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Abstract: Every year, marine scientists around the world read thousands of otolith or scale images to
determine the age structure of commercial fish stocks. This knowledge is important for fisheries and
conservation management. However, the age-reading procedure is time-consuming and costly to
perform due to the specialized expertise and labor needed to identify annual growth zones in otoliths.
Effective automated systems are needed to increase throughput and reduce cost. DeepOtolith is
an open-source artificial intelligence (AI) platform that addresses this issue by providing a web
system with a simple interface that automatically estimates fish age by combining otolith images with
convolutional neural networks (CNNs), a class of deep neural networks that has been a dominant
method in computer vision tasks. Users can upload otolith image data for selective fish species, and
the platform returns age estimates. The estimates of multiple images can be exported to conduct
conclusions or further age-related research. DeepOtolith currently contains classifiers/regressors for
three fish species; however, more species will be included as related work on ageing will be tested
and published soon. Herein, the architecture and functionality of the platform are presented. Current
limitations and future directions are also discussed. Overall, DeepOtolith should be considered as
the first step towards building a community of marine ecologists, machine learning experts, and
stakeholders that will collaborate to support the conservation of fishery resources.

Keywords: fish otoliths; deep learning; CNN; age determination; web tool

1. Introduction

Every year, the ages of thousands of fish are determined from otoliths or scales in
the framework of national data collection fishery programs, supporting several objectives,
such as the estimation of parameters for the demographic and population dynamics of fish
stocks and the fitting of stock assessment models and length-at-age growth curves [1,2].
Age information is manually extracted by expert readers who count daily or annual growth
zones in otoliths using a microscope or high-resolution images [2,3]. However, this is a
labor-intensive, time-consuming, and costly process to perform [4]. This limits the number
of fish that can be age-analyzed, and monitoring programs must—to a larger extent—rely
on growth-at-age models to determine the age composition of fish populations [1]. This
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underlines the need for automated tools that could be practically used by otolith scientists
to facilitate a more streamlined analysis in their laboratories.

Methods to automatically read otoliths for fish age extraction have been proposed
using diverse data, such as images, fish biological features (e.g., fish length, catch data, sex)
and geometrical features (shape and the opaque and translucent zonation patterns) [4–6].
Although these methods have shown good predictability, they require additional biological
and geometric information beyond otoliths and a complex preprocessing stage to extract
certain features from otolith images (e.g., measurement of translucent and opaque rings)
before being able to determine fish age. This tends to limit their applicability as automated
solutions for fish ageing.

Deep learning is a subfield of artificial intelligence (AI) that has revolutionized au-
tomation in a wide range of real-world applications related to images, text, audio, and
videos [7,8]. Convolutional neural networks (CNNs) are a dominant class of deep neu-
ral networks for processing images that are being widely used, among others, for image
classification (note: Image classification is the task of identifying the class that an image
represents, e.g., predicting gender from a face image. In our case, prediction of age as
a class category from an otolith image is a classification task.) [9] and image regression
(note: Image regression is the task of predicting a continuous variable from an image, e.g.,
predicting house price from a house image. In our case, prediction of age as a numeric value
from an otolith image is a regression task.) [10,11]. CNNs receive images as input, while the
whole learning process is carried out in the network; they learn sequentially from simple
shapes (lines, edges, etc.) in the first layers, to more detailed patterns in the next layers, and
finally, classes of objects or numeric features in the final layers. This is achieved through a
stack of alternately arranged convolutional, pooling, and activation layers, followed by a
fully connected layer that performs the image classification or regression task (Figure A1,
Appendix A). The key advantage of CNNs lies in their efficiency in capturing the spatial
interaction between adjacent pixels in an image and, hence, extracting meaningful features
that are able to correctly resolve the computer vision task [12]. For more details about
CNNs, the reader is referred to the recent review paper [9].

In recent years, CNNs have received increased attention for automating fish age estima-
tion from otolith images, as shown for Greenland halibut (Reinhardtius hippoglossoides) [13,14],
snapper (Pagrus auratus) and hoki (Macruronus novaezelandiae) [15], Atlantic salmon (Salmo
salar) [16], and red mullet (Mullus barbatus) [17]. These studies provided evidence that deep
learning could offer an automated methodology for the analysis of otolith images, although
with varying levels of accuracy, and provide cost-efficient and effective support towards
the sustainability and management of fishery resources.

