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Abstract: In the present study, size-at-age data (length and weight) of marine cage-reared spotted
rose snapper Lutjanus guttatus were analyzed under four different variance assumptions (observed,
constant, depensatory, and compensatory variances) to analyze the robustness of selecting the right
standard deviation structure to parametrize the von Bertalanffy, Logistic, and Gompertz models. The
selection of the best model and variance criteria was obtained based on the Bayesian information
criterion (BIC). According to the BIC results, the observed variance in the present study was the
best way to parametrize the three abovementioned growth models, and the Gompertz model best
represented the length and weight growth curves. Based on these results, using the observed error
structure to calculate the growth parameters in multi-model inference analyses is recommended.

Keywords: growth; information theory; multi-model; residual structure

1. Introduction

Growth is the most important aspect in species demographic analysis. The impor-
tance of growth is reflected in the extensive literature on individual growth in fisheries,
aquaculture, and ecological studies. Increases in stock biomass are directly correlated to the
individual’s growth and how they grow is a response to the environmental conditions in
timing or location. This is one of the reasons why growth studies for particular species are
assessed annually or geographically in the same year. In ecology, fishery and aquaculture
studies are very common to gather information on ages and sizes (length, weight, etc.) to be
later modeled or interpreted via mathematical equations. Historically, the von Bertalanffy
growth model (VBGM) is the most used because [1] introduced the idea of using it for stock
assessment. The basic principle is to predict the size (length, weight, etc.) as functions
of age. This empirical equation defines growth by balancing the negative and positive
(anabolism and catabolism) processes within individuals.

Residual analysis is important to parametrize the models (mathematical equations)
selected to describe the growth of the species under study. The growth model has unknown
parameters that must be solved through the objective function. The objective function
could be stated by the likelihood, which is usually solved by residual analysis. Residuals
are set up according to the curve and variability at age.
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Variability at age (differences in size of the fishes at same age) has been previously
documented and studied [2–6]. Many hypotheses have been proposed to explain this
phenomenon, with factors including differences in birthdates, genetic variability, food
availability, and competition, among others. Today, research focuses on how this variability
is utilized to parametrize growth models. Variability at age is considered with age (depen-
satory variability [5,7]). If the variability decreases as the age is increases, then the variance
is called compensatory [6,8]. It is worth noting that compensatory growth has a different
meaning in aquaculture studies. However, the most common practice is to consider the
constant variability in parametrizing the growth models.

Individual variability at age is real and irrefutable. It was originally considered and
formulated by Schnute and Fournier [2] in two ways: (1) “compensatory” (variability
tends to decrease with age), and (2) “depensatory” (variability tends to increase with
age). The authors wrote that “it may happen that younger fish experience considerable
variability in growth rate, while older fish tend to reach limiting size.” This peculiarity
was called “growth compensation” [6]. However, Schnute and Fournier also suggested
that “many factors may contribute to size variation among fish of one age,” and that it is
also possible that individual variability tends to increase with age. This was first evaluated
by Restrepo et al. [7] and later by Luquin-Covarrubias et al. [5], who termed this type of
individual variability “growth depensation”. However, Restrepo et al. [7] solved the prob-
lem using the widely used growth model of von Bertalanffy. Luquin-Covarrubias et al. [5]
extended the analysis to six asymptotic models. Restrepo et al. [7] developed an equation
to solve the growth depensation issue and Luquin-Covarrubias et al. [5] developed the
equations for the other five models. On the other hand, Félix-Ortiz et al. [6] developed the
equations to compute the growth compensation in five asymptotic models.

