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Abstract: The East China Sea population of hairtail (Trichiurus lepturus, also known as T. japonicus) is
a commercially important element of Chinese fisheries. Hairtail has long been widely exploited. Due
to overfishing, however, its production declined over the years. One of solutions to this dilemma is
to institute reasonable fishery policies. Generally, skillful short-term and long-term prediction of fish
catch is a central tool for guiding the development of fishery policy. Accurate predictions require a
comprehensive understanding of the relationship between fluctuations in fish catch and variability
in both fishing effort and marine environmental conditions. To investigate the combined impact of
fishing effort and marine environments on hairtail catch and to develop models to predict hairtail
catch, we applied empirical dynamic modeling (EDM) to data on East China Sea fisheries, including
hairtail catch, fishing effort, and marine environmental factors. EDM is an equation-free approach that
enables the investigation of various complex systems. We constructed all possible multivariate EDM
models to investigate the potential mechanisms affecting hairtail catch. Our analysis demonstrates
that all key environmental factors (salinity, summer monsoon, sea surface temperature, precipitation,
and power dissipation index of tropical cyclones) have an impact on nutrient supply, which we
suggest is the central factor influencing hairtail catch. Finally, our comparison of EDM models with
parametric models demonstrates that EDM models overwhelmingly outperform parametric models
in analysis of these complex interactions.

Keywords: ecosystem forecasting; hairtail catch; fishing effort; environmental factors; empirical
dynamic modeling

1. Introduction

Given the year-by-year declines in marine fish resources, sustainable exploitation and
conservation of fishery resources are matters of great urgency and importance for human
society. The consequences of declining fishery resources can be alleviated, however, wher-
ever fishery managers can institute reasonable fishery policies and implement appropriate
management measures. Generally, skillful short-term and long-term prediction of fish
catch is a central tool for guiding the development of fishery policy. Accurate predictions
require a comprehensive, solid understanding of the relationship between fluctuations in
fish catch and variability in both fishing effort and marine environmental conditions. In the
past decade, the effects of fishing effort and environmental factors on fish catch or catch per
unit effort (CPUE) have received wide research attention [1–6]. Qiu et al., for instance, have
suggested that environmental factors exert indirect effects on fish populations through
their effects on ocean nutrient availability, which, in turn, affects biological production [2].
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A study of Tian et al. reveals that biological processes at each trophic level are not much
influenced by trophic interactions but instead are affected directly by ocean conditions [7].
Yu et al. have reported that the Japanese anchovy recruitment is probably regulated both
by environmental conditions and by the availability of food to anchovies at early stages
of development [8]. A study of Zainuddin et al. revealed that Albacore CPUEs tend to
increase significantly in areas of increasing probability of environmental variables during
the season of high abundance [5]. Dutta et al. reported that the CPUE of fish in the north-
ern Bay of Bengal with phytoplankton biomass positively correlated with phytoplankton
biomass and essential nutrients, like dissolved inorganic phosphate, nitrate, and silicate [6].
Chifamba suggests that maximum temperature is the best predictor of CPUE of the fresh
water sardine Limnothrissa miodon in Lake Kariba, when using data for the whole period
of time [9].

Hairtail (Trichiurus lepturus, also known as T. japonicus), a commercially important
species in Chinese fisheries, is caught primarily by trawl net and stow net in the East China
Sea [10]. Hairtail has been extensively exploited since the 1950s, and the annual catch has
increased markedly since that time. After 1988, there was an especially sharp increase in
annual catch because of improvements in fishing techniques and increased fishing effort.
However, intensified fishing of hairtail ultimately led to a decreased annual catch from
2001 onward, due to overfishing. In addition to the effects of fishing intensity, climate and
marine environmental conditions also play an important role in hairtail catch [3].