Despite the aforementioned AI advancements in fishery science, otolith researchers
may not have the computing expertise or budget to take advantage of AI tools. In addition,
even when AI algorithms are employed, without a community, scientists may face obstacles
in implementing their case studies, collaborating with each other, and, on the whole, con-
tributing to the field. DeepOtolith (http://otoliths.ath.hcmr.gr/, accessed on 1 March 2022,
Figure 1) brings together AI researchers, fish scientists, and software developers to bridge
the gap between state-of-the-art computing techniques and otolith research, providing
a simple web interface that automatically estimates fish age by combining otolith im-
ages with deep learning. The user can export age estimates from multiple images to
conduct further age-related research. At present, the platform contains models for three
fish species (Table 1, Figure 2). Additional species, however, can be incorporated as re-
lated works will be published in the future. This image analysis platform is a Python
application (https://www.python.org, accessed in 2001) that uses Python Flask (https:
//flask.palletsprojects.com/en/2.1.x/, accessed in 2010) and ReactJS [18] to operate as a
webserver at the front-end. The source code for DeepOtolith, as well as sample otolith/scale
images for experimentation, are available at: https://github.com/dimpolitik/Deep-Otolith
(accessed on 1 March 2022). Below, the platform and its structure are introduced; the three
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otolith case studies that are currently available on the platform are reviewed; and finally,
the functionality of the platform is demonstrated.
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Table 1. Fish species that are currently available on the DeepOtolith platform.

Species Age Groups Region References

Greenland halibut (Reinhardtius hippoglossoides) 1–26 Norway [14]

Atlantic salmon (Salmo salar) 1–6 (river age)
1–9 (sea age) Norway [16]

Red mullet (Mullus barbatus) 0–5+ Greece [17]
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Figure 2. Fish species that are currently processed through the DeepOtolith platform: (a) Greenland
halibut (Reinhardtius hippoglossoides) otolith, (b) Atlantic salmon (Salmo salar) scale, and (c) red mullet
(Mullus barbatus) otolith.

2. Materials and Methods
2.1. Platform Architecture

The architecture of DeepOtolith is shown in Figure 3. The tool consists of two main
components: the front-end, visible to the end user, and the back-end, where all processing
takes place. On the front-end, the user can select one of the three currently available fish
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species and then consecutively upload otolith images (note: Images can be uploaded as
separate files, not as a directory or a zip file. Images should be in .png or .jpg format.) of
the selected species. The uploaded images are transferred to the back-end, where they are
preprocessed according to the requirements of each respective species model; for example,
images may be resized and loaded to the resolution expected by the corresponding trained
CNN model. After preprocessing has been completed, the weights of the CNN for the
selected fish species are loaded (Figure 3); the trained networks have been stored offline,
and no new training is required. Then, the loaded model is applied to the preprocessed
images to make the predictions, which are returned to the front-end. For each user-provided
image, the probabilities of each predicted fish age group are displayed in a bar-plot. The
age group with the highest probability defines the resulting fish age prediction. Beyond
visualization, the user can download age predictions as a CSV file. Each row in the CSV
file contains: the image name, the probability in % for each age group, and the resulting
age prediction based on the age group with the highest probability. When the two highest
probabilities in age prediction are below 10%, then the message “->Difference of two largest
probabilities <10%: Additional validation by experts is recommended” is returned as a
message. We note that a limit rate of 30 images per minute was imposed to prevent upload
errors due to latency (enforced by the access control layer, as shown in Figure 3).
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2.2. Case Studies
2.2.1. Greenland Halibut (Reinhardtius hippoglossoides)

The automatic age determination of Greenland halibut otoliths was based on the work
of [14], who focused on explaining the decisions of deep neural networks used for fish
age prediction. The considered dataset was a subset of the one described in Moen et al.
(2018), which consisted of pre-existing otolith images from the Institute of Marine Research
(IMR, Bergen, Norway) collected between 2006 and 2017. For the acquisition of the images,
the whole paired right and left otoliths were first collected and put into plastic trays for
transportation, where salt or water was added to keep them moist until they could be
frozen in the lab. This was done for preservation reasons prior to image capture. After the
thawing and cleaning processes, the paired otoliths (or single otoliths if the corresponding
pair was damaged or lost) were immersed in water and placed under a stereomicroscope
on a white background with transmitted light such that the digital images could be taken.
Those were finally imported into Photoshop and calibrated to a 10 mm scale. The resolution
of the images was 2596 × 1944 pixels.
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In the deep learning training process, ref. [14] adopted the VGG19 CNN architec-
ture [19]. They used 8218 training sample images of right and left otoliths. The original
images, were resized to fit a 224 × 224 square, as expected in the VGG19 model. The model
was trained to classify ages into one of 26 categories (from 1 to 26 years), and age labels were
provided by human experts based on current recommendations in the field. Using a test set
of right otoliths composed of 165 samples, the trained model attained a root mean square
error (RMSE) of 1.69 years between age prediction and age reading by experts. The pre-
dicted error was comparable to the earlier study of Moen et al. (2018) (RMSE = 1.65 years),
which used a regression network based on the Inception v3 architecture [20] to automate
the Greenland halibut ageing.

