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Abstract: This study investigated the effects of krill and squid meal and their heat processing on the
growth performance and biochemical composition of juvenile Pacific bluefin tuna (PBT) Thunnus
orientalis. An experiment using a 2 × 2 factorial design examined the effects of two dietary protein
sources (squid and krill meal) and heat treatment (heated and non-heated). Prey fish were provided
to a reference group. Fish with an initial mean weight of 74.1 mg were fed one of the five diets. After
six days of the feeding trial, the fish fed with krill meal and non-heated diets showed improved
growth compared to those fed with the squid meal and heated diets. Fish fed the non-heated diets
showed significantly higher whole-body crude protein and crude lipid contents than fish fed the
heated diets. These results suggest that nutrient availability could be improved by using krill meal
and the non-heated treatment to improve the growth performance of juvenile PBT.

Keywords: Pacific bluefin tuna; squid meal; krill meal; heat treatment; growth performance

1. Introduction

Tuna aquaculture is one of the most important aquacultures worldwide. In 2017, the
global production of tuna species was approximately 7.89 million tonnes [1]. Japan is not
only one of the countries with the highest consumption of tuna species in the world, but
total tuna production was as high as 195,200 metric tons in 2018 [2]. In particular, the total
production of Pacific bluefin tuna (PBT) in Japan gradually increased from 2,000 metric tons
in 2000 to 17,600 metric tons in 2018 [2,3]. This species is a top predator, grows quickly, and
requires high dietary protein. Aquafeed is typically based on fish meal which is made from
forage fish, such as sardine Sardinops melanostictus and anchovy Engraulis ringens; the major
producers and exporters are Peru and Chile [4]. However, the rapid rise in global demand
for aquafeed has reflected soaring prices [5]. In addition, fish meal production relies on
natural fish resources. The dependence of the aquaculture industry on high dietary fish
meal consumption is a serious concern regarding its sustainability. To overcome these
limitations, considerable research efforts are being made to reduce the dependency of
aquafeed manufacturers on fish meal [6]. In the last few decades, several studies have
focused on plant proteins that can be utilized as fish meal alternatives [7–10]. However,
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plant protein sources have relatively imbalanced amino acid profiles, low palatability, low
nutrient digestibility, and anti-nutritional factors are present [6,9,11–15].

In terms of marine resources, Antarctic krill Euphausia superba is one of the most
promising resources because of large biomass levels unparalleled anywhere else in the
world’s oceans. Furthermore, it has been commercially harvested since the 1960s, and
today it is targeted by active fisheries of several nations [16,17]. Compared to conventional
animal proteins, krill has several advantages such as similar amino acid and fatty acid
composition with those of marine farmed fish [18,19] and higher contents of carotenoids,
chitin, nucleotides, phospholipids, taurine, and vitamins [20–23]. Squid has been another
popular aquafeed ingredient since the 1980s. Squid meal has high protein and strong
palatability, is rich in taurine and polar lipids, and excellent feed ingredient [24–27]. Fur-
thermore, improvement of egg quality and fish growth by squid meal based-diet were
reported [24,28]. Although krill and squid meals are expensive as the main protein source
due to their high unit price, they are ideal as supplemental proteins for low fishmeal diet
that can effectively provide the nutrients that are lacking in plant ingredients.

Free amino acids and peptides are considered solubilized dietary proteins because they
are water soluble and easily absorbed [29]. Most of the raw protein sources are denatured
during heat cooking process, which reduces utility of amino acid and peptide from it.
The krill and squid meals available in the market are heat processed, and therefore, they
have low nutritive value because of decreased levels of free amino acids and peptides.
Therefore, if squid and krill meal without heat processing are available, they may be an
effective protein source for tuna. Previously, we showed that higher feed consumption and
growth of red sea bream Pagrus major fed non-heated krill and squid meal-based diets [28].
However, there are few studies investigate utility of squid and krill meal without heat
processing as dietary ingredients for tuna.

Therefore, this study aimed to evaluate the effect of krill and squid-based diets and their
heat treatment on the biochemical composition and growth performance of PBT juveniles.

2. Materials and Methods
2.1. Experimental Diets

The test diets were formulated with 51.4% of four different animal protein sources
(heated squid meal, HS; non-heated squid meal, NHS; heated krill meal, HK; non-heated
krill meal, NHK). Raw squid and krill were pulverized using a centrifugal milling devise
equipped with sieve (2.5 mm diameter, ZM500, Retsch Co, Clifton, NJ, USA). The resultant
pulverized was kept under −30 ◦C. The frozen samples were then lyophilized by an
automatic vacuum freeze drying devise (RLE-206II, Kyowa Vacuum Eng., Co, Saitama,
Japan). The freeze-dried squid or krill meal were sieved using a 500 µm sieve. To make
the HK and HS, the freeze-dried meals were kept for 12 h under 105 ◦C. Porcine blood
meal, defatted horse mackerel meal, albumin from hen egg, DHA70E, fish oil, vitamin E,
α-starch, taurine, calcium phosphate, choline chloride, sodium ascorbyl phosphate, mineral
and vitamin premix, and bonito peptide were included in the test diets (Table 1). These
ingredients were mixed and pelletized by fluidized bed granulation which is suspending
particles in an air stream and liquid binder such as carboxy methyl cellulose is sprayed from
the top of the system down onto the fluidized bed. The resultant pellets (ca. Ø 750 µm)
were sieved. The moisture of diets (sinking pellets) was removed in the freeze dryer for
12 h and then kept under −30 ◦C until use. Spangled emperor Lethrinus nebulosus larvae
which is popular prey for PBT larvae, was used as control (prey fish, PF). Fertilized eggs
obtained from spangled emperor were introduced and hatched in 200 L aquaria.
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Table 1. Formula, proximate composition, and water-soluble and -insoluble protein content in the
test diets.