Thus far, analysis of responses of hairtail production to fishing effort and marine
environmental factors has been based on parametric approaches, such as linear regres-
sion [2,11,12]. Parametric approaches usually assume a stable equilibrium or constant
parameters [13]. However, marine ecosystems can be highly complex and nonlinear, and
relations among variables can vary over time. Thus, the models obtained by parametric
approaches may be irrelevant or too simplistic for analyses of marine fish communities,
and the identification of drivers of fish abundance using such approaches is thus likely to
be incorrect. Hence, to re-examine the environmental drivers of hairtail abundance, we
developed methods for predicting hairtail catch by applying a flexible, data-driven method,
empirical dynamic modeling (EDM), to the assessment of hairtail population dynamics.
EDM is an equation-free approach for the investigation of complex systems that can reveal
the variation of relationships among variables over time [14–16].

The objective of our study is to identify the potential environmental drivers of hairtail
catch using EDM methods. As fishing effort and marine environmental factors both have
an impact on fishery catch, a better understanding of climatic influences on hairtail catch
also requires an assessment of the confounding effects of fishing effort and marine envi-
ronmental factors on hairtail catch. Hence, we integrated fishing effort into a multivariate
EDM and constructed all possible multivariate EDM models in order to probe the potential
factors that might affect hairtail catch and the potential mechanisms behind those effects.

2. Materials: Study Area and Dataset

In the northwest Pacific, Trichiurus lepturus is mainly found in the East China Sea
(117◦ E~131◦ E, 23◦ N~33◦ N). To study the responses of hairtail catch to variability in
fishing effort and marine environmental conditions, we focused on commercial catch data
and fishing effort data from waters adjacent to four eastern Chinese provinces: Zhejiang,
Shanghai, Jiangsu, and Fujian. We based our analyses on annual catch abundance and
fishing effort data in these four provinces from 1977 through 2018, collected in the China
Fishery Statistical Yearbook [17]. Fishing effort data for this period are expressed in terms of
the total fishing capacity of these four provinces. Annual fishing effort from 1977 to 1985
is represented as total fishing capacity with both motorized and non-motorized vessels,
while data from 1986 to 2018 are based on the total fishing capacity of motorized fishing
vessels only, as the contribution of non-motorized fishing vessels has been negligible since
1986 [10,11]. In addition, the annual fishing effort from 1977 to 1990 is described with
respect to overall fishing-vessel horsepower.
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Catch per unit effort (CPUE) has been one of the most common pieces of information
used in assessment of the performance of fisheries [18,19]. Nominal annual CPUE (catch per
unit effort) values are calculated by dividing catch abundance by fishing effort [20,21]. The
statistics for catch abundance, fishing effort, and CPUE are depicted in Figure 1. In addition,
we tested whether CPUE can serve as a valid proxy for abundance. Because we found that
the correlation between CPUE and abundance is very low (Figure 1a, R2 = 0.144, p < 0.05),
we did not use CPUE as a proxy for hairtail abundance in our subsequent analysis. Similar
conclusions have been reported by other researchers; that fishery-dependent CPUE data
are influenced by several factors, and hence, raw CPUE is seldom proportional to abun-
dance [18,22,23]. Korman and Yard suggested that CPUE surveys are potentially biased
toward the evaluation of population response to habitat changes or to modest changes in
fishing effort [24]. Among these factors, one of the particular concerns is that fishing effort
is not systematically distributed over the whole area [21]. Other typical factors include gear
characteristics, season, environmental conditions, and so on [18]. In order to minimize the
influence of factors that bias CPUE as an index of abundance, one of the most commonly
applied fisheries analyses is standardization of CPUE data by temporal or spatiotemporal
modeling methods [25–28]. Since our work does not focus on CPUE, the details of these
methods for standardization of CPUE will not be discussed here.

Environmental variables in the analysis include land precipitation (Prec), sea surface
temperature (SST), ocean salinity (Sal), power dissipation index of tropical cyclones (PDI),
summer wind speed (SWS), and winter wind speed (WWS) within the domain of the East
China Sea (E117◦/131◦ and N23◦/33◦) from 1977 through 2018. The time series of land
precipitation data is drawn from the Global Precipitation Climatology Center (GPCC) database
using Climate Explorer (http://climexp.knmi.nl/, accessed on 29 April 2020), with a time
resolution of one month, and a spatial resolution of 0.5◦ × 0.5◦. SST. A vital environmental
factor associated with nutrient richness is retrieved from the monthly 5◦ × 5◦ HadCRUT
(Hadley Centre/Climatic Research Unit Temperature) dataset using Climate Explorer. The
annual environmental variables are obtained simply by averaging the estimated annual values
within the above-covered domain for each of the corresponding years.