Once the biologist chooses a model or a set of models, they must fit them according to
the gathered size at age data. First, a residual error distribution must be assumed, which
is typically additive or multiplicative. In the first case (additive), the normal distribution
of errors is assumed, with a mean of 0 and an unknown σ. However, it should be noted
that additive errors do not necessarily mean a normal distribution. In the second case,
(multiplicative), the assumption is a lognormal distribution of errors with a mean of 0 and
an unknown σ. Based on the above, the corresponding loglikelihood function, Normal or
Lognormal, is then used considering the different criteria of standard deviation structure
as follows:

a. Constant variance, this is the one that is usually assumed. The variance does not
change with the value of x, the independent variable, which is valid when errors
are normal.

b. Increasing variance of errors with x, the independent variable. This is usually what
is expected in a multiplicative type error, i.e., with the lognormal distribution. This is
where functions have been included to simulate the growth as a depensatory effect,
as demonstrated by references [5,7].

c. Decreasing the variance with x, the independent variable. Here, the included func-
tions are used to simulate the growth compensatory effect [6].

d. The observed variance or age-specific variances. Instead of assuming some type
of variances (a, b, or c), the variance obtained from the sample is used, which is
estimated from the data. The variance of size at any age (Yo for each value of x), has
a square root of σ, which is incorporated into the loglikelihood function. In this case,
the lognormal distribution of the residuals is assumed. Then, the sample variance
is obtained from the ln(Yo) and not from the original Yo, whereas in the normal
distribution, it is calculated from the Yo data for each value of x. For this reason,
and despite the importance of the multi-model approach (MMA) or information
theory to select models, the focus on variability at age becomes a core strategy in
growth analysis.

Growth studies of reared fishes use weight-at-age data more commonly than length-
at-age data. Usually, the weight-at-age data describe a sigmoid-shaped growth curve. The
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growth rate reaches a maximum, which corresponds to the point of inflection in the curve,
and then slowly declines to zero when the animals achieve their mature weight. The data
in length or weight likely exhibit differences in the standard deviation structure. Therefore,
the growth analysis of both datasets becomes important.

Spotted rose snapper (Lutjanus guttatus Steindachner, 1869) farming in floating cages
is a novel aquaculture practice in the marine zones of Mexico that yields good income
in experimental and commercial stages [9]. The most common growth equations used in
reared fishes are the VBGM, the Gompertz growth model, and the logistic model [10,11].

The knowledge of the growth curve is important to improve the production efficiency,
including the feeding adjustments. For this reason, the main purpose of this study was
to compare the previously used hypothesis of variability at age, assumed as constant,
and depensatory and compensatory approaches in growth models against the observed
variance proposed in this study. We further aimed to demonstrate the benefit of using the
most appropriate standard deviation structure for growth analysis in a dataset of spotted
rose snapper cultured in floating cages.

2. Materials and Methods
2.1. Data Source

The data used for this study come from a cultured spotted rose snapper (Lutjanus
guttatus Steindachner 1869) farmed for 270 days in marine cages at the eastern coast of
the mouth of the Gulf of California. An aleatory sample of 60 fishes was obtained every
4 weeks from the beginning to the end of the trial. The total length (nearest 1 mm) and
total weight (nearest 0.1 g) were estimated for each individual (for more detail of culture
procedure, see [9]).

2.2. Models and Selection Criterion

After the size-at-age data (length or weight) were obtained, they were plotted to
visualize the most suitable growth model that should be applied. In addition, the observed
variance from the sample was plotted to visualize the variance criterion. Three asymptotic
models were chosen to address the size-at-age data and determine which model was
best. An information theory approach was adopted to select the best individual growth
model [12,13]. The models were the VBGM, the logistic model, and the Gompertz growth
model. The equations are as follows:

The VBGM [14] is given by:

Yt = Y∞(1− e−k(t−t0))
D

, (1)

Logistic [15]

Yt = Y∞(1 + e−k(t−t∗))
−1

, (2)

Gompertz [16]

Yt = Y∞e(−e−k(t−t∗)), (3)

where Yt is the size at time t, Y∞ is the asymptotic size, t0 is the theoretical age at zero weight
or length, t* is the inflexion point of the sigmoid curve and k represents the coefficient of
growth. The size is the weight or length in VBGM (in the case of weight, D = 3, and in the
case of length, D = 1). Note that using the size as Y, any size can be used, such as the total
length, weight, or carapace width, among the other commonly used measured variables.

