numbers over time [8]. To increase
angling opportunities and provide a prey source for large piscivorous fish species, a
stocking program was initiated into five tributaries of the Williston Reservoir that were
more accessible to anglers using Kokanee from the Columbia River [8–10]. An aerial
enumeration study conducted from 2002 to 2006 found that the distribution and abundance
of Kokanee in tributaries to the Williston Reservoir poorly reflected the stocking patterns
from the 1990s. By 2006, Kokanee were reported to spawn in at least 68 rivers and streams
from the Parsnip River watershed to the Finlay River watershed [10]. More recent aerial
surveys indicate that these patterns have changed even further in the past decade [11,12].
The spawning Kokanee in tributary streams possessed bright red bodies and emerald green
heads typical of Columbia origin fish rather than the rusty reddish brown coloration of
mature native Williston Kokanee [13]. It is possible that the locations where Columbia
origin Kokanee were introduced did not contain preferred habitat for the species, although
small numbers of spawning Kokanee still return to some of the tributary streams where
they were stocked [10–12]. Kokanee have shown a strong potential for straying following
initial stocking into the Williston Reservoir watershed, but whether they have now selected
specific habitat locations for spawning or continue to stray is not known.

Recently, we have shown that natal stream elemental signatures in otoliths of Coho
Salmon (O. kisutch) were specific to spawning locations [3]. Otolith microchemistry, there-
fore, has strong potential to define natal location in adult Kokanee spawners and determine
if fish are homing or straying. Kokanee migrate from lakes to tributary streams to spawn
from July to November in British Columbia depending on latitude [14]. Fertilized eggs
develop in redds until hatch and alevin remain in the gravel, and until the yolk is fully
absorbed, usually emerging in May. Fry for most populations migrate downstream into the
lake immediately after emergence to begin exogenous feeding [14]. Time within the natal
streams is usually restricted to just the life history stage within the redd environment and
the intragravel water defines the natal water elemental signature. Elemental signatures in
streams are based on differences in the underlying bedrock, which varies with location [15].
Bedrock geology differs between the east and west sides of the Williston Reservoir, as well
as between the north and south [16], and bedrock formations in the upper Peace River wa-
tershed were formed during different time periods and are composed of materials that have
variable chemical composition [17]. The distinctive chemical signatures that vary among
freshwater streams and rivers also correlate with elemental ratios in otoliths of freshwater
species (Atlantic Salmon Salmo salar [15]; Cutthroat Trout O. clarkii [18]; Arctic Grayling
Thymallus arcticus [19]; Coho Salmon [20]). Consequently, elemental signatures in otoliths
of fish have been used to assess habitat shifts, population structure, and location of origin,
but also have been used to trace the extent and pattern of movement of individual fish.
Earlier work on differences in elemental signature for otoliths from Arctic Grayling [19] and
Slimy Sculpin Cottus cognatus [21] captured among tributaries to the Williston Reservoir
indicated large differences in elemental chemistry within the watershed. We used otolith
microchemistry, therefore, to identify whether an introduced population of Kokanee exhibit
homing and return to natal streams to spawn or stray from their natal locations.
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2. Materials and Methods
2.1. Water Chemistry

To assess spatial variation in water chemistry signatures, we collected water samples
from major rivers in the Williston Reservoir watershed where Columbia origin Kokanee
have been observed to spawn: Omineca River, Ingenika River, Finlay River, and Ospika
River (Figure 1). Chemical signatures of intragravel water where embryos and alevin
develop (natal redd signatures) did not differ significantly from surface waters at multiple
locations where Coho Salmon spawned in the Coldwater River, BC [3]. Consequently, we
used surface water elemental signatures to assess differences among rivers and spawning
locations within the Williston Reservoir watershed. We also collected water from nearby
tributaries to assess spatial variation within each river system and from locations in the
reservoir. Water samples were collected using the methods outlined by [22] as modified
by [19]. Bottles and syringes were rinsed with ultrapure water, then soaked for 5 days in a
2% solution of high-purity nitric acid. Water samples were collected in duplicate during the
period of summer river low flows, from 7 to 11 August 2020 and from 21 to 22 August 2021,
when groundwater represents a large proportion of river water. Water samples collected
when flows are low better represent the elemental signatures present as there is minimal
dilution from overland surface water runoff [23].
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Figure 1. Sampling sites in the Williston Reservoir watershed where water samples and mature
Kokanee spawners were collected. Water sampling sites are indicated as large, closed circles from
mainstem rivers, small, closed circles from tributary streams, open large circles from embayments
with color defining the regional groups, and open squares for samples collected from different
locations in the reservoir. Locations where Kokanee were collected are shown as solid diamonds:
Russel Creek (RUS), Pelly Creek (PEL), Osilinka River (OSL), and Stevenson Creek (STV).
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Water samples were filtered and preserved in the field with 600 µL of HNO3 added to
a 30 mL water sample. An inductively coupled plasma-optical emission spectrometer (ICP-
OES) (model 5100 Agilent Technologies, Santa Clara, CA, USA) was used to analyze water
samples for calcium (Ca), manganese (Mn), strontium (Sr), and barium (Ba). Elemental
values are ratios to Ca but expressed as the individual element.