Surface wind-speed data are derived monthly from the Comprehensive Ocean-Atmosphere
Data Set (COADS) with a spatial resolution of 2◦ × 2◦. The summer monsoon and winter
monsoon time series are calculated, respectively, as the average surface wind speed in the three
months from June to August (summer) and six months from October to the following March
(winter). The rationale for using different numbers of months in summer and winter is that
the winter monsoon lasts longer than the summer monsoon: the summer monsoon prevails
from June to August, while the winter monsoon lasts from October to the following March [2].
Tropical cyclone (TC) information about the position and maximum sustained surface winds
is obtained from the “Best Track Data” archives, which are reported every six hours by the
Regional Specialized Meteorological Center (RSMC) Tokyo-Typhoon Center. Specifically, the
maximum sustained surface wind is defined as the 10-min average wind speed at an altitude
of 10 m [2]. We used the annual PDI to reflect the contribution of TCs to upper-ocean mixing,
which is more informative than TC frequency or intensity alone [29]. The PDI is defined as the
cube of the maximum sustained wind speed integrated over the period of the duration of a TC
within the ocean region of interest; the annual PDI is obtained by combining the PDI of all TCs
in an entire year. Before proceeding with further analysis, all the collected data sets were first
standardized to avoid scale nonconformity.

http://climexp.knmi.nl/
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Figure 1. Annual statistics in the East China Sea (ECS): (a) catch abundance and corresponding 
CPUE; (b) fishing effort of hairtail. 

3. Method 
Many natural systems exhibit nonlinear dynamics, such as marine ecosystems. The 

presence of nonlinear dynamics in fish populations has been thoroughly examined by us-
ing kinds of nonlinear time series analysis [30,31]. In light of the complex nonlinear dy-
namics of marine systems, several authors have claimed that prediction in marine fisher-
ies is a challenging task [32,33]. In such systems, the correlation among the given variables 
is unstable [34]. In natural systems, “mirage correlations” frequently occur [35], making 
traditional parametric models ill-suited to describing physical behaviors of these systems. 
A promising approach for study of nonlinear dynamic systems is empirical dynamic mod-
eling (EDM), which uses analysis of a time series of observations of variables instead of 
using common parametric equations. The basic theoretical properties of EDM have been 
described in the work of Sugihara and colleagues [13,35]. 

  

Year

1980 1990 2000 2010

2
3

4
5

6
7

8
9

10
C

at
ch

 a
bu

nd
an

ce
s/

10
0,

00
0t

un

0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

C
PU

E(
ca

tc
h/

ef
fo

rt)

Catch
CPUE

1980 1990 2000 2010 2020

20
40

60
80

10
0

Year

Fi
sh

in
g 

ef
fo

rt 
/1

00
,0

00
K

W

Figure 1. Annual statistics in the East China Sea (ECS): (a) catch abundance and corresponding
CPUE; (b) fishing effort of hairtail.

3. Method

Many natural systems exhibit nonlinear dynamics, such as marine ecosystems. The
presence of nonlinear dynamics in fish populations has been thoroughly examined by using
kinds of nonlinear time series analysis [30,31]. In light of the complex nonlinear dynamics
of marine systems, several authors have claimed that prediction in marine fisheries is a
challenging task [32,33]. In such systems, the correlation among the given variables is
unstable [34]. In natural systems, “mirage correlations” frequently occur [35], making
traditional parametric models ill-suited to describing physical behaviors of these systems.
A promising approach for study of nonlinear dynamic systems is empirical dynamic
modeling (EDM), which uses analysis of a time series of observations of variables instead
of using common parametric equations. The basic theoretical properties of EDM have been
described in the work of Sugihara and colleagues [13,35].
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3.1. Attractor Reconstruction