Ingredients (%) 2
Treatment 1

HS NHS HK NHK PF

Heated squid meal 51.4 - - - -
Non-heated squid meal - 51.4 - - -

Heated krill meal - - 51.4 - -
Non-heated krill meal - - - 51.4 -

Porcine blood meal 5.0 5.0 5.0 5.0 -
Defatted horse mackerel meal 12.0 12.0 12.0 12.0 -

Chicken egg albumin 6.6 6.6 6.6 6.6
Chicken egg lecithin 3.2 3.2 3.2 3.2 -

DHA70E 3 1.3 1.3 1.3 1.3 -
Taurine 1.0 1.0 1.0 1.0 -

Fish oil 4 6.7 6.7 8.1 8.1 -
α-Starch 2.0 2.0 2.0 2.0 -

Monobasic calcium phosphate 1.9 1.9 1.9 1.9 -
Vitamin E (50%) 0.1 0.1 0.1 0.1 -
Choline chloride 0.8 0.8 0.8 0.8 -

Sodium ascorbyl phosphate 0.1 0.1 0.1 0.1 -
Mineral mixture 5 1.5 1.5 1.5 1.5 -
Vitamin mixture 6 3.0 3.0 3.0 3.0 -
Bonito peptide 7 2.0 2.0 2.0 2.0 -

Carboxymethyl cellulose 2.0 2.0 2.0 2.0 -
Cellulose 1.4 1.4 - - -

Proximate composition (%, dry-weight)
Moisture 7.6 6.6 6.3 7.6 91.8

Crude protein 57.2 58.4 56.8 56.2 63.7
Water-soluble protein 4.1 7.8 3.3 4.9 -

Water-insoluble protein 48.9 48.6 51.5 47.6 -
Crude lipid 22.4 24.8 21.2 21.8 22.4
Crude ash 8.3 8.0 13.2 14.1 12.3

1 HS: heated squid meal; NHS: non-heated squid meal; HK: heated krill meal; NHK: non-heated krill meal; PF:
prey fish, Spangled emperor larvae Lethrinus nebulosus. 2 Squid meal (CP: 67.6%, CL: 13.5%); Krill meal (CP:
67.7%, CL: 10.7%); Porcine blood meal (CP: 71.9%, CL: 1.3%); Defatted horse mackerel meal (CP: 78.6%, CL: 2.9%);
Egg albumin (CP: 82.1%, CL: 0.1%). 3 DHA70E (Harima Foods Co., Osaka, Japan). 4 Cod liver oil (Kanematsu
Shintoa Foods Co., Tokyo, Japan). 5 Mineral mixture (mg/kg diet): Na (as NaCl) 197; Mg (as MgSO4·7H2O) 735;
Fe (as FeC6H5O7·5H2O) 258; Zn (as ZnSO4·7H2O) 40; Mn (as MnSO4·5H2O) 18; Cu (as CuSO4·5H2O) 3.9; Al (as
AlCl3·6H2O) 0.56; Co (as CoCl2·6H2O) 0.15; I (as KIO3) 0.89; α-cellulose carrier. 6 Vitamin mixture (amount/kg
diet): thiamine hydrochloride, 60 mg; riboflavin, 100 mg; pyridoxine hydrochloride, 40 mg; cyanocobalamin,
0.1 mg; ascorbic acid, 5000 mg; niacin, 400 mg; calcium pantothenate, 100 mg; inositol, 2000 mg; biotin, 6 mg; folic
acid 15 mg; p-aminobenzoic acid, 50 mg; vitamin K3, 50 mg; vitamin A acetate, 9000 IU; vitamin D3, 9000 IU.
7 Feeding stimulants. Values of proximate composition are presented as means of triplication.

Moisture content in the formulated diets ranged from 6.3–7.6%, and in the PF group
moisture content was 91.8%. The formulated diets were isonitrogenous (57%) and isolipidic
(22%) (Table 1). Crude protein and lipid levels in the control were 63.7 and 22.4%, respec-
tively. The NHS and NHK diets contained higher water-soluble protein than the heated
meal diets (the protein contents of NHS and NHK were 7.8% and 4.9% compared to 4.1%
and 3.3% for HS and HK, respectively). Total and free amino acid content in the non-heated
meal diets were greater than those of the heated meal diets (Tables 2 and 3). The most
abundantly observed free amino acids in the krill-based diets (HK and NHK) were arginine
and glycine, whereas the NHS diet contained a significant portion of proline. The control
diet PF had the highest gross free amino acid level (5.69 g/100 g) compared to the other
diets (2.55~4.57 g/100 g) (Table 3). Docosahexaenoic acid (DHA) level of essential fatty
acids was highest in the PF group (25.0% of total fatty acid), followed by the squid-based
diets (15.0~18.3%) and the krill-based diets (11.5~11.7%), whereas eicosapentaenoic acid
(EPA) was highest in the krill-based diets (11.5~11.7%), followed by the squid-based diets
(8.2~10.7%) and the PF group (6.3%) (Table 4).
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Table 2. Total amino acid content of the test diets (g/100 g, dry-weight).

HS NHS HK NHK PF

Essential amino acids
Arginine 2.25 2.91 2.68 2.83 3.06

Lysine 2.83 3.12 2.67 3.55 4.77
Histidine 1.86 1.00 0.92 1.15 2.71

Phenylalanine 1.93 2.11 1.99 1.99 2.27
Leucine 3.19 3.32 3.20 3.42 4.08

Isoleucine 1.27 1.42 1.32 1.30 1.39
Methionine 0.97 1.25 1.06 1.16 1.61

Valine 1.48 1.74 1.62 1.53 1.82
Threonine 1.99 2.02 1.87 1.82 2.82

Tryptophan 0.41 0.47 0.37 0.61 0.55
Non-essential amino acids

Taurine 1.73 2.02 1.64 1.86 0.76
Alanine 2.86 2.89 2.83 2.68 2.96
Tyrosine 1.44 1.57 1.56 1.59 2.09
Cystine 0.43 0.50 0.33 0.39 N/D

Cystathionine 0.13 0.07 0.09 0.12 0.07
Glycine 2.18 2.40 2.76 2.91 2.14

Glutamic acid 6.09 6.82 6.40 6.33 6.69
Serine 2.25 2.37 2.22 2.22 3.67

Aspartic acid 4.42 4.70 4.73 4.67 4.26
Proline 1.79 2.56 1.73 2.29 2.35
Total 41.49 45.25 42.00 44.42 50.09

Values are presented as means of triplication. HS, heated squid meal; NHS, non-heated squid meal; HK, heated
krill meal; NHK, non-heated krill meal; PF, prey fish; Spangled emperor larvae, Lethrinus nebulosus. N/D: not
detected (detection limit: 0.01 g/100 g, dry-weight).