Concentrations of elements vary seasonally with discharge, but the ratio of each ele-
ment to Ca shows greater consistency seasonally and among years [24,25]. We incorporated
published and unpublished data from earlier work, therefore, to assess temporal stability
in water chemistry signatures. Samples collected in 2002 [25], 2003 and 2004 [19], 2011 (AD
Clarke, unpublished data), and 2017 (MD Stamford, unpublished data) were also included
in the analysis.

Discriminant function analysis (DFA) using jack-knife resampling was used to assess
geographic separation of water chemistry data for Sr and Ba to Ca elemental ratios from wa-
tersheds where Columbia origin Kokanee are known to spawn or where native populations
of Kokanee exist (SYSTAT version 7). Mn was not used as it was below detection for some
locations. Water chemistries were obtained from both the tributaries and the mainstem
river of each watershed, and over multiple years for some locations. Jack-knife re-sampling
was used to validate the robustness of the discriminant functions.

2.2. Otolith Analysis

Spawning locations for Kokanee used to assess homing to natal streams were chosen
based on the difference in stream elemental signatures from the signature of the reservoir
and availability of archived otoliths. Mature Kokanee spawners sampled from Russel Creek
in 2006 and 2018, Pelly Creek in 2006 and 2018, Osilinka River in 2016, and Stevenson Creek
in 2016 and 2017 (Figure 1) were frozen prior to otolith extraction. All fish used in our
study were genotyped and identified to be Columbia origin Kokanee [26]. Otoliths were
removed from Kokanee carcasses after they were partially thawed.

Otoliths were mounted in epoxy, then polished with lapping papers with 320, 600, and
1200 grit sizes. After final sanding, samples were rinsed with clean distilled water prior to
ablation. Elemental analysis on otoliths was conducted at two labs: School of Earth & Ocean
Sciences (University of Victoria) and TrichAnalytics (Saanichton, BC, Canada). Material was
extracted from the otoliths with a VG Elemental PQ II S + high sensitivity ICP-MS (Thermo
Electron Corporation, Waltham, MA, USA) coupled to a Merchantek UV laser ablation system
(New Wave Research, Fremont, CA, USA) at UVic. The laser system was operated with an
output of 266 nm that had a maximum energy output of 4 mJ. Optimization was conducted
using standard reference material (NIST 613). Material was extracted from otoliths using an
NWR 213 laser ablation (LA) module (Elemental Scientific Instruments, Omaha, NE, USA)
coupled to an iCAP RQ inductively coupled plasma mass spectrometer (ICP-MS) (Thermo
Fisher Scientific, Waltham, MA, USA) at 60% power at TrichAnalytics. An internal reference
standard for calcium (Ca) of 40% was used during otolith ablation. The LA-ICP-MS machine
was calibrated with a reference standard (NIST 612).

The otolith ablation diameter for both methods was set at 30 µm and tracked across
the laser at 5 µm s−1. Isotopes measured in the otoliths were 43Ca, 55Mn, 66Zn, 88Sr, and
137Ba. Elemental concentrations were calculated by correcting the sample signal intensity
to the background signal, then to the average intensity standard of the selected element,
followed by correcting to the recovery of the internal standard (Ca) in the sample relative
to the external standard. All data, therefore, are expressed as a ratio of the element to Ca,
but just reported as the individual element. Otolith data were smoothed with a running
average for every 5 µm. For natal elemental signatures, data were examined from the
line scan approximately 200 µm on either side of the otolith core. Each line was visually
assessed for symmetry of elemental signatures and the large spike in Mn at the core. Once
the core center was determined, we assessed Sr, Ba, and Mn at a distance greater than 50 µm
from the core to limit the potential influence of reservoir-derived maternal signatures, and
less than 250 µm to capture elemental signatures for alevin prior to gravel emergence,
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thus representing the incubation environment [3,27,28]. These three elements were used
due to differences characterized among rivers in the Williston watershed [19,20]. Strong
relationships also existed between water elemental signatures and otolith microchemistry
for Sr and Ba, however, the relationship for Mn was not as strong [19,20].

We calculated average Sr, Ba, and Mn signatures for a 25 µm section of otolith in the
region that represented the elemental signature for the intragravel environment post yolk
absorption, but prior to feeding and reservoir environmental influence; approximately
between 120 µm and 170 µm as derived by [28]. The absolute location where we calculated
the natal redd environment signature varied depending on the size of the otolith and
cross-sectional length of the line scan. Average values for Sr, Ba, and Mn were calculated
for the two sides of the ablation path from the otolith core, but 7 of 64 samples were not
symmetrical and only one side was used. Eight samples were excluded as the core was
missed. Zinc to calcium was also plotted to estimate age as elemental ratios showed annual
oscillations that vary seasonally [21].