2.2.2. Atlantic Salmon (Salmo salar)

Vabø et al. [16] utilized an implementation of the EfficientNetB4 CNN network [21],
with an input image resolution of 380 × 380, to automate the age estimation of Atlantic
salmon (Salmo salar) scales. EfficientNetB4 was trained using transfer learning, with pre-
trained weights from ImageNet [22]. The dataset used consisted of a total of 9056 high-
resolution images of salmon scales sampled by the Institute of Marine Research in Bergen
(IMR), Norway (from 2015 to 2018) and Rådgivende Biologer (from 2016 to 2017) in rivers
along the coast of Norway. Salmon scale photos were taken using a Nikon SMZ25 stereomi-
croscope with a Nikon Digital Sight DS-Fi2 camera using an SHR Plan Apo 1× objective.
The images were captured with a resolution of 2560 × 1920 pixels on a light gray back-
ground and postprocessed using NIS Elements D software. The images were annotated
both for sea and river ages by expert readers. Two independent networks were trained
for separately predicting river and sea age. each task. Age prediction was treated as a re-
gression problem, returning a decimal number that was rounded to the nearest integer age
and compared with the ground truth. From the total dataset, 8286 images were annotated
with sea age, and 6238 were annotated with river age. Sea ages ranged from 1 to 9 years,
with 2 years being the most frequent age (50.6%), followed by age 1 and age 3. River ages
ranged from 1 to 6 years, with age 3 seen most frequently (56.5%), followed by age 2.

The prediction of sea age obtained an accuracy of 86.99%, while the predictive accuracy
of river age was 63.2%. The study also included a test of the network’s performance in
comparison with six human readers on an additional dataset of 150 scales. This revealed
that the ground truth estimates of river age by expert readers exhibited higher variance
and lower levels of agreement compared to sea age, and this may indicate why this task
appeared more difficult for the CNN to attain high accuracy [16]. Additionally, the CNN
overpredicted the age of 1 year, whereas predictions were best for 2 and 3 years sea age
and 3 years river age. This can be partially attributed to the imbalanced distribution of ages
in the salmon imagery. Specifically, 90.2% of images had a river age of 2 or 3 years, when
only 6% were 4-year-olds and 3% were 1-year-olds.

2.2.3. Greek Red Mullet (Mullus barbatus)

The automatic age estimation of the Greek red mullet (Mullus barbatus) was based
on [17]. The dataset included 5027 otolith images, provided by the Hellenic Centre for
Marine Research (HCMR) database, along with the age readings and fish length (body
size in mm) of each individual fish. For the acquisition of the images, the whole otolith
was used without any treatment; it was placed in a petri dish with the inner face looking
upwards and immersed in water. The petri dish was placed under a stereoscope on a
black background. Reflected cold LED light 50 W was used, provided by two photonic
goosenecks, and adjusted to illuminate the whole surface of the otolith. Digital images
were taken under a magnification of 16× with a resolution 768 × 576 pixels. Since different
lighting conditions, zoom levels, or backgrounds of the tested images may impact the
performance of the CNNs, the webpage users should consider, as possible, the above
protocols to attain a more reliable age estimation. The age of red mullet in the dataset
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ranged from 0 to 11 years old. Due to the low number of specimens aged >5 years old
(~6%), these were merged into the 5+ age group.