Table 3. Free amino acid content of the test diets (g/100 g, dry-weight).

HS NHS HK NHK PF

Essential amino acids
Arginine 0.07 0.14 0.17 0.36 0.58

Lysine 0.05 0.12 0.06 0.22 0.65
Histidine 0.06 0.06 0.04 0.01 1.08

Phenylalanine 0.01 0.08 0.02 0.07 0.33
Leucine 0.03 0.19 0.04 0.14 0.57

Isoleucine 0.02 0.08 0.03 0.07 0.16
Methionine N/D 0.03 N/D 0.03 0.19

Valine 0.03 0.09 0.04 0.10 0.20
Threonine 0.03 0.08 0.03 0.06 0.13

Tryptophan N/D 0.01 N/D 0.01 0.13

Non-essential amino acids
Taurine 1.29 1.62 1.20 1.46 0.53
Alanine 0.15 0.28 0.11 0.24 0.31
Tyrosine 0.02 0.10 0.02 0.08 0.27
Cystine 0.03 0.04 N/D N/D N/D

Cystathionine N/D 0.01 0.01 0.01 0.04
Glycine 0.04 0.11 0.48 0.74 0.08

Glutamic acid 0.01 0.11 0.01 0.03 0.21
Serine 0.03 0.07 0.03 0.05 0.09

Aspartic acid 0.06 0.11 0.06 0.05 0.10
Proline 0.62 1.23 0.42 0.58 0.04
Total 2.55 4.57 2.76 4.31 5.69

Values are presented as means of triplication. N/D: not detected (detection limit: 0.01 g/100 g, dry-weight). HS,
heated squid meal; NHS, non-heated squid meal; HK, heated krill meal; NHK, non-heated krill meal; PF, prey
fish; Spangled emperor larvae, Lethrinus nebulosus.
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Table 4. Fatty acid composition (area% of total lipid) of the test diets.

Fatty Acids
Experimental Diets

HS NHS HK NHK PF

14:0 3.7 3.8 5.5 6.2 4.4
16:0 18.0 17.5 19.2 17.5 19.7

16:1n−7 5.5 5.0 5.3 6.0 4.2
18:0 4.6 4.1 3.4 2.9 5.2

18:1n−9 11.7 10.3 12.0 11.3 9.7
18:1n−7 3.5 3.3 3.7 3.8 2.0
18:2n−6 2.8 2.2 4.1 3.4 2.7
18:3n−3 0.4 0.5 0.5 0.5 0.7
18:4n−3 1.0 1.0 1.4 1.4 1.5
20:1n−9 3.2 2.8 1.7 1.9 0.5

20:1n−11 2.7 2.5 1.4 1.6 0.3
20:4n−6 1.5 1.6 1.5 1.3 1.7
20:4n−3 0.4 0.4 0.3 0.3 0.5
20:5n−3 8.2 10.7 11.7 11.5 6.3

22:1n−11 4.0 3.1 2.8 2.8 0.3
22:1n−13 0.7 0.6 0.7 0.6 0.1
22:5n−3 0.9 0.8 0.5 0.5 1.1
22:6n−3 15.0 18.3 11.5 11.7 25.0

22:6n−3/20:5n−3 1.8 1.7 1.0 1.0 4.0
Others 12.1 11.5 12.8 15.0 13.6

Σn−3 LC−PUFA 1 25.5 31.2 25.4 25.4 34.4
Values are presented as means of triplication. HS, heated squid meal; NHS, non-heated squid meal; HK, heated
krill meal; NHK, non-heated krill meal; PF, prey fish; Spangled emperor larvae, Lethrinus nebulosus. 1 LC−PUFA,
long chain poly unsaturated fatty acids; Σn−3 LC−PUFA: 18:4n−3, 20:4n−3, 20:5n−3, 22:5n−3, 22:6n−3.

2.2. Feeding Experiment and Sampling Schedule

Fertilized eggs were collected natural spawning of Pacific bluefin tuna (PBT) reared at
Amami Fish Farm Co, Kagoshima, Japan. The rotifers Brachionus rotundiformis and Artemia
nauplii were offered to larval PBT before they became 10 mm of total length prior to start
of the feeding experiment. The larval PBT were fed larvae of spangled emperor Lethrinus
nebulosus with yolk-sac until the PBT reached 20 mm in total length. Pacific bluefin tuna
larvae with total length of 20.5 ± 0.2 mm (19 days post hatching, dph) were introduced
into ten 500-L circular polycarbonate aquaria. The aquaria had walls carrying black tape in
a checkered pattern to prevent collision of fish against aquarium walls [30] (Table 5).

Table 5. Rearing conditions for feeding trial of Pacific bluefin tuna juveniles.

Average Total Length of Initial Fish (mm) 1 20.5 ± 0.2
Average body weight of initial fish (mg) 1 74.1 ± 2.7

Age of initial fish body (day post hatching) 19
Tank volume (L) 500

Number of fish (ind./tank) 240
Rearing period (days) Weaning period 3

Sole feeding of test diet period 6
Water temperature (◦C) 2 27.8 ± 0.6

pH2 8.1 ± 0.0
Dissolved oxygen (mg/L) 2 11.0 ± 1.7

Photoperiod 11L (07:00–18:00):13D
Exchange rate of sea water (% tank volume/day) 1200

Aeration (mL/min) 800
1 Mean ± standard deviation (SD) (n = 100). 2 Mean ± SD (n = 10).

The initial three days were designated as acclimation period for the formulated diet
(19–21 dph), and the following six days were allocated for feeding with only the test diets
for the juveniles (22–28 dph). A commercial diet for marine fish (CP: 58.1%, CL: 19.4%, dry
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weight) was provided to all treatment groups hourly between 7:00 and 19:00 during the
weaning period. Moreover, PF was offered to all groups (three times a day at 7:00, 13:00,
and 19:00). The PF offered was reduced continuously; PF: PBT larvae (ind.: ind.) = 150:1,
120:1, and 90:1, so as to promote acclimation of PBT larvae to the experimental diets. PBT
juveniles were fed only one of the experimental diets after a three-day weaning period. Fish
in the PF group were subjected to satiation feeding of PF for whole period of the feeding
trial. Dietary treatment was carried out in duplicate. Rearing of fish was finished after
the sixth day from the beginning of the trial to have enough fish for chemical composition
analysis. The daily seawater exchange rate was 1200% of the capacity of an aquarium. The
average of dissolved oxygen concentration and water temperature were 11.0 ± 1.7 mg/L
and 27.8 ± 0.6 ◦C, respectively (Table 5).