To estimate the parameters, the objective functions were first suited to consider the
following: Y0 is the observed value of the dependent variable, and Ye is the estimated value
with any of the candidate models using the likelihood function:

LL = ∑
(
−0.5LN(σ2)− 0.5LN(2π)− (Yo−Ye)2

2σ2

)
, (4)
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This function was maximized. To convert the function into negative log likelihood
functions, invert the signs (− by +). Using negative likelihood, the objective function
is minimized.

The normal distribution of errors was considered (additive error). The sigma (σ)
values used according to error residual’s structure criteria were:

Constant:

σ =

√
∑ (Yo−Ye)2

n
, (5)

Depensatory:

σ =

√
σ2

∞[(1− e−k(t−t0))
D
]
2
, for VBGM (6)

σ =

√
σ2

∞[(1 + e−k(t−t1))
−1

]
2
, for logistic model (7)

σ =

√
σ2

∞[e(−e−k(t−t∗))]
2
, for Gompertz model (8)

Compensatory:

σ =

√
σ2

∞[(1− e−k(t−t0))
D
]
−2

, for VBGM (9)

σ =

√
σ2

∞[(1 + e−k(t−t1))
−1

]
−2

, for logistic model (10)

σ =

√
σ2

∞[e(−e−k(t−t∗))]
−2

, for Gompertz model (11)

σ2
∞ is the variance for the oldest organism, similar to L∞ in growth models. That is, σ2

∞ is
the variance at the asymptotic size.

The observed

σi =

√
∑ (Yoi−Yai)2

n
, (12)

(in this case, the Yoi) is the observed value at each age, and Yai is the average value at
each age.

The model criterion selection approach was used to select the best candidate growth
model and the best variance criterion based on the Bayesian information criterion (BIC).
The BIC was estimated as BIC = 2-LL + ln(n)θi, where LL is the maximum log likelihood,
θi is the number of parameters in each model tested plus 1, and n represents the number
of observations. The model with the lowest BIC value was chosen as the best model.
Differences in the BIC values (∆i = BICi− BICmin) were estimated among the three models
used in this study. The BIC weight (Wi) is the percent of evidence in favor of model i. Wi
was estimated according to [17] using the following formula:

Wi =
e(−0.5∆i)

∑3
i=1 e(−0.5∆i)

, (13)

2.3. Confidence Intervals

To find a correlation, the joint confidence intervals for L∞ and K were estimated based
on likelihood profiles and chi-square distribution [18]. The confidence interval was defined
as all values that satisfy the following inequality:

2(L(Y|θ )− L(Y|θbest )) < χ2
1, 1−∝ (14)

where L(Y|θbest ) is the log likelihood of the most likely value of θ, and χ2
1, 1−∝ is the value

of X2 with two degrees of freedom at the confidence level of 1-α. Thus, the confidence
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interval at 95% of the value θ covers all values that are twice the difference between the log
likelihood of a θ given and the log likelihood of the best estimate of a θ given one that is
less than 5.99.

3. Results

According to observed length data (Figure 1A), the proposed candidate models must
be asymptotic because the sizes clearly reached an asymptote around 200 days. The
standard deviation was not observed to increase or decrease with the days (Figure 1B).
Instead, the standard deviation increased and then decreased. Here, the constant variance
should be proposed considering a balance from the beginning and late ages.
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tendency (dashed line).

In the case of weight, the most likely candidate models should be asymptotic, more
likely a sigmoid (Figure 2A). Here, the variability at age is observed to increase with days
(Figure 2B), then it was possible to use the criterion of depensatory variance. Obviously,
the criterion of compensatory effect does not fit.

Comparing the growth models of the length and weight data with the four variance
criteria, it was observed that the lowest BIC was obtained with the Gompertz model using
the observed variance (Table 1). The second place was obtained for constant variance in
length and depensatory for weight, according to the observed raw data (Table 1).