The Inception v3 CNN model [20] was trained using transfer learning with otolith
images of resolution 400 × 400 as input, considering fish age estimation as a multi-class
classification task with six age groups (Age-0, Age-1, Age-2, Age-3, Age-4, Age-5+). The
potential benefit of multitask learning was also explored to improve the network’s pre-
dictability, with the auxiliary task being the prediction of fish size. The enhanced neural
network simultaneously received as input the otolith images and predicted fish age and
length. The results showed that, without multitask learning, the ages of the red mullet
were predicted correctly by 64.4%, performing better in the younger Age-0 and Age-1
classes (F1 score > 0.8) and moderately in the older age classes (F1 score between 0.50–0.54).
Multitask learning increased the correct age prediction to 69.2%, with an additional 28.2%
being within 1 year of error; this also proved a better approach to estimate older age
groups, increasing accuracy between 3–23%. Additionally, the multitask network achieved
a root mean square error (RMSE) of 0.56 years between predicted and human-based age
predictions. The moderate accuracy in predicting older age groups can be attributed to the
objective difficulty in distinguishing the growth zones in the otoliths of older fish, as well
as to the low number of older-fish otoliths in the dataset. This was verified in age-reading
workshops [23,24], where age estimations of older fish showed high variability amongst
reader experts.

3. Results

To demonstrate the functionality of the platform, 30 images from each fish species were
used, along with age estimates from human readers. For instance, the red mullet species
was selected, and the images were uploaded on the platform (note: When the file size of
the images is large (>2 MB), it is suggested to upload them consecutively through the “Add
Files” button (Figure 4)). The platform estimates the fish age for each image separately
(Figure 4). Then, age predictions can be extracted into a CSV file using the “Export to
CSV” button (default name: “export.csv”; this name can be changed to a different filename)
(Figure 4). The content form of the CSV file after being loaded into Excel can be found in
the Supplementary Materials (Suppl_red_mullet.xls); the “Refresh page” button allows the
user to restart age prediction after completing the limit of 30 images per minute or testing a
new species.

Outside of the platform, the predicted age frequency of red mullet was compared
with human age estimates (Figure 5a). Although the dataset is small enough to extract
general conclusions, we noticed that model predictions tend to underestimate the age-5
class, leading to higher occurrences of ages 3 and 4. This can be partially explained by
the fact that during the training of the CNN model for the red mullet, the age-5 class also
included ages 5 to 9, due to their small representation in the dataset.

The corresponding results of human against AI age estimates and the exported
CSV file for Greenland halibut can be found in Figure 5b and Supplementary Materi-
als (Suppl_Greenland_halibut.xls); for Atlantic salmon (river age), the results can be found
in Figure 5c and Supplementary Materials (Suppl_Atlantic_salmon_rive_age.xls); and for
Atlantic salmon (river age), the results can be found in Figure 5d and Supplementary
Materials (Suppl_Atlantic_salmon_sea_age.xls).
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4. Discussion

Fish ageing information is vital for extracting knowledge about the biological traits
(e.g., mortality rates, when fish mature, recruitment success) and status of fish stocks [25].
Public access to cutting-edge AI solutions is the novel feature that DeepOtolith brings to
the otolith community. The goal of this system was to decrease the amount of research
time and effort needed to perform fish age estimation. The availability of the models can
also stimulate further research, as it allows comparison with the included models/papers.
The platform directly benefits otolith scientists with a non-computer background who seek
to process their datasets for the selective species currently available on the platform. In
addition, the platform may serve as a reference point from which deep learning experts
and marine ecologists can communicate their suggestions to improve the existing models
or their interest in developing their own model and uploading it to DeepOtolith.

In fact, the actual age of a fish is on continuous scale. However, expert readers count
annual rings in otoliths or scales to determine fish age, hence, providing human estimates
as integers/classes/groups. In most fish assessments, age is also considered as age group,
not as a continuous variable. Accordingly, CNN models predict fish age as (i) a discrete
integer/class/group, if the prediction is treated as a classification problem (Greenland
halibut and red mullet case studies) or (ii) as a continuous value, if prediction is treated as
a regression task (Atlantic salmon case study).

It should be noted that DeepOtolith, as with any platform built to save time and
money, empowers the user with automated methods but does not entirely replace conven-
tional methods of research. The reported differences in age accuracy and error estimates
among the case studies may be explained by the different life spans of the studied species
(Table 1), the size of the datasets, and the adopted CNNs. Moreover, in all case studies,
the performance of trained CNNs was more moderate for older fish than for younger fish.
These remarks imply that users should pay attention to the way they use the platform; case
studies are species-specific and should not be used for other species; and the uncertainty in
age prediction, especially for older fish, should be considered.