Discriminant function analysis using jack-knife resampling was used to estimate
fidelity to spawning locations and potential straying among watersheds where Columbia
origin Kokanee spawn (SYSTAT version 7). A multivariate combination of Sr, Ba, and Mn
to Ca elemental ratios was used to discriminate locations using otolith elemental signatures
for the intragravel environment. Jack-knife re-sampling was used to validate the robustness
of the discriminant functions. To provide a visualization of the elemental differences for
the sections of otoliths prior to emergence from redds, the first two discriminant scores
were plotted for each spawning location.

3. Results
3.1. Water Chemistry

Considerable differences existed in water chemistry among the rivers, but also many
of the water samples differed from water collected from the Williston Reservoir (Figure 2).
Differences within samples collected from an individual river system reflect changes in
water chemistry between the headwaters and mouth of the rivers, and differences in
elemental signatures for inflowing tributary streams for each river. General patterns were
that Sr values were lower for rivers and streams draining the eastern and southern parts
of the watershed, and higher for rivers and streams draining the western and northern
parts of the watershed. For Ba and Mn, values were generally higher for rivers and streams
draining the western parts of the watershed, but not all. Values for Ba were also higher in
tributaries to the headwater of the Finlay River, the northernmost region of the watershed.
Values for Mn were below detection in many of the tributaries to the Ospika and Finlay
Rivers. Another general pattern observed among the larger rivers and their tributaries was
a clustering of values for samples from the mainstem, with more variation in signatures
from tributary streams and the headwaters.

Discriminant function analysis indicated that samples collected from many of the
rivers failed to be classified to the correct location. The total number of cases classified
correctly using jack-knife validation was only 35% (Table 1). The five groups with the
highest percentage of correctly classified samples were the Omineca River and tributaries
(60%), Ingenika River and tributaries (53%), northwestern locations on the Finlay River
and tributaries (64%), Ospika River and tributaries (80%), and samples collected from
the reservoir (40%). Water chemistry signatures from tributaries within each of these
mainstem river systems that showed good separation from the reservoir water chemistry
were Stevenson Creek in the Ospika River watershed, Osilinka River in the Omineca River
watershed, Pelly Creek in the Ingenika River watershed, and Russel Creek in the lower
Finlay River watershed (Figures 1 and 2).
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Figure 2. Elemental ratios of Sr and Ba to Ca for water samples collected from rivers and tributaries within
the Williston Reservoir watershed. Locations for samples from each watershed are shown in Figure 1.
Mainstem rivers are indicated as large, closed circles, tributary streams are indicated as small, closed circles,
embayments are indicated as open, large circles with color defining the mainstem river, and samples
collected from different locations in the reservoir are indicated as open squares. Ellipses drawn around
reservoir (solid line) and embayment (dashed line) data define 95% confidence intervals for elemental
signatures for each location. Small, closed circles inside open diamonds indicate water chemistries from
tributary streams where mature Kokanee spawners were sampled.

Table 1. The percentage of correct classification determined by discriminant function analysis (DFA)
for water samples collected from watersheds within the Williston Reservoir catchment.

PAR NAT MAN OMI MES ING FIN1 FIN2 NOR OSP SOU EMB RES %

PAR 0 0 0 0 0 0 0 1 1 5 3 0 0 0
NAT 0 0 4 2 0 0 0 0 0 0 0 0 0 0
MAN 0 1 0 0 0 0 0 0 0 0 1 2 0 0
OMI 0 1 1 9 0 0 1 0 1 1 1 0 0 60
MES 0 0 2 0 0 0 0 0 0 2 0 0 1 0
ING 0 0 2 0 0 10 3 0 0 0 4 0 0 53
FIN1 0 0 0 0 0 3 7 0 0 0 0 1 0 64
FIN2 0 0 0 0 0 0 0 0 3 0 0 3 1 0
NOR 0 0 0 0 1 0 0 1 0 2 0 0 0 0
OSP 0 0 0 0 2 0 0 0 0 8 0 0 0 80
SOU 0 0 0 0 0 2 0 0 0 1 1 0 0 0
EMB 0 2 2 0 1 0 0 0 0 0 0 0 0 0
RES 2 0 0 0 3 0 0 1 0 0 0 0 4 40
TOT 2 4 11 11 7 15 11 3 5 19 9 6 6 35