The trajectories of variance with depensatory and compensatory criterion for length
or weight are presented in Figure 3. Adjusted Gompertz growth curves for length and
weight are shown in Figure 4. Although the trajectories (length vs. weight) look different,
the same model was selected as the best model to describe them.
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Table 1. The Bayesian information criterion (BIC) for each of the three models and the four resid-
ual structures.

Variable Residual Structure VBGM Logistic Gompertz

Length Observed 1711 1771 1668
Constant 1852 1829 1811
Depensatory 2673 1947 1867
Compensatory 3001 2011 2022

Weight Observed 4411 4695 4403
Constant 5127 5199 5199
Depensatory 4674 4854 4669
Compensatory 5953 11768 5939

As the Gompertz model fitted with observed variance was the best model, the param-
eters for this model and this criteria variance are presented in Table 2. For length, the L∞
did not show a significant difference, even when the depensatory criterion was used. In
the weight data, a significant difference was observed among the four criteria. The K value
with the observed sigma in length data was only different from that of the compensatory
criterion, while in the weight data, the K values were different among the five criteria. The
inflection point (t*) was not different from that observed against the other three criteria in
the length data, while in the weight data, a significant difference was observed among the
four criteria.
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Table 2. Parameters and 95% confidence intervals (CI) for the Gompertz model with different residual error structures. L∞

is the asymptotic length, W∞ is the asymptotic weight, t* is the inflexion point of the sigmoid curve, and k represents the
coefficient of growth.

Length Weight

Criterion Optimum (CI) Significance Optimum (CI) Significance

L∞ (cm) W∞ (g)
Observed 29.44 (29.25–29.64) a 578 (570–586) a
Constant 29.79 (29.44–30.19) ab 403 (398–409) b
Depensatory 29.23 (28.99–29.47) a 507 (493–521) c
Compensatory 30.25 (29.64–30.94) b 1738 (1707–1776) d

k (days−1) k (days−1)
Observed 0.01168 (0.01143–0.01194) a 0.00993 (0.00988–0.00999) a
Constant 0.01138 (0.01090–0.01188) ab 0.02320 (0.02240–0.02420) b
Depensatory 0.01179 (0.01154–0.01204) a 0.01054 (0.01046–0.01061) c
Compensatory 0.01056 (0.00980–0.01133) b 0.00340 (0.00329–0.00341) d

t* (days) t* (days)
Observed 46.2 (45.5–46.9) ab 176.3 (175.8–176.9) a
Constant 47.3 (46.2–48.3) a 165.3 (163.9–166.7) b
Depensatory 45.0 (44.4–45.7) ab 161.6 (161.0–162.2) c
Compensatory 44.8 (43.4–46.2) ab 386.2 (384.7–387.7) d

4. Discussion

In previous studies of reared fish growth analyses, the constant variance was the
criterion used. However, in the present study, the observed variance was the most appro-
priate to parametrize the three different fitted models. The approach taken in the present
study of using the observed variance is novel in fish growth literature. Considering the
variability at age, previous analyses have attempted to improve the parametrization of the
models [19]. Despite the novelty of the proposed method by reference [19], it has a caveat:
it works with constant variance. Other approaches to contrast the constant variance have
been tested, including depensatory [7] and compensatory [6] approaches. However, no
observed variability at age was tested in reared fishes before this study.

A new challenge in parametrizing growth models is to consider the observed variabil-
ity at age. The innovation proposed in the present study uses the observed variance instead
of using the constant variance. Computing the values of σ2

i through the optimization of
σ2

∞ led to the best interpretation of the size at age. However, this cannot be observed if
the variance is assumed as constant (under the conventional method or unconventional
approach). The observed variance has the advantage of demonstrating intrinsic vari-
ability of the size at age that cannot be observed if the objective function is solved (as
traditionally occurs) based on the conventional constant-variance or the monotonically
increasing/decreasing approach.