Takens (1981) proposed a solution for reconstructing a nonlinear system through
the lags of a single time series of observations from the system [36]. Deyle and Sugihara
extended Takens’ work to attractor reconstructions by using time series lags; their approach
provided a more robust model with more comprehensive information, especially for data-
limited systems [34]. For example, the states of a dynamical system are determined by three
variables at each time point; that is Φt = 〈X(t), Y(t), Z(t)〉. Projection of a state onto one of
the axes will produce a time series of observations on the corresponding axis. Assuming
that when only state X is available, according to Takens’ results, Φt = 〈X(t), Y(t), Z(t)〉
can be represented as Φ′t,X(t) = 〈X(t), X(t− τ), X(t− 2τ), · · · , X(t− (E− 1)τ)〉, where
τ is one unit of time lag, E is the embedding dimension (i.e., the number of coordi-
nates), and X(t− lτ), l = 1, · · · , (E− 1) are the lagged coordinates. When observations
of multiple variables are available, such as X(t), Y(t) and Z(t), Φt can be represented as
Φ′′t, X(t),Y(t),Z(t) = 〈X(t), X(t− τ), · · · , Y(t), Y(t− τ), · · · , Z(t), Z(t− τ), · · ·〉, where the
involved total dimension is E. We can then reconstruct a number of attractors by including
different combinations of multiple time series and lags thereof. Accordingly, the attractor
can provide mechanistic insight into how these variables interact. Obviously, multivariate
models can provide a better description of the system than single-variable models, as much
more information on the system is taken into consideration.

3.2. Prediction

The aim of attractor reconstruction is to predict the future states of the system. Here,
a prediction is made out of sample by applying the leave-one-out method when dealing
with sparse data. We use two classical forecasting methods of EDM: simplex projection and
S-map. Simplex projection predicts future states by computing a weighted average of the
nearby points with univariate on the attractor [37]. The key point of simplex projection is
to find the nearest (E + 1) neighbors on the reconstructed attractor. Given a reconstructed
attractor and a moment state Φ′t, we first find the (E + 1)th nearest neighbors denoted by
Φ′n(t,i), where n(t, i) indicates the time index of the ith nearest neighbor of Φ′t. Next, we

compute the Euclidian distance between Φ′t and its (E + 1)th nearest neighbor and rank
them according to distance. We then assign exponential weightωi,t to those neighbors
based on the above distance. Finally, we estimate the future states of Φ′t from the current
time, t, to t + ht (h is a positive integer) by taking the weighted average of the future state
Φ′n(t,i)+ht of those selected nearest neighbors:

Φ̂′t+ht =
∑E+1

i=1

(
ωi,t ×Φ′n(t,i)+ht

)
∑E+1

i=1 ωi,t
, (1)

whereωi,t = e
−

d(Φ′t ,Φ′n(t,i))

d(Φ′t ,Φ′n(t,1)) , 1 ≤ i ≤ E + 1. At this stage, we use Pearson’s correlation
between observed and predicted values to measure the prediction ability of the simplex
projection method. The optimal embedding dimension, Eop, is determined to maximize the
Person’s correlation coefficient.

Compared to simplex projection, S-map follows the algorithm of simplex projection
but uses all historical data vectors to create forecasts. It assigns weights,ωi,t, to all past

vectors based on distances with a tuning parameter, θ; that is,ωi,t = e
−

θ×d(Φ′t ,Φ′i )
1
k ∑k

i=1 d(Φ′t ,Φ′i ) , 1 ≤
i ≤ k, 1 ≤ t ≤ k, i 6= t. When θ = 0, S-map becomes a linear regression; when θ > 0, it
gives more weight to near neighbors. The system is considered nonlinear if prediction
ability is increased when θ > 0.
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3.3. Causality Test and Analysis

We identify the environmental drivers of catch abundances by using convergent
cross mapping (CCM), a nonlinear causality test method [35,38]. CCM tests causality by
measuring how well X(t) can be predicted from the states of Φt, which is feasible only if
X(t) is causally influencing Φt. There are two necessary criteria for CCM to infer causality:
(1) cross-mapping skill is statistically significant; (2) cross-mapping skill increases with
the length of the time series used in the attractor reconstruction. Criterion 2 reflects the
convergence properties of CCM. In practice, CCM convergence is usually limited by data
noise or time-series length.