Samples were collected from mainstem and tributaries for the Parsnip River (PAR), Nation River (NAT), Manson
River (MAN), Omineca River (OMI), Mesilinka River (MES), Ingenika River (ING), northwestern locations on the
Finlay River (FIN1), southeastern locations on the Finlay River (FIN2), tributaries flowing into the Finlay Reach
(NOR), Ospika River (OSP), tributaries flowing into the Parsnip Reach (SOU), embayments (EMB), and from the
reservoir (RES). Data are presented as the number of samples (n) and cross-validation accuracy is expressed as a
percentage. Sites where water samples were collected are listed in rows and DFA assignment shown in columns.
Elements incorporated into the model were Sr and Ba.
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3.2. Otolith Analysis

Elemental line scans of otoliths from mature Kokanee spawners showed considerable
variation in Sr, Ba, and Mn elemental ratios to Ca across the otolith. A male spawner
from Russell Creek is shown in Figure 3. A distinctive spike in Mn is characteristic of the
otolith core, with Ba also high at the core and Sr low at the core. As the embryo developed
and hatched, the influence of maternally derived chemical signatures from the reservoir
declined, particularly after hatch and ionic uptake by the alevin was increasingly influenced
by the water within the redd environment. After emergence and migration downstream to
the reservoir, elements incorporated into the otolith reflected water and sources of food
from the reservoir. The line scan values beyond the region defined by “F” in Figure 3 likely
represent movement to locations with different elemental signatures following emergence
from the gravel. There was considerable variation in Sr, Ba, and Mn throughout the life
history of Kokanee after emergence, suggesting movement to habitats that appear to differ
in elemental composition.
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Figure 3. Elemental signatures for an otolith from an adult Kokanee spawner collected in Russell
Creek (22.5 cm [LF] and 99.8 g [M]) on 19 September 2018: (a) Elemental signatures from the line
scan show changes in Sr (blue), Ba (red), and Mn (green) over the entire life history of the fish;
(b) Image of otolith showing laser ablation burn to determine elemental composition of the structure.
Changes in Zn signatures are superimposed on the image to show how the oscillations align with
otolith annuli (photograph courtesy of Jennie Christensen, Trich Analytics, Saanichton, BC, Canada);
(c) Natal section expanded to show the changes in line scans for Sr (blue) and Ba (red) corresponding
to distances defined by [28] from the core on the otolith. The core (C), hatch (H), yolk absorption (Y),
and feeding (F) stages for early development stages in Kokanee. Otolith core center is indicated by 0
on the X-axis.

Elemental signatures from the section of the otolith that defined the natal redd envi-
ronment showed considerable variation among samples, but some general patterns were
evident. Elemental ratios for Sr, Ba, and Mn were lowest on average for fish from Stevenson
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Creek; 374.5 ± 64.4 mmol mol−1, 14.7 ± 4.3 mmol mol−1, and 2.33 ± 1.46 mmol mol−1

for Sr, Ba, and Mn, respectively. Fish sampled from the Osilinka River had the highest
Ba and Mn levels (24.9 ± 9.6 mmol mol−1 and 5.97 ± 3.66 mmol mol−1) and interme-
diate Sr levels (466.1 ± 39.7 mmol mol−1). Pelly Creek spawners had high values of Sr
(511.4 ± 61.5 mmol mol−1), but low Ba (13.2 ± 3.1 mmol mol−1) and Mn (2.66 ± 1.18 mmol mol−1).
Russell Creek fish had the highest levels of Sr in the natal section of otolith line scan which
was on average (556.0 ± 51.2 mmol mol−1), and the lowest Ba and Mn values on average;
13.1 ± 2.6 mmol mol−1 and 2.26 ± 0.72 mmol mol−1, respectively. Significant relationships
were found between the natal otolith signatures and surface water chemistry from the
spawning streams examined in our study for Sr (F1,62 = 94.22, p = 4.656 × 10−14, R2 = 0.603)
and Ba (F1,62 = 48.41, p = 2.548 × 10−9, R2 = 0.438). Regression analysis was not conducted
for Mn as water concentrations for Russel and Stevenson Creeks were below detection.
Results from the linear regression for Sr were:

Srotolith = 69.06 · Srwater + 282.5 (1)

and for Ba were:
Baotolith = 14.70 · Bawater + 12.15 (2)

Discriminant function analysis using jack-knife resampling for natal otolith signatures
used the linear combination of the predictor variables and revealed reasonable separation
between spawning locations. The percentage of correct classification for each location
indicated that the total number of cases classified correctly using jack-knife validation was
73% (Table 2)—suggesting approximately 27% rate of straying. The rate of straying might
be higher as some fish were assigned to groups even though elemental signatures did not
cluster well with other spawner signatures from that stream. Although elemental signatures
showed strong relationships with spatial spawning sites, there was considerable overlap in
the confidence ellipses for the discriminant scores of the natal otolith elemental signatures
for the four locations where Kokanee spawners were sampled (Figure 4). Discriminant
scores tended to cluster for each river system but were not at the center of the ellipse
due to values that departed from the cluster suggesting elemental signatures from other
river systems.