Prior to each sampling, fish were starved for 12 h. In this case, 50 fish were collected
just before the beginning of the feeding trial and kept at −80 ◦C. PBT were also collected at
4, 8, and 10 days after feeding to evaluate fish growth. Ten fish were measured at four and
eight days, and 120 fish were measured at ten days, for fork and total length. The whole
body was weighed to obtain wet weight for calculation of the condition factor (CF). The
carcasses were kept under −80 ◦C.

The bottom of aquaria was cleaned every day with a syphon, and survival of fish was
estimated by counting the number of dead fish. Number of dead fish was subtracted from
the fish number introduced at the start of the feeding trial for calculating survival rate. CF,
specific growth rate (SGR), thermal growth coefficient (TGC), and weight gain (WG) were
calculated by the formulae:

WG (%) = [wet weight of the final fish (g) − wet weight of the initial fish (g)]/wet weight of the initial fish (g) × 100

SGR (%) = [ln wet weight of the final fish (g) − ln wet weight of the initial fish (g)] × 100/time (days)

TGC = (wet weight of the final fish (g)1/3 - wet weight of the initial fish (g)1/3) × (sum day-degrees Celsius)−1 × 1000

CF = wet weight (g)/[fork length (cm)]3 × 100

2.3. Chemical Analyses

Diets and carcass were analyzed using standard methods for dry and wet matter,
crude protein, and ash [31]. Chemical analysis was conducted in triplicate for each sample
at the Laboratory of Fish Nutrition, Tokyo University of Marine Science and Technology,
Minato, Tokyo, Japan, and the data was averaged. Moisture content was determined
gravimetrically by drying the sample in a dry oven at 105 ◦C until achieving a constant
weight. The samples were incinerated under 650 ◦C for 8 h by a muffle furnace (FO200,
Yamato Co., Tokyo, Japan) for ash content determination. The Kjeldahl method with using
an automatic titlator (Kjeltec 2400, FOSS Japan Co, Tokyo, Japan) and conversion index of
6.25 were employed for crude protein analysis. Dietary water-soluble protein content was
determined according to de Schrijyer and Ollevier (2000) [32]. Chloroform and methanol
mixture (2:1) was used for crude lipids extraction [33]. Preparation of fatty acid methyl
ester (FAME) was followed the previously reported methods [34]. FAME was analyzed by a
gas chromatograph (GC-2025, Shimadzu, Tokyo, Japan) installed with a fiberglass capillary
column (30 m × 0.32 mm, i. d., SUPERCO-WAX10, Sigma-Aldrich Co, St. Louis, MO, USA)
and peak area of FAME was measured by a recorder (C-R8A Chromatopac; Shimadzu).
Temperature of the column oven was elevated from 170 ◦C at 2 ◦C/min for 40 min and kept
under 250 ◦C. An automatic amino acid analyzer (JLC-500/v; JEOL Co., Tokyo, Japan) was
used for the total and free amino acid analysis as previously described [35]. Samples were
hydrolyzed with 10 mL 2% sulfosalicylic acid (w/v, Wako Fujifilm Co, Tokyo, Japan), or 4M
methanesulfonic acid (Sigma-Aldridge Co, St. Louis, MO, USA) for free and total amino
acid analysis, respectively. The digesta was homogenized for 1.5 min and centrifuged at
1610× g under 4 ◦C for 15 min twice by a devise (SRX-201; Tommy Co., Tokyo, Japan);
the upper layers were pooled and filtered with a membrane filter (0.45 µm, Millipore Co,
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Darmstadt, Germany). The filtrate was analyzed for amino acid. Constitutional amino acid
content was calculated by subtracting the free amino acid from the total amino acid.

2.4. Statistical Analyses

Data on fish growth, initial and final carcass composition were analyzed by a one-way
analysis of variance (ANOVA) followed by Tukey’s multiple range tests. The main effects
of dietary protein source and the heat processing were tested using a two-way ANOVA.
Statistical significance was accepted when probability was below 95%. IBM SPSS 19 (SPSS
Inc., Chicago, IL, USA) was used for statistical analysis.

3. Results
3.1. Survival and Growth of PBT Juveniles

The survival of juvenile PBT fed the treatment and control diets during the test period
is presented in Figure 1. There were no significant differences in survival during the period
from one to five days (including the weaning period of one to three days) in all treatment
groups. However, significant differences in survival were observed thereafter until the final
day. The highest survival of the final fish was found in the PF group (75.3%), followed by
the NHK, HK, NHS, and HS groups (52.6%, 51.9%, 45.9%, and 25.8%, respectively). There
were no significant differences among the HK, NHK, and NHS groups on the final day,
but these groups differed significantly from the HS group. Survival in the krill-based diet
groups (HK and NHK) was similar during the rearing period (Figure 1). Survival was
not affected by the heat treatment. Effects were significant for protein sources during the
rearing period; however, no interactive effects of two factors were detected (Table 6).

Figure 1. Survival of Pacific bluefin tuna juveniles fed different test diets during the rearing period.
Different superscript letters indicate significant difference among the dietary groups (Tukey’s test,
p < 0.05). HS, heated squid meal; NHS, non-heated squid meal; HK, heated krill meal; NHK, non-
heated krill meal; PF, prey fish; Spangled emperor larvae, Lethrinus nebulosus.
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Table 6. Growth performance, proximate composition and biological indices of Pacific bluefin tuna
fed the test diets 1 for 9 days.