In general, implementing a CNN algorithm in otolith imagery comes with several
challenges. First, CNNs do not have an inherent level of accuracy because their accuracy
is highly dependent on the data provided. Specifically, the otolith of a given species
has its own distinct morphometric gestures (shape, surface area, diameter, anatomy),
while each fish species has its own lifespan and life history, resulting in different ways
that otolith growth zones are formed as the fish gets older [25]. Second, otolith datasets
are often imbalanced, with fewer images for older fish since these are less captured in
overexploited stocks. Third, there is an increased difficulty, even for experienced human
readers, in distinguishing the annual ring at older ages due to high uncertainty in assigning
a growth zone as an age year [24]. Fourth, the age readability of the same fish species
may be influenced when it is captured from different regions or analyzed by different
labs. This can be attributed to several factors, such as different fish environments and
catch seasons, different protocols for the conservation and preparation of the otoliths, and
other imaging setup conditions (camera quality, lighting conditions, zoom levels) [26].
All these complexities tend to cause considerable difficulty in the training process and
performance of CNNs, and, overall, make the development of a single generic CNN for the
age determination of multiple species seem, for the moment, unattainable.

For each case study, a different imaging setup of the otoliths or scales was adopted.
Since different lighting conditions, zoom levels, or backgrounds of the tested images may
impact the performance of the CNNs, the webpage users should consider, as possible, the
above protocols to attain a more reliable age estimation.

The present work can be expanded in several directions. First, suitable adaptations to
the network architectures and training procedures of the current fish species on the platform,
combined with the collection of more images, will potentially improve the performance
of CNNs. Second, DeepOtolith currently supports three species, so the integration of
additional species into the platform is a primary future step. Third, technical improvements
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in the infrastructure of the platform will allow the direct uploading of large (order of
thousands) image datasets. Fourth, additional tools in the platform, such as automating
the estimation of von Bertalanffy growth curves [27], performing an uncertainty analysis
to quantify potential biases in age predictions, and comparing human- and model-based
estimates on the platform, are worthy issues for future consideration. Finally, in future
work, the platform could be further extended to enable the identification of fish species
and families by otolith images, a topic that has been addressed in the past with Fourier
transform and discriminant analysis methods [28], and otolith shape analysis [29].

It is also worth noting that the fish age-reading process is subject to the experience
and the relative bias of a reader on different aspects, such as the identification of the first
annual ring, the axis of the otolith used for the measurements, and the date of fish birth
(ICES, 2012). This often results in significant differences in age estimates among readers.
To overcome this issue, results among readers or among readings of the same reader are
compared to understand observed variations (ICES, 2012). Besides different readings by
the same or various readers, common interpretations of an image (i.e., the most frequent
age interpretation) are considered decisive for the potential age group. Similarly, in the
platform, the trained CNNs were configured to provide either a single age estimation for
each image corresponding to the highest probability, along with ages of lower probability
(Greenland halibut and red mullet case studies), or a single continuous value as an age
prediction (Atlantic salmon case study).

AI has a tremendous toolkit that could potentially be used in otolith research. For
instance, unsupervised methods [30] have been proposed to automatically group images
into clusters without the need for manual annotation. As CNNs require thousands of
labelled images to be fully trained before being able to generalize their learning to unseen
scenarios, unsupervised learning could eliminate the time needed for annotating thousands
of otolith images with human-based age estimates. With the exception of CNNs, other deep
learning-based methods (e.g., adversarial generative adaptation, adversarial discriminative
adaptation, self-supervised adaptation) have been used to transfer the knowledge gained
from predicting fish ages from otolith images from one lab to the same species in another
lab without requiring extra labelling effort [26].

The development of web-based systems in marine science to support automatic
systems should be considered a valid goal. In the past, the FAbOSA project (https:
//www.imagescience.de/old_pages/fabosa/start.htm, accessed in 2003) aimed to au-
tomate fish age estimation using otolith shape analysis, and the web-based environment
AFORO (http://aforo.cmima.csic.es/upload_img_en.jsp, accessed on 13 September 2005)
was designed to process otolith images for fish species identification by combining morpho-
metric features of otoliths and signal analysis [29]. Recently, ref. [31] released Flukebook
(https://www.flukebook.org/, accessed on 27 December 2021), an open-source AI platform
for cetacean photo identification and detection. Finally, other platforms powered by AI for
fish catch detection and optimizing farmed fish production (http://www.ai.fish/, accessed
on 1 November 2019; https://xpertsea.com/valuable-insights#xpercount, accessed in 2021)
can also be found on the web. On the whole, the present work should be viewed as a first
step towards this direction.
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