Table 2. The percentage of correct classification determined by discriminant function analysis (DFA)
for otolith elemental signatures characteristic of natal redd environments for Kokanee spawners
sampled from Pelly Creek (PEL), Russel Creek (RUS), Osilinka River (OSL), and Stevenson Creek
(STV) within the Williston Reservoir watershed.

RUS PEL OSL STV %

RUS 14 4 0 0 78
PEL 6 11 0 1 61
OSL 0 2 10 0 83
STV 0 2 2 12 75

TOTAL 22 18 11 15 73
Data are presented as the number of samples (n) and cross-validation accuracy is expressed as a percentage. Sites
where Kokanee spawners were collected are listed in rows and DFA assignment shown in columns. Elements
incorporated into the model were Sr, Ba, and Mn.

For Pelly Creek and Russel Creek, we also had otolith samples collected in 2006 and
2018. There were 6 Kokanee spawners sampled in 2006 that were not assigned to stream
of capture out of 20 samples, suggesting a straying rate of 30%. There were 5 Kokanee
spawners sampled in 2018 that were not assigned to stream of capture out of 16 sam-
ples, suggesting a straying rate of 31%. Straying did not appear, therefore, to show any
temporal difference.
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Figure 4. Discriminant function analysis using jack-knife resampling for elemental signatures from
sections of otoliths that are characteristic of natal redd environments from spawning Kokanee
collected from Pelly Creek, Russel Creek, Osilinka River, and Stevenson Creek. Elemental ratios
included in the model were Sr, Ba, and Mn to Ca.

4. Discussion

Determining fidelity to specific locations within the Williston Reservoir by Kokanee for
spawning is important to effectively manage this species. We used otolith microchemistry
to estimate the proportion of mature Kokanee spawners that home to natal locations and
estimated spawning site fidelity to be 73% among the four spawning locations. The success
of our study, however, was dependent on several factors. First, spatial variability in water
chemistry had to be high. Second, temporal variability in water chemistry had to be low.
Third, the section of the otolith corresponding to the embryonic and larval life history
period had to be easily distinguished.

4.1. Spatial Variation in Water Elemental Signatures

Our choice of tributaries where Kokanee spawn was based on spatial separation and
likelihood of differences in elemental signatures in redd environments, but also availability
of archived otoliths from Kokanee spawners collected for multiple cohorts. Elemental
signatures differed among tributary streams and from the Williston Reservoir [19,25].
Elemental ratios for Sr, Ba and Mn to Ca were high on the western side of the reservoir
and low on the eastern side of the reservoir. Elemental signatures generally varied with
latitude, but differences also existed at smaller geographic scales.

Water chemistries from streams on the east side of the reservoir tended to be low in Sr,
Ba, and Mn. The Ospika River and tributaries also had the highest cross-validation accuracy
(80%). Stevenson Creek had elemental signatures that were lower and differed from the
reservoir water samples more than the mainstem of the Ospika River and other Ospika River
tributary streams that were sampled. Additionally, we had archived otoliths from Kokanee
sampled from Stevenson Creek in 2016 and 2017. Water chemistries from the Omineca
River watershed had Sr, Ba, and Mn to Ca ratios higher than values in the reservoir for most
locations, but not all (Figure 2). Elemental signatures from water samples collected from
the Osilinka River approximately 8 km above the confluence with the Omineca River were
much higher in Sr, Ba, and Mn than the reservoir, thereby maximizing potential differences
between the maternal and natal otolith signatures. We also had archived otoliths from
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spawners collected at this location in 2016. There is the potential for Kokanee to migrate
above this location on the Osilinka River to spawn along the mainstem or upper Osilinka
River tributary streams. Consequently, variability in elemental signatures for Kokanee
sampled in the Osilinka River may represent signatures for multiple locations in the
Osilinka River watershed. Pelly Creek Sr and Mn signatures were greater than the reservoir,
and Ba signatures were lower than the reservoir. The elemental concentrations provided
an opportunity to detect differences between the maternal signatures from the reservoir
and natal redd signatures. We also had archived otoliths from Kokanee spawners collected
from Pelly Creek in 2006 and 2018 available for both spatial and temporal comparisons.
Although water chemistry for samples from the lower Finlay River were similar to that
of the reservoir, Sr for tributaries differed from the reservoir, particularly Russel Creek
where Sr was greater than the reservoir and Ba was slightly lower than the reservoir; Mn
was below detection. Other lower Finlay River tributaries draining from the west also had
higher levels of Sr than the reservoir. Streams draining from the east, however, had much
lower Sr and were similar to the reservoir. We also had archived otoliths from Russel Creek
Kokanee spawners collected in 2006 and 2018. Clear separation in water chemistries among
the study streams and differences from the reservoir, therefore, provided an opportunity to
define natal redd chemistries and assess fidelity to spawning locations in tributary streams
to the Williston Reservoir. Stability of water elemental signatures is also necessary to use
otolith microchemistry to assess spawner fidelity to natal streams.