Initial Final (28 dph) p

(19 dph) HS NHS HK NHK PF I H I × H

Growth performance
Total length (mm) 20.5 ± 0.2 33.2 ± 0.2 d 35.7 ± 0.3 c 34.6 ± 0.3 c 39.0 ± 0.3 b 47.7 ± 0.4 a * * *
Body depth (mm) 4.2 ± 0.0 6.4 ± 0.0 e 7.1 ± 0.1 c 6.7 ± 0.1 d 7.4 ± 0.1 b 8.6 ± 0.1 a * * ns
Body weight (mg) 74.1 ± 2.7 251.0 ± 5.6 d 355.3 ± 10.7 c 318.6 ± 8.3 c 480.4 ± 12.1 b 837.4 ± 21.3 a * * *

CF 0.8 ± 0.1 0.7 ± 0.1 c 0.8 ± 0.1 b 0.7 ± 0.1 b 0.8 ± 0.1 a 0.8 ± 0.1 b * * *
WG (%) 238.7 ± 3.1 c 379.6 ±16.1 c 330.0 ± 20.9 c 548.3 ± 3.1 b 1030.1 ± 76.4 a * * ns
SGR (%) 13.6 ± 0.1 d 17.5 ± 0.0 c 16.2 ± 0.8 c 20.5 ± 0.2 b 27.4 ± 0.5 a * * ns

TGC 0.2 ± 0.0 d 0.4 ± 0.0 c 0.3 ± 0.0 cd 0.5 ± 0.0 b 1.1 ± 0.1 a * * ns
Survival rate (%) 25.8 ± 9.9 c 45.9 ± 2.4 bc 51.9 ± 3.3 b 52.6 ± 5.2 b 75.3 ± 2.5 a * ns ns

Proximate composition (%, wet-weight)
Moisture 83.5 ± 0.2 83.7 ± 0.2 ab 82.9 ± 0.1 c 84.1 ± 0.3 a 83.3 ± 0.0 bc 83.4 ± 0.2 bc * * ns

Crude protein 12.4 ± 0.0 11.2 ± 0.3 c 11.9 ± 0.1 b 11.6 ± 0.1 bc 12.6 ± 0.0 a 12.9 ± 0.1 a * * ns
Crude lipid 2.0 ± 0.1 2.0 ± 0.0 c 2.6 ± 0.1 a 1.8 ± 0.1 c 2.2 ± 0.0 b 1.6 ± 0.0 d * * *
Crude ash 2.6 ± 0.1 3.2 ± 0.2 2.7 ± 0.2 2.9 ± 0.2 2.7 ± 0.1 2.8 ± 0.1 ns * ns

Values of total length, body depth, body weight and CF (condition factor) are means ± SD of 100 (19 dph) or 120
(28 dph) fish. Values are means ± SD of 2 groups of fish (n = 2; WG, SGR, TGC and survival rate) or 3 groups
of fish (n = 3; proximate composition). Values in a same row with different letter are significantly different
(Tukey’s test, p < 0.05). I, ingredients (squid meal and krill meal); H, heated and non-heated treatment; ns, no
significant difference (two-way ANOVA, p > 0.05); *, p < 0.05. WG, weight gain; SGR, specific growth rate; TGC,
thermal growth coefficient. 1 HS, heated squid meal; NHS, non-heated squid meal; HK, heated krill meal; NHK,
non-heated krill meal; PF, prey fish; Spangled emperor larvae, Lethrinus nebulosus.

The growth performances of juvenile PBT during all test periods are shown in Table 6,
Figures 2–4. The best growth was found in the PF group, and its difference was significant
among all groups (p < 0.05). The PBT juveniles in non-heated diet groups grew significantly
better than those in the heated treatment diet groups (p < 0.05), and the fish in krill meal-
based diet groups grew significantly better than those in the squid meal-based diet groups
(p < 0.05) (Figures 2 and 3). The WG, SGR, and TGC of fish were affected by both protein
sources and heat treatments, but there were no interactive effects of either factor (Figure 4).

Figure 2. Final total length of Pacific bluefin tuna juveniles fed different test diets during the rearing
period. Different superscript letters indicate significant difference among the dietary groups (Tukey’s
test, p < 0.05; 1st day, n = 50; 4th and 8th day, n = 10; 10th day, n = 120). HS, heated squid meal; NHS,
non-heated squid meal; HK, heated krill meal; NHK, non-heated krill meal; PF, prey fish; Spangled
emperor larvae, Lethrinus nebulosus.
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Figure 3. Final body weight of Pacific bluefin tuna juveniles fed different diets during the rearing
period. Different superscript letters indicate significant difference among the dietary groups (Tukey’s
test, p < 0.05; 1st day, n = 50; 4th and 8th day, n = 10; 10th day, n = 120). HS, heated squid meal; NHS,
non-heated squid meal; HK, heated krill meal; NHK, non-heated krill meal; PF, prey fish; Spangled
emperor larvae, Lethrinus nebulosus.

Figure 4. Means of WG (g, upper-left), SGR (%, upper-right), TGC (lower-left), and survival (%,
lower-right) of juvenile Pacific bluefin tuna after rearing period for the main effects of ingredient
and heat treatment. Data was expressed as means ± SE. WG, weight gain; SGR, specific growth rate;
TGC, thermal growth coefficient. The asterisks indicate significant differences by two-way ANOVA
analysis (p < 0.05).
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3.2. Chemical Property of PBT

The highest moisture content was noted in the HK group, followed by the HS, PF,
NHK, and NHS groups (p < 0.05). The crude protein contents in the PF and NHK groups
were significantly higher than those in the other groups, whereas the crude lipid content in
the NHS group was significantly higher than in the other groups (p < 0.05). No significant
differences were observed in the crude ash among all the groups (p > 0.05). The moisture,
crude protein, and crude lipid of the carcasses were affected by both protein source and
heat treatment, but an interactive effect between both factors was detected only for crude
lipids. By the final day, the CF observed in the NHK group was significantly higher than
those of the PF, NHS, and HK groups, which were significantly higher than that of the HS
group (p < 0.05).

Significant differences between the PF and the other groups were observed in all con-
stitutional amino acid levels except valine and tryptophan. Specifically, most of the amino
acid levels were higher in the PF group than in the other treatment groups. Constitutional
amino acids were affected by both the protein source and heat treatment, while the free
amino acids tended to be affected by the interaction. Only free histidine was affected by
both factors (Table 7).