Considering the variance of the length raw data (Figure 1B) could lead researchers to
expect that the model is configured to a constant variance (stable over time). However, it
was interesting to observe the differences with respect to the criteria of observed variances.
On the other hand, the variance of the weight raw data (Figure 2B) could lead to the use
of depensatory variance. Once again, the criteria of the observed variances was the best
method to parametrize the models.

Differences in the estimated model parameters were not clearly observed (Table 2) in
the length data, while in the weight data, the differences were clear. In other words, relying
on the confidence intervals for the model parameters might lead to the conclusion that there
the error structure is unimportant because it shows similar growth curves. However, fitting
two of the most common size data in the scientific literature of cultured fishes allowed
us to show that using the observed variance yields robust results, i.e., in both cases, the
observed variance produced the most plausible fits.
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Although the objective of the present work was not to select the best model using
the MMA but to test differences in the hypothesized variance structure, we found that the
Gompertz model using the observed size–age dispersion was the most plausible model.
The models chosen at the beginning were coincident with the variance observed as the
best technique for parameterization of the models, since the lower value of the BIC was
for that criterion in the three models used. It is worth mentioning that, according to the
two types of data used (length and weight), it was observed that the variability of the size
at each age had a different performance. For the length data, the standard deviation had
a distribution that balanced the differences at the beginning and end of the analyzed age
period, as mentioned by reference [2]. This enables the analysis of the parameterization of
the models using the constant variance criterion, as is also demonstrated by the BIC values
that placed it second. In other words, if the observed sigma had not been used, the constant
variance criterion would have been the best error structure, indicating the depensatory and
compensatory criteria with a negligible percent of evidence in its favor. On the other hand,
the weight data have a sigma distribution with a tendency to increase as the age increases
(depensatory). The values of the BIC place the depensatory criterion second. Therefore, if
the observed variance had not been used, the depensatory criterion would have been the
best, the criteria of constant variance would be far away and the compensatory criterion
would be farther away. Despite recognizing the variability of sizes at the same age, no
criteria should be assumed to plot the dispersion of variance at each age. In our study, we
examined the same species growing under the same culture conditions. However, when
analyzing two types or sizes (weight and length), each presents a different distribution of
size variability at the same age.

We anticipate that this work will introduce a biological structure within a statistical
analysis to find biologically important solutions. As mentioned by [20], considering the
structure of the standard deviation of length or weight for each age or age classes will
result in a better approximation of the growth parameters represented by the collected data.
The growth is the result of anabolism (the process of building up body substances) and
catabolism. The respiration rate (proportional to anabolism), in turn, is usually proportional
to the surface area. Such general principles lead to differential equations for growth
processes that are generally applicable to many species, including fishes. A growth equation
is any model where weight or length (dependent variable) is calculated using time as the
predictor (independent variable). Growth functions are usually analytical solutions to
differential equations that can be fit to the growth data. The sigmoidal or curvilinear shape
of the growth trajectory indicates that linear regression is not suitable to describe growth
unless only small portions of the curve are considered. For this reason, nonlinear growth
functions are the best means of estimating the growth of fishes. For a long time, fish growth
under culture conditions has been described by increasing weight over the culture period.
Recently, researchers [10,11] have shown that the growth-fitted model is a more informative
way to describe the growth patterns of cultivated fish. A model fitted to the specific culture
conditions allows accurate interpolation of the weight at any time in the observation range
and not just when the data were obtained. Interpolations or extrapolations are not possible
without fitting a model. If an aquaculturist knows the anticipated growth curve of a species
under reared conditions, they can adjust the feeding regime. Feed is the most important
expense in industrial aquaculture, so the estimation of appropriate growth parameters will
improve culture management.

5. Conclusions

Using the observed variance in the present study was the best method to parametrize
the three commonly used individual growth models (von Betalanffy, logistic, and Gom-
pertz) using size-at-age data (length weight) for cultured fishes. In particular, this study
used the spotted rose snapper as a study case. The information criterion indicated that the
observed standard deviation yielded the most plausible models. We therefore conclude
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that, whenever possible, the observed error structure should be used to conduct robust
estimates of individual growth parameters.
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