4.2. Temporal Stability and Spatial Variation of Water Elemental Signatures

Water stability was important for our study, as large temporal variation in stream chemistry
would ultimately confound our ability to differentiate among study locations. While fluctua-
tions in mean elemental concentrations occur seasonally, elemental ratios remain remarkably
constant [25]. Elemental ratios were slightly lower during spring freshet (high flow conditions)
for the tributaries examined by [25], however, this was of limited concern as most growth for
bony structures of fish occurs during base flow conditions [29]—usually summer for temperate
regions, but also during winter when larval salmonids are developing. Consistency of
elemental signatures within rivers has also been well described by [24]. This finding was
also supported by [18], who determined that stream chemistries were stable seasonally and
over a two-year duration. Water chemistry was also found to be consistent over two years
(2006 and 2007) in the Coldwater River watershed, BC [20]. Water chemistry measured
from samples collected at some of the same Coldwater River locations in 2017 indicated
that the elemental signatures were consistent after a decade [3].

We also collected water samples in 2020 and 2021 from many of the same locations
sampled in 2002 [25]. Water samples collected from Manson River, Omineca River, Osilinka
River, Ingenika River, Swannel River, Pelly Creek, and Finlay River at the same locations
showed an absolute average difference between the years of 0.156 ± 0.109 mmol mol−1,
0.0291 ± 0.0262 mmol mol−1, and 0.0436 ± 0.0356 mmol mol−1, for Sr, Ba, and Mn,
respectively. Chemical signatures, therefore, appear to have been stable over decades for
comparisons made for the tributaries sampled in the Williston Reservoir watershed in 2002,
2020, and 2021.

Our work also depended on spatial differences observed in surface waters corresponding
to the chemical composition of the intragravel environment, and that the elemental composi-
tion of the water would influence the composition of the otolith during the embryonic and
alevin stages. In northern areas where freezing occurs, salmon seek areas with upwelling
groundwater for spawning [1], which influence the water chemistry within the redd envi-
ronment. Upwelling groundwater and intragravel permeability within the hyporheic zone
results in no significant difference between surface water chemistry and intragravel water [3].
Consequently, the surface water chemistry measurements collected from earlier work and our
study adequately represent signatures within the redd environment.
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4.3. Distinguishing Natal Otolith Elemental Signatures

Otoliths provide a chronological record of the environmental conditions that fish
are exposed to over their lifetime [30,31]. Otoliths are metabolically inert, grow continu-
ously over the lifetime of the fish, and will not be reabsorbed [31]. Elements incorporated
into otoliths are also directly proportional to elemental uptake from the surrounding
water [19,20,30]. Elemental signatures from the cores of adult otoliths, therefore, are infor-
mative of environmental conditions in redds during the early life history of larval salmon.
Otolith composition of larval fish, however, is also influenced by maternal nutrients [32].
Determining the end of the maternal signature and the start of the juvenile signature is
difficult and complex [27] but can be used to identify natal spawning locations [28] and
potential straying among salmonids [3]. Annual otolith increments are wider near the core
and become narrower with age. The fixed width of the laser scan, therefore, averages a
shorter temporal signature for the natal region of the otolith. Consequently, our ability to
detect variation in elemental signatures is greatest near the core of the otolith. The short
period of time that post-emergent Kokanee spend in their natal tributaries before migrating
downstream to the reservoir, therefore, did not limit the effectiveness of our approach.

4.4. Reliability of Estimates for Fidelity to Spawner Sites

We determined spawning site fidelity to be, on average, 73% among the four spawning
locations, but putative homing varied from 61 to 83%. Linear discriminant analysis, how-
ever, assigned fish to the best group—even if the elemental signatures did not cluster closely
together. Consequently, some of the Kokanee spawners may have been misassigned as they
were not from any of the four spawning locations for which we had archived otoliths.

For Stevenson Creek, fidelity was estimated to be 75% with 12 of 16 fish classified
to their river of capture. Of the fish assigned to Stevenson Creek, 8 Kokanee spawners
clustered with low discriminant function 1 and 2 scores. The other 4 spawners had higher
scores, likely due to Sr values similar to the reservoir, but not high enough to cluster with
one of the other study streams. Consequently, a more accurate estimate of homing to
Stevenson Creek may be 50%. It is likely, however, that these 4 spawners that were assigned
to Stevenson Creek but did not cluster with most of the other fish may have been from
other Ospika River tributaries that also had low Sr, such as Aley Creek, which has had high
escapement [11,12]. Gauvreau Creek is another Ospika River tributary where Kokanee
spawn (L. Anderson, personal communication); however, the similarity of water chemistry
for Gauvreau Creek to Stevenson Creek made it hard to differentiate these two streams.
A more robust interpretation of homing to Stevenson Creek, therefore, may be 50% and
an estimate of 25% straying from nearby Ospika River tributaries. The remaining 25%
of the spawners likely strayed from spawning locations outside of the Ospika River and
potentially from watersheds on the western side or northern region of the reservoir.