Table 7. Constitutional and free amino acid content of Pacific bluefin tuna fed the test diets 1 for
9 days (g/100 g, dry-weight).

Constitutional Amino Acid

Initial Final (28 dph) p

(19 dph) HS NHS HK NHK PF I H I × H

Essential amino acid
Arginine 2.56 ± 0.27 1.67 ± 0.47 c 2.31 ± 0.16 bc 2.53 ± 0.16 ab 2.65 ± 0.09 ab 3.14 ± 0.07 a * * ns

Lysine 3.36 ± 0.38 2.21 ± 0.48 c 3.06 ± 0.22 b 3.30 ± 0.11 b 3.52 ± 0.08 ab 4.14 ± 0.04 a * * ns
Histidine 0.77 ± 0.15 0.53 ± 0.15 c 0.76 ± 0.04 b 0.82 ± 0.03 ab 0.88 ± 0.02 ab 1.01 ± 0.03 a * * ns

Phenylalanine 1.89 ± 0.25 1.42 ± 0.37 b 1.84 ± 0.13 ab 2.05 ± 0.04 a 2.05 ± 0.10 a 2.34 ± 0.07 a * * ns
Leucine 3.18 ± 0.40 2.35 ± 0.50 c 3.08 ± 0.24 b 3.34 ± 0.11 ab 3.48 ± 0.09 ab 3.82 ± 0.11 a * * ns

Isoleucine 1.25 ± 0.16 0.93 ± 0.19 b 1.11 ± 0.21 ab 1.21 ± 0.10 ab 1.31 ± 0.05 a 1.45 ± 0.03 a * ns ns
Methionine 0.92 ± 0.12 0.84 ± 0.29 b 0.93 ± 0.14 b 1.21 ± 0.08 ab 1.18 ± 0.13 ab 1.45 ± 0.10 a * ns ns

Valine 1.28 ± 0.18 0.98 ± 0.49 1.14 ± 0.20 1.28 ± 0.11 1.31 ± 0.03 1.53 ± 0.04 ns ns ns
Threonine 2.24 ± 0.25 1.66 ± 0.28 b 2.14 ± 0.08 a 2.21 ± 0.04 a 2.39 ± 0.08 a 2.50 ± 0.04 a * * ns

Tryptophan 0.39 ± 0.08 0.26 ± 0.13 0.41 ± 0.05 0.47 ± 0.07 0.36 ± 0.06 0.50 ± 0.11 ns ns *

Free amino acid p

Essential amino acid
Arginine 0.39 ± 0.04 0.79 ± 0.20 a 0.35 ± 0.25 bc 0.29 ± 0.01 bc 0.57 ± 0.02 ab 0.15 ± 0.00 c ns ns *

Lysine 0.49 ± 0.01 0.84 ± 0.16 a 0.43 ± 0.26 bc 0.36 ± 0.01 bc 0.61 ± 0.02 ab 0.18 ± 0.00 c ns ns *
Histidine 0.69 ± 0.01 0.29 ± 0.04 d 0.43 ± 0.05 c 0.33 ± 0.00 d 0.52 ± 0.01 b 0.78 ± 0.01 a * * ns

Phenylalanine 0.32 ± 0.00 0.50 ± 0.16 a 0.21 ± 0.17 b 0.17 ± 0.01 b 0.38 ± 0.01 ab 0.11 ± 0.00 b ns ns *
Leucine 0.46 ± 0.01 0.75 ± 0.22 a 0.31 ± 0.26 b 0.26 ± 0.01 b 0.52 ± 0.02 ab 0.17 ± 0.00 b ns ns *

Isoleucine 0.23 ± 0.00 0.35 ± 0.09 a 0.16 ± 0.13 b 0.13 ± 0.00 b 0.26 ± 0.01 ab 0.10 ± 0.00 b ns ns *
Methionine 0.22 ± 0.00 0.32 ± 0.09 a 0.15 ± 0.11 ab 0.13 ± 0.00 b 0.25 ± 0.01 ab 0.08 ± 0.01 b ns ns *

Valine 0.37 ± 0.01 0.52 ± 0.12 a 0.23 ± 0.19 b 0.19 ± 0.00 b 0.36 ± 0.01 ab 0.17 ± 0.00 b ns ns *
Threonine 0.25 ± 0.00 0.35 ± 0.07 a 0.19 ± 0.12 b 0.15 ± 0.00 b 0.25 ± 0.01 ab 0.14 ± 0.00 b ns ns *

Tryptophan 0.05 ± 0.02 0.15 ± 0.07 a 0.04 ± 0.04 b 0.04 ± 0.00 b 0.09 ± 0.01 ab 0.02 ± 0.00 b ns ns *

Values are presented as means of triplication. Values in a same row with different superscript letters are signif-
icantly different (Tukey’s test, p < 0.05). I, ingredients (squid meal and krill meal); H, heated and non-heated
treatment; ns, no significant difference (two-way ANOVA, p > 0.05); *, p < 0.05. 1 HS, heated squid meal; NHS,
non-heated squid meal; HK, heated krill meal; NHK, non-heated krill meal; PF, prey fish; Spangled emperor
larvae, Lethrinus nebulosus.

The major fatty acids in the carcass were 16:0 (palmitic), 18:0 (stearic), 18:1n−9 (oleic),
20:5n−3 (eicosapentaenoic, EPA), and 22:6n−3 (docosahexaenoic, DHA) acids (Table 8).
The sum of these major fatty acids accounted for more than 66.2%, 70.0%, 69.9%, 68.4%,
and 77.4% of the total fatty acids in the HS, NHS, HK, NHS, and PF treatment groups,
respectively. The major saturated fatty acid (SAFA) was 16:0 in all groups. Regarding
polyunsaturated fatty acids (PUFAs), bluefin tuna is considered to be a good source of
n−3 fatty acids, particularly DHA, which exhibited the highest levels in the PF group.
DHA occurred in a higher proportion than EPA in all treatment groups. The sum of DHA
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and EPA reached 28.9%, 34.6%, 32.7%, 30.5%, and 35.5% for HS, NHS, HK, NHK, and PF,
respectively.

Table 8. Fatty acid composition (area% of total lipid) of whole fish body of Pacific bluefin tuna for 9 days.