In this study, we first determine the optimal system dimension, E, by conducting
univariate analysis based on simplex projection. The optimal dimension, E, is the optimal
number of time lags, which is set in advance as a range of 0 to 10. We evaluate the
performance of this procedure by maximizing the forecast skill. Next, system nonlinearity
is assessed based on S-maps by checking improvement in forecast skill when the nonlinear
parameter θ > 0. We then apply CCM to identify the environmental drivers of fish-catch
abundance. Here, the prediction time step for CCM is set at a value of −5 years, −4 years,
−3 years, −2 years, −1 year, or −0 year because there may be different response times to
different explanatory variables for a given response variable.

3.4. Multivariate Analysis

Fisheries models nearly always assume that catch abundance is related to contem-
poraneous fishing effort, reasoning that you cannot catch fish if you do not go fishing.
Therefore, it is very reasonable to include fishing effort as one of the explanatory variables
in EDM models for catch abundance. When constructing multivariate EDM models, we also
consider the causal environmental variables identified by CCM as explanatory variables.
For all subsequent analyses, we consider total catch abundance as the dependent variable.
The maximum dimension (i.e., number of coordinates) of the reconstructed multivariate
EDM models is equal to the optimal E, namely as Eop, which was determined by simplex
projection. Therefore, aside from the fixed coordinate (catch abundance), there are additional
(1, 2, . . . , or (E− 1)) coordinates as causal variables necessary to construct the models. As
the environmental variables have lagged effects on catch abundance, we consider all the
additional coordinates, 0-, 1-, 2-, 3-, 4-, and 5-year lagged; hence, all the candidates for
environmental variables are six times the number of additional coordinates. Although
fishing effort might have an effect on fish population size, the lags of fishing effort could
not be considered here because our study is focused on causal environmental factors.

It is necessary to select the multivariate model with the best prediction performance.
We use an S-map method with leave-one-out cross-validation of the data covering the
period of 1977 through 2018. Two specific measures (ρ, the Pearson correlation between
observed values and the forecasts, and MAE, mean absolute error), which are determined
from the results of the evaluation algorithm, are set as the joint measures for evaluation of
prediction performance. All the general algorithms described above are implemented in
the “rEDM” package available in R software (version 4.1.2).

4. Results
4.1. Nonlinearity Analysis and Causality Analysis

Using simplex projection at τ = 1—thus predicting one year ahead—the optimal
embedding dimension (E) for univariate analysis of the time series of catch abundance is
4, indicated by the highest forecast skill shown in Figure 2a. A nonlinear test by S-map
demonstrated that the best forecast skill is found at θ = 2 and E = 4, as shown in Figure 2b.
Here, θ > 0 denotes nonlinearity of the system. Thus, catch abundances alone can explain
a part of its variability from the high value of its highest correlation coefficient value at
E = 4 and θ = 2. However, it is well known that hairtails live in a complex environment,
where different environmental factors can influence their productivity, distribution, and
survival. In order to explore the actual causes influencing catch abundance and to further
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improve the accuracy of the prediction models, it is necessary to apply causality analysis
and use environmental factors for precise forecasts.
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Figure 2. Results from univariate analysis of hairtail catch by (a) simplex projection and (b) S-map.

For this purpose, the relationships between hairtail catch and six environmental factors
are depicted in Figure 3, which clearly shows the absence of linear correlation among these
variables. Hence, a nonlinear causality test (convergent cross mapping, CCM) is applied
to identify the environmental drivers of hairtail catch. If catch is strongly influenced by
environmental factors, it will contain information about past environmental states, thus
making it possible to estimate past environmental conditions from the time series of catches.
It should be noted that if the environmental factors influence hairtail catch with a time lag,
it is necessary to predict an appropriately lagged value of the corresponding environment;
thus, reasonable evidence of causal interaction could be obtained by cross mapping from
hairtail catch to the environment.