Mature Osilinka River Kokanee were intercepted at a site on the mainstem, likely
below most of the spawning locations, but 83% of the natal otolith elemental signatures
were classified to be from the Osilinka River (10 of 12 fish). Of these 10 fish, however, only
7 clustered tightly and the other 3 were included due to the large size of the confidence
ellipse. The high Ba signatures for each of these fish suggest that they likely originated
in the Osilinka River watershed, but potentially from an upper tributary or higher in the
mainstem. The remaining 2 Kokanee sampled from the Osilinka River had much lower
natal Ba signatures and were classified as Pelly Creek fish, although given the overlap
of values, there is not much confidence in the assignment. Consequently, homing to the
Osilinka River may be as low as 58%.

For Pelly Creek, fidelity was estimated to be 61% (11 of the 18 spawners were correctly
assigned). These 11 fish formed a cluster with similar discriminant function scores and
likely represent Kokanee homing to Pelly Creek. Homing percentage of 61%, therefore,
appears likely for the Pelly Creek spawners. The remaining fish were assigned to Russel
Creek (6) and Stevenson Creek (1). The fish assigned to Russel Creek had higher Sr levels
and low Ba and Mn levels, which are characteristic of Finlay River tributaries, but we lacked



Fishes 2022, 7, 123 12 of 16

the resolution to define specific natal stream origin. The fish assigned to Stevenson Creek
were unlikely to have originated from the Ospika River watershed, due to the magnitude
of the Sr and Ba values, and stream origin was unclear for this fish; they may have strayed
from other Ingenika River tributaries or even the Ingenika River mainstem.

Russel Creek Kokanee spawners appeared to show high fidelity to a spawning location,
78%. All 4 fish sampled from Russel Creek that were not assigned to the location of capture
were classified to Pelly Creek. Two of the fish classified as Pelly Creek clustered with the
fish that putatively homed to Pelly Creek and may therefore represent fish straying from
Pelly Creek or the Ingenika River watershed more generally. One of the fish classified as
Pelly Creek, however, appeared to cluster with the Russel Creek fish, but had the lowest
value of Sr of these fish. Based on the similarity of Sr and Ba values for this fish, it likely
also homed to Russel Creek. If these fish were assigned to Russel Creek, classification
would be 83%. Tributary streams to the Finlay Reach and Omineca Reach have had the
highest escapement of Kokanee spawners for aerial enumerations conducted over the
last 24 years [10–12], indicating the importance of rivers in this part of the watershed for
Kokanee spawning. Five of the Kokanee classified as Russel Creek spawners, however, had
Sr values that were higher than those that clustered together. The higher natal Sr signatures
for these 5 spawners suggests they did not home to Russel Creek, but likely strayed from
other tributaries to the Finlay River—likely tributaries higher in the Finlay River watershed
based on patterns observed. Homing percentage of 61% (11 of 18), therefore, appears likely
for the Russel Creek spawners—although historically, Russel Creek has had some of the
highest escapements based on aerial enumerations [10–12].

4.5. Post-Emergence Movement Patterns

Elemental signatures across the otolith provide information on water composition
throughout the life of the fish. Changes in elemental ratios of Sr and Ba to Ca have been
useful to define freshwater movement patterns in juvenile Chinook Salmon (O. tshawytscha),
Coho Salmon [20], Slimy Sculpin, and Arctic Grayling [21]. Although rivers and streams
in the Williston Reservoir watershed showed considerable differences in water chemistry,
water samples collected from various locations in the reservoir showed consistent elemental
signatures. After emergence from their natal redds, Kokanee fry are presumed to migrate
immediately downstream and into the reservoir. It was expected, therefore, that line
scans would show little variation after equilibrating with waters in the reservoir—but
this was not the case. Extensive variation in Sr and Ba along the length of the line scan
suggest Kokanee are exploiting aquatic habitat with elemental signatures that differ from
the reservoir. Although water is the predominant source of elements to the otolith, other
factors, such as dietary shifts, can account for 2 to 41% of elements incorporated into the
otolith [33]; however, seasonal or ontogenic patterns would then be expected and these
were not observed.