Initial Final (28 dph) p

(19 dph) HS NHS HK NHK PF I H I × H

14:0 3.1 ± 0.6 1.6 ± 0.1 1.4 ± 0.2 1.6 ± 0.5 1.6 ± 0.1 0.9 ± 0.2 ns ns ns
16:0 25.4 ± 1.2 18.0 ± 0.7 b 18.6 ± 0.8 b 19.8 ± 0.9 b 18.8 ± 2.2 b 23.7 ± 0.4 a ns ns ns

16:1n−7 3.2 ± 0.5 2.5 ± 0.1 bc 3.4 ± 0.2 ab 3.2 ± 0.5 ab 4.1 ± 0.2 a 1.8 ± 0.3 c * * ns
18:0 11.3 ± 2.1 11.0 ± 0.9 a 6.2 ± 0.3 c 7.5 ± 0.2 bc 6.1 ± 0.5 c 8.9 ± 0.5 b * * *

18:1n−9 8.1 ± 1.0 8.3 ± 0.2 c 10.6 ± 0.4 b 9.9 ± 0.2 bc 13.0 ± 1.3 a 9.3 ± 0.6 bc * * ns
18:1n−7 2.0 ± 0.2 2.2 ± 0.0 c 3.0 ± 0.1 b 2.8 ± 0.1 bc 3.7 ± 0.4 a 2.2 ± 0.1 c * * ns
18:2n−6 2.2 ± 0.2 1.9 ± 0.2 c 2.6 ± 0.1 b 3.9 ± 0.3 a 3.9 ± 0.2 a 1.9 ± 0.1 c * ns *
18:3n−3 0.4 ± 0.1 0.2 ± 0.0 0.3 ± 0.0 0.2 ± 0.0 0.3 ± 0.0 0.2 ± 0.0 ns * ns
18:4n−3 0.7 ± 0.1 0.8 ± 0.3 0.6 ± 0.0 0.6 ± 0.2 0.8 ± 0.1 0.3 ± 0.1 ns ns ns
20:1n−9 0.5 ± 0.1 1.8 ± 0.2 a 1.8 ± 0.1 a 1.2 ± 0.3 b 1.5 ± 0.1 ab 0.3 ± 0.0 c * ns ns
20:1n−11 0.4 ± 0.1 1.4 ± 0.1 ab 1.5 ± 0.1 a 0.9 ± 0.2 c 1.2 ± 0.1 bc 0.3 ± 0.0 d * * ns
20:2n−6 0.1 ± 0.0 0.2 ± 0.0 b 0.2 ± 0.0 a 0.1 ± 0.0 c 0.1 ± 0.0 c 0.1 ± 0.0 c * * *
20:4n−6 3.0 ± 0.4 2.7 ± 0.4 b 3.3 ± 0.2 b 4.4 ± 0.6 a 3.5 ± 0.2 ab 3.7 ± 0.1 ab * ns *
20:4n−3 0.3 ± 0.1 0.2 ± 0.0 b 0.3 ± 0.0 a 0.2 ± 0.0 ab 0.2 ± 0.0 ab 0.3 ± 0.0 ab ns * ns
20:5n−3 5.6 ± 1.0 7.1 ± 0.4 b 8.6 ± 0.4 ab 8.2 ± 0.3 ab 9.4 ± 0.8 a 5.0 ± 0.3 c * * ns
22:5n−6 0.9 ± 0.1 0.6 ± 0.1 b 0.9 ± 0.1 ab 0.8 ± 0.1 ab 0.9 ± 0.0 ab 1.1 ± 0.2 a ns * ns
22:6n−3 22.8 ± 3.5 21.8 ± 3.9 ab 26.0 ± 2.2 ab 24.5 ± 3.5 ab 21.1 ± 2.0 b 30.5 ± 0.2 a ns ns ns

22:6n−3/20:5n−3 4.2 ± 0.6 3.1 ± 0.5 b 3.0 ± 0.2 b 3.0 ± 0.5 b 2.3 ± 0.1 b 6.1 ± 0.4 a ns ns ns
Others 9.8 ± 1.5 16.3 ± 5.4 8.8 ± 4.3 8.3 ± 2.1 7.7 ± 2.0 9.3 ± 1.8 ns ns ns

Σn−3 LC−PUFA 1 30.7 ± 4.5 30.7 ± 4.0 36.6 ± 2.5 34.6 ± 3.2 32.7 ± 2.9 37.4 ± 0.2 ns ns ns

1 LC−PUFA, long chain poly unsaturated fatty acids; Σn−3 LC−PUFA: 18:4n−3, 20:4n−3, 20:5n−3, 22:5n−3,
22:6n−3. Values are presented as means of triplication. Values in a same row with different superscript letters are
significantly different (Tukey’s test, p < 0.05). I, ingredients (squid meal and krill meal); H, heated and non-heated
treatment; ns, no significant difference (two-way ANOVA, p > 0.05); *, p < 0.05. HS, heated squid meal; NHS,
non-heated squid meal; HK, heated krill meal; NHK, non-heated krill meal; PF, prey fish; Spangled emperor
larvae, Lethrinus nebulosus.

4. Discussion

Kvåle et al. (2009) [36] reported that different feeding practices greatly affect fish
performance, and the weaning period and method of introducing formulated diets are
important. In the present study, based on the findings of Haga et al. (2010) [37], Cho et al.
(2016) [38] and Cho et al. (2022) [39], we fed yolk-sac larvae of spangled emperor and a
commercial diet on the first day, but the frequency of feeding yolk-sac larvae was gradually
reduced over the subsequent two days due to acclimation to the formulated diet. According
to Cho et al. (2016) [38], early larvae of PBT is able to weaned to formulated diets once
they successfully accepted and ingested a suitable formulated diet. Similarly, in the present
study, no significant differences were observed in fish growth and survival immediately
after the weaning period, but we were able to observe significant differences in growth
performance after changing their diet (Figures 1–3).