Table 1 shows the cross-mapping results between catch and the six environmental
factors considered in this work, combined with fishing effort. Aside from fishing effort,
only two variables show a significant linear correlation with catch abundance, while all six
environmental variables show significant nonlinear correlation relationships with catch
abundance by cross-map skill. Overall, the effects of the environmental variables on hairtail
catch may not be simply one-to-one mapping, and they are much more complex than those
captured by CCM analysis or linear correlation function. In order to probe the actual
causes influencing catch and elucidate the potential mechanisms of these causative factors,
we construct all possible multivariate models by different combinations of all variables
demonstrated as significant by CCM.
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Figure 3. Relationships (A) between catch abundance and precipitation, (B) between catch abundance and salinity,
(C) between catch abundance and SST, (D) between catch abundance and summer wind, (E) between catch abundance and
winter wind, (F) between catch abundance and PDI. Here, mm is millimeter; psu is practical salinity units; SST is sea surface
temperature; ◦C is degrees Celsius; m/s is meter per second; PDI is power dissipation index of tropical cyclone.

Table 1. Results of cross mapping.

Nonlinear Causal Effects of Fishing Effort & Environmental Drivers

Candidate
Variable (Xi)

Prediction Time
(Year)

Cross-Map Skill
(Catch→Xi)

Linear Cross-Correlation
(Catch and Xi)

Fishing effort 0 0.818 * 0.772
SST 0 0.347 * 0.076

Precipitation −2 0.269 * −0.121
Ocean_salinity −2 0.231 * 0.102

Summer_wind_speed −1 0.308 * 0.122
Winter_wind_speed 0 0.306 * 0.237 *

PDI −4 0.304 * 0.302 *

* p < 0.05. Variables in bold font are determined to be causal variables.
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4.2. Prediction of Hairtail Abundances: Model Generation and Validation

Although it is usually sufficient to reconstruct a system’s dynamics with a single time
series, the system will be incomplete as far as an unclosed system is concerned [13]. In
the case of hairtail, fishing effort alone may not skillfully predict future catch abundance
because abundance is simultaneously influenced by external environmental factors. Hence,
environmental factors act as stochastic external disturbances, which are included in a
multivariate reconstruction as coordinates other than catch abundance and fishing effort. It
is worth noting that anthropogenic influence on hairtail catch by fishing effort is considered
one of the explanatory variables for construction of the EDM models, other than those
eliminated in advance by nonlinear regression analysis (e.g., the classical Fox model) [3]
because estimation errors of catch abundance would inevitably be introduced into the
EDM models by variable-removal operations.

Since the optimal embedding dimension (Eop) is set as 4, we limit each multivariate
model up to four coordinates to make the system analysis tractable; that is, except for the
objective variate (catch abundance) and the anthropogenic factor (fishing effort), there
are, at most, two additional environmental variables included in each model, where each
environmental coordinate is a 0-, 1-, 2-, 3-, 4-, or 5-year lag of each environmental variable.
We set the longest time lags at 5 years, as in reference [2], which is based on the cycle of
nutrient circulation among ecosystems. The coordinate of fishing effort is set as a 0-year
lag. We use all variables listed in Table 1 (fishing effort and the six other environmental
variables) and generate 8474 possible multivariate models (1 one-dimension model, 37
two-dimension models, 666 three-dimension models, and 7770 four-dimension models). In
a sense, each model offers a particular perspective on hairtail dynamics based on differing
direct or indirect indicators of possible mechanisms. Due to data limitations, we divide
the raw data into four parts (1977–1986, 1987–1997, 1998–2007, and 2008–2018) and use
the leave-one-out cross-validation method to evaluate model performance. Next, we rank
all the models depending on a combination of ρ and MAE, which have been shown to
perform well in out-of-sample tests [14].

The best three models selected based on the metrics are: A1 [catch(t), fishingeffort(t),
salinity(t), summw(t−5)], A2 [catch(t), fishingeffort(t), summw(t), summw(t−5)], and A3
[catch(t), fishingeffort(t), SST(t−3), Preci(t−5)]. As shown in Figure 4, forecast accuracy
for these models exceeds 0.93 (ρ = 0.941, 0.938, and 0.937, respectively, at p < 0.05), and
their forecast errors are lower than 0.7 (MAE = 0.661, 0.641, and 0.649, respectively), where
fishing effort has been shown to be the common variable, and the variables (salinity(t),
summw(t−5), summw(t), sst(t−3), and preci(t−5)) are identified as the most important
external environmental factors determining catch abundance. Model A1, <catch(t), fishing-
effort(t), salinity(t), summw(t−5)>, shows the best prediction performance in terms of the
combination of two metrics from Figure 4.
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Figure 4. The selected best ten models: (a) forecast skill (rho) (b) forecast error (MAE).

To validate performance of the selected models, we predict catch abundance during
the period from 2008 to 2018 by EDM models constructed with the data during the period
from 1977 to 2007. All three models yield statistically significant predictions with p < 0.05.
Figure 5 clearly shows the excellent prediction performance of these models, which are
closely aligned to the observed trends in catch abundance data. However, there are still
some discrepancies between observed and prediction points in each model, such as 2016
by models A2 and A3, 2017 by model A3, and 2018 by model A2. These prediction errors
might be explained by an insufficient length of the time series of data used in construction
of the EDM models.
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4.3. Comparison of Catch Forecast Models

In this section, we compare performance of the EDM models with that of traditional
parametric models (e.g., linear regression models). To ensure fair comparison of the two
methods, we employ the same variables used in EDM models to build the linear regression
models. We also use the same evaluation metrics for comparison of the performance
of EDM models with that of linear regression models. The results of this comparison
are shown in Figure 6. From Figure 6a–c, it can be observed that the best three EDM
models have significantly higher prediction accuracy than that of the corresponding linear
regression models. Thus, it can be concluded that the nonparametric EDM models, with
the flexibility to describe nonlinear dynamic systems, overwhelmingly outperform linear
regression models in complex nonlinear systems.
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5. Discussion
5.1. Environmental Factors

Attempts to reveal the environmental factors affecting hairtail abundance have been
made by employing linear regression analysis [11]. However, to the best of our knowledge,
these earlier studies did not yield conclusive insights into the nonlinear relationships
between hairtail catch abundance and environmental factors, although nonlinear dynamics
are ubiquitous in marine ecosystems [35]. Since 1988, use of high-intensity fishing gear
has sharply increased, including in hairtail fishing. Fishing effort of hairtail also increased
rapidly during this period. Because of these changes in fishing practice, catches of hairtail
initially increased from 1988 to 2000 (Figure 1); however, catch abundance of hairtail in the
East China Sea has generally declined since 2000, due to years of overfishing.

Aside from the influence of fishing effort on catch, environmental factors are believed
to influence hairtail catch. In this work, we demonstrate that EDM models incorporating
environmental variables outperform models that consider fishing effort alone. Using
multivariate EDM, we conclude that salinity, summer monsoon, SST, precipitation, and
PDI of tropical cyclones can be used as variables in the ten best EDM models, as shown in
Figure 4.

It is well known that the relationship between environmental factors and fish pro-
duction is probably linked to ecosystem nutrient cycling. The nutrient supply in primary
production is influenced mainly by environmental factors. The saline water flowing from
the Kuroshio Current to the ECS shelf is recognized as a rich source of nutrients, including
a high concentration of nitrate [39]. It provides abundant organic-matter exporting from
the cross-shelf into the deep sea and makes the ECS shelf an area of high production. The
summer monsoon season prevails from June to August, coinciding with peak runoff in
the Changjiang River [40]. The Changjiang runoff is highly enriched in nitrate and silicate,
while the offshore and subsurface water masses are rich in phosphate. In enhancing mixing
of these water masses, the summer monsoon supplies abundant nutrients to these waters,
thus enhancing primary production. This effect is also reflected in the positive correlation
seen between catch and summer monsoon, as shown in Table 1.

Water temperature is one of the vital factors for successful fish reproduction and
growth [41]. The increase in water temperature can enhance phytoplankton photosynthesis
and increase primary production overall. Finally, it promotes plentiful food availability to
support hairtail growth. Terrestrial precipitation is often associated with nutrient richness
by inducing river runoff, which generates very high nutrient input to the ECS. Hence, water
temperature, combined with terrestrial precipitation, could largely influence the total catch.

Although “tropical cyclones” is not a variable included in the three best EDM models,
it does appear as a relevant factor in models A6 and A9, and it could be an important factor
in hairtail production in the ECS. Its importance could also be reflected in the positive
correlation between catch and the PDI of tropical cyclones shown in Table 1. Tropical
cyclones can bring strong winds and heavy rainfall, which result in large increases in
nutrients and phytoplankton reproduction in coastal waters after these storms [42]. Fish
production thus also increases accordingly [2].

Figure 4 also demonstrates that the ten different EDM models show similar levels
of performance. This similarity reflects a fundamental property of the EDM method: the
prediction performance of different models depends only on the information of data [13].
From the above analysis, it is clear that the identified environmental factors have a common
effect: an impact on nutrient supply, which is the potential mechanism influencing hairtail
catch. The environmental factors discussed above are solely extrinsic indicators of this
underlying mechanism.

5.2. EDM for Nonlinear Analysis

Marine ecosystems are complex nonlinear systems framed by the intersection of a
diverse set of physical, chemical, and biological components [32,43]. Our analysis of the
dataset by EDM suggests the nonlinear nature of the marine system. To date, efforts investi-
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gating the effects on hairtail abundance of fishing effort and environmental variability have
mostly focused on machine-learning regression techniques [1,8]. Those models investigate
the relationship based on an assumption of linear correlation. In nonlinear systems, the
correlation among the given variables is nonlinear, and “mirage correlations” frequently
occur, making traditional regression techniques ill-suited to describing physical behaviors
of these systems. In our work, the correlation among these variables is nonlinear (Figure 3),
and therefore, nonlinear tools are necessary and suitable to reveal the relationship between
variables.

As demonstrated in this work, EDM has the advantages in identifying complex
causes and predicting catch abundance in marine systems. The good performance of EDM
achieved offers an alternative for researchers to reveal the relationship between fluctuations
in fish catch and variability in both fishing effort and marine environmental conditions.
For fishery managers, skillful nonlinear tools, e.g., the EDM approach, also enable them to
obtain accurate prediction of fish catch, thus assisting them in instituting reasonable fishery
policies [44].

EDM is fundamentally a data-driven approach. It uses time-series data to reconstruct
an attractor and then identify the environmental variables based on the attractor. Thus,
sufficient length of data is a critical issue to the recovery of dynamics. As suggested by
Sugihara et al., more than 35–40 points might be a necessary requirement [35]. In our work,
we used yearly time series data with 42 observations for each variable, which satisfies
the minimum data requirement of EDM. Thus, in view of insufficient available data, it is
almost impossible for us to conduct careful investigations on whether the performance of
EDM can be enhanced by lengthening time-series data. Hence, such investigations will
be considered in future work. Moreover, if high-resolution data (e.g., sampled monthly)
can be provided, much more information may be extracted by constructing much more
compact models.

6. Conclusions

In this paper, an equation-free method (EDM) has been introduced to explore the key
factors influencing catch abundance of hairtail in the ECS and to elucidate the potential mech-
anisms underlying these effects. First, we applied the simplex method to select the optimal
embedding dimension. Then, we applied a convergent cross-mapping method to carry out a
causality analysis of hairtail catch abundances. We then constructed multivariate EDM models
and applied a combination of metrics to evaluate the performance of these models. Finally, we
compared the predictive performance of EDM models and parametric models using historical
data; EDM models overwhelmingly outperformed the parametric models.

We find that there would more than one EDM model for a given set of data, which
show similar excellent predictive performance. Our model analysis suggests the poten-
tial mechanisms explaining the relationships between environmental factors and catch
abundance. Impact on nutrient supply is a potential mechanism influencing hairtail catch.
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