4.6. Factors Affecting Homing/Straying

Columbia origin Kokanee were extensively stocked into tributaries of the Williston
Reservoir watershed in the Peace and Parsnip Reaches starting in 1990. The number of
returning mature Kokanee to the streams where they were stocked has historically been
low. Environmental features of streams or social interactions with conspecifics, however,
may have greater influence on spawning site selection than homing [34]. Aerial escapement
estimates revealed that Columbia origin Kokanee dispersed rapidly after introduction
and colonized to more than 68 new watersheds to streams that were greater than 200 km
from the locations where they were stocked [10]. Although the original stocking program
anticipated that stocking Kokanee eggs and fry would result in fish homing to natal
streams [8], rapid dispersal and exploitation of new habitat following the introduction of
a species is common [35]. Colonization of new streams through straying does not follow
the typical paradigm for Pacific salmon homing to their natal streams [36], but examples
of salmon straying over long distances are quite common. Most fish that stray have been
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recovered close to their natal streams, often within 25 km, which suggests straying within a
watershed [37], but much more extensive straying has been recorded. Recovery of tagged
Chinook Salmon from streams over distances up to 480 km has been reported [38]. Chinook
Salmon introduced to the South Island of New Zealand colonized rivers 200 km north of
the initial transplant site in less than 14 years, or approximately 3 generations [33]. Similar
rates of dispersal have been found for Chinook Salmon in South America [39].

Population size, habitat availability, and disturbance contribute to dispersal of fish.
Larger populations function as sources for fish that colonize new habitat [40]. The extensive
stocking into the watershed of over 3.3 million Columbia origin Kokanee in the 1990s from
Hill Creek and then Meadow Creek, created a large population and a source for dispersal [9].
Additionally, by 2008, it was estimated that the Kokanee population in the pelagic zone of
the Williston Reservoir was up to 9 million fish [41], with escapement in some years up to
250,000 spawners within a single river [10]. The large population size, therefore, would
favor range expansion and colonization of new rivers. There are also numerous tributaries
to the reservoir that appear well suited for salmonids to spawn. Consequently, habitat was
available, although Kokanee have selected tributaries in the Williston watershed that flow
into the northwestern portion of the reservoir—not the regions originally stocked. Higher
straying rates have also been reported for altered river systems. High rates of straying in
Lower Columbia River Chinook Salmon have been found in response to disturbance [42].
Creation of the Williston Reservoir was clearly a disturbance to the watershed, but at the
time of the Kokanee stocking program, productivity was high [43]. Changes associated with
flooding the watershed even decades after formation, therefore, would also favor dispersal.

Although rates of straying in the first few generations after transplanting salmon to a
novel environment are high, lower rates of straying appear to occur after the populations
have been established [35]. Reduced straying and fidelity to spawning locations would
create reproductively isolated populations and lead to genetic differentiation. The size of
the watershed is clearly large enough for population level differences to exist (see [44] for
work done on Arctic Grayling in the Williston Reservoir watershed). Columbia Kokanee,
however, have only been in the watershed since 1990 at the earliest, which may not be
enough time to establish differences. In an earlier study, we found no indication of genetic
differences among the tributary spawning Kokanee of Columbia origin [26]. Although there
have been few generations to establish genetic structure, the large scale of the watershed
makes this somewhat surprising. The large number of Kokanee stocked [9] and the dynamic
nature of the reservoir may continue to favor dispersal over homing to natal streams.

5. Conclusions

Our data indicated that, on average, 54.7% of Columbia origin Kokanee returned to
their natal stream, suggesting a high rate of straying. The proportion of fish that returned
to the watershed of their origin, however, was higher: 82.8%, suggesting that most fish
return to their general region and spawn within a single river system and tributaries. The
result of homing to natal streams is reproductive isolation and local adaptation. Local
adaptation is beneficial, as locally adapted populations perform better when reared in
their own environment compared to being transplanted to different environments [45].
Fine-scale local adaptation at the tributary level, however, will be limited by gene flow [46].
The most likely result of increased levels of migration would be local adaptation at a
watershed level rather than a single tributary stream [47]. Our otolith microchemistry
results indicated that local adaption might develop in the Williston Reservoir at a regional
scale. Such local adaptation may also be maintained due to reduced fitness of migrants. For
example, Sockeye Salmon that dispersed from similar habitat types (stream-spawners) had
similar reproductive success to those that spawned in their natal stream, whereas Sockeye
Salmon that dispersed from lake spawning habitats produced fewer offspring [48].

There are benefits to regional homing rather than stream-specific spawning fidelity.
Natural stochastic events or over-exploitation may deplete local populations, but recovery
may be facilitated with colonization from nearby donor populations [49]. Additionally, low
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levels of straying may benefit local adaptation to increase effective population size and
maintain genetic variability—something that may be particularly important for small pop-
ulations [50]. Range expansion of Columbia origin Kokanee continues to be a concern [51].
Whether expansion will continue or whether the fish have defined their “home” ranges
will continue to be important to determine.
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