In the present study, there were significant differences in the contents of water-soluble
proteins and free amino acids between the heated and non-heated diets (Tables 1 and 3).
Considering an extruded pelleting process which is subjected to heat treatment, protein
denaturation of the non-heated meal could be expected. To avoid protein denaturation of
the non-heated meal, an extruder was not used to prepare the test diet in the present study.
According to Cho et al. (2018) [28], in a study comparing the effects of heat treatment of
ingredients on the growth performance of juvenile red sea bream Pagrus major, the growth
of fish fed a non-heated diet was significantly better than that of fish fed a heated diet. Cho
et al. attributed this difference in growth performance to the high water-soluble protein
and free amino acid content in the feed. Watanabe (1982) [40] reported the incorporation
of water-soluble proteins by pinocytosis in rectal epithelium cells in larval and juvenile
teleosts. In the present study, it is suggested that the highly water-soluble protein contained
in the non-heated diets has been effectively absorbed and assimilated in the early stages of
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PBT. Furthermore, higher utilization of free amino acids was demonstrated in the larvae
and juvenile of fish [41,42]. Current result showed that approximately 1.7 times higher
gross free amino acid contained in the non-heated diets than the heated treatment diets,
suggesting that they were utilized more effectively for growth.

Satoh (2005) [43] reported the in vitro digestibility of fish meal and raw fish by pepsin
and trypsin from yellowtail Seriola quinqueradiata. Both pepsin and trypsin activity of fish
fed raw fish were much higher than in those fed fish meal, and these enzymes worked
better on protein from raw fish compared to that from fish meal. Furthermore, Seoka
et al. (2010) [27] reported that the growth and survival (at 30 days post hatching) of PBT
juvenile fed non-heated Toyama squid Watasenia scintillans meal-based diet were better
than that fed a commercial diet. Yellowtail and tuna species feed on live fish in natural
ecosystems; therefore, it is thought that the proteins of non-heated treatment without
denaturation are highly digestible; therefore, using a non-heated protein source in an
aquaculture setting is likely to be superior in terms of digestibility. It was reported that
PBT juveniles exhibited higher gustatory responses to alanine, leucine, valine, methionine,
isoleucine, and proline [44]. Here we demonstrated that the gross levels of these amino
acids in non-heated diets (1.90 and 1.16 g/100 g) were higher than those in the heated
diets (0.85 and 0.64 g/100 g). These results suggest that a diet containing high levels of
water-soluble proteinous component such as free amino acids that are effective for fish
growth can be produced without heating the ingredients and such a diet will promote
the feed intake of PBT juveniles. Furthermore, Marubeni Nisshin Feed Co, Tokyo, Japan,
developed a commercial formulated diet (Magokoro) based on enzyme-treated Chilean
fish meal called BioCP from LANDES Co., Talcahuano, Chile, for PBT juveniles. Higher
water solubility after enzyme treatment has been well documented for fish protein [45], and
60% of protein in BioCP accounts for soluble protein. However, the production of BioCP
is expected to decline in the near future. When fish meal is in short supply, non-heated
proteins can be more competitive depending on the availability of soluble proteins in
the market.

The effects of feed ingredient on nutritional status were investigated in the present
study. As a result, nutritional status indices, including growth performance, whole body
composition, constitutional amino acid, and fatty acid altered. Fish fed krill meal-based
diet (HK and NHK) had a positive WG, SGR, TGC, and survival. It was suggested that
krill meal diet promotes digestive ability of yellowtail by regulating the digestive enzyme
secretion in intestine [43].

Compared to squid meal, krill meal is considered to be a more effective ingredient for
marine fish, including for the early life stage of PBT. The crude protein in krill contains 40%
of the extractable nitrogen-containing components that are not contained in the protein
itself [46]. Since the extractable component contains free amino acids and peptides and
does not require decomposition by proteases, it might be easily absorbed. In the present
study, the content of water-soluble proteins in the krill meal was not high. This could be
because the extract component was dissolved and lost when it thawed. The essential amino
acid contents, except tryptophan and valine, of the whole fish body were affected by the
feed ingredients. This finding suggests that the amino acid balance of krill meal makes it
more suitable than squid meal for PBT juveniles.

Krill is rich in astaxanthin, which has antioxidant activity, whereas squid meal is low
in astaxanthin [47]. Although the content of astaxanthin was not measured in the present
study, it is expected that the krill meal-based diet contains astaxanthin, which is considered
to be effective in preventing the oxidation of long-chain polyunsaturated fatty acids. The
fatty acid 18:1n−9 was identified as the major monounsaturated fatty acid (MUFA) and
was significantly higher in the heated treatment (HS and HK) and PF groups. The most
abundant saturated fatty acid (SAFA) in the present study was 16:0, which is considered to
be a predominant source of potential metabolic energy in fish during growth [48], and it is
the predominant SAFA in the main live feed source of cultured tuna [48,49]. The ratio of
DHA/EPA in raw feed for PBT was reported to exceed 2.0 [50], and the DHA/EPA ratio of
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PF used in the present study was 4.0. Further, Seoka et al. (2008) [51] reported that PBT
juveniles fed yolk-sac larvae of striped beakfish Oplegnathus fasciatus with a DHA/EPA ratio
of 3.6 show better growth performance than those fed a formulated diet with a DHA/EPA
ratio of 1.7. It has also been considered that the dietary DHA/EPA ratio affects the growth
performance of marine fish larvae and juveniles, and a ratio of at least 1.0 is appropriate for
normal growth [52,53]. Although the DHA/EPA ratio of the test diet used in the present
study exceeded 1.0, the growth in the test group was lower than that of the PF group (4.0).

Although the present study clearly demonstrated that non-heated meal is a suitable
protein source for formulated diet for PBT juveniles, overall survival of the PBT fed the
formulated diets was not very high (25.8–52.6%). Considering high mortality of hatchery-
raised PBT juvenile is the one of the biggest bottleneck of mass production of the PBT
juveniles, further improvement of the feed performance of the formulated diet for PBT
is desired.

5. Conclusions

In conclusion, it is important to understand whether the selection of a feed protein
source and its heat treatment would improve the nutritional status and thus growth of
PBT juveniles. The present study showed that heat treatment of the protein source in
feed adversely affected growth performance and survival of PBT juveniles. Furthermore,
the influence of heat treatment was more remarkable in squid meal than in krill meal.
Taken together, the results of the present study suggest that protein source as well as heat
treatment may influence the nutritional status of cultured juvenile PBT, and this should be
taken into consideration for the management of seed